Abstract

Sensing of leakage at an early stage is crucial for the safe utilization of hydrogen. Optical hydrogen sensors eliminate the potential hazard of ignition caused by electrical sparks but achieve a detection limit far higher than their electrical counterparts so far. To essentially improve the performance of optical hydrogen sensors in terms of detection limit, we demonstrate in this work a plasmonic hydrogen sensor based on aluminum-palladium (Al-Pd) hybrid nanorods. Arranged into high-density regular arrays, the hybrid nanorods are capable of sensing hydrogen at a concentration down to 40 ppm, i.e., one thousandth of the lower flammability limit of hydrogen in air. Different sensing behaviors are found for two sensor configurations, where Pd-Al nanorods provide larger spectral shift and Al-Pd ones exhibit shorter response time. In addition, the plasmonic hydrogen sensors here utilize exclusively CMOS-compatible materials, holding the potential for real-world, large-scale applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-slot hybrid microring resonator hydrogen sensor

Kenan Cicek, Mustafa Eryürek, and Alper Kiraz
J. Opt. Soc. Am. B 34(7) 1465-1470 (2017)

Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors [Invited]

Nikolai Strohfeldt, Jun Zhao, Andreas Tittl, and Harald Giessen
Opt. Mater. Express 5(11) 2525-2535 (2015)

Fast hydrogen detection via plasmonic metal-insulator-metal technology

Kenan Cicek
Appl. Opt. 57(34) 10032-10035 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Turner, C. Linkous, and N. Muradov, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
    [Crossref] [PubMed]
  2. L. Barreto, A. Makihira, and K. Riahi, “The hydrogen economy in the 21st century: a sustainable development scenario,” Int. J. Hydrogen Energy 28(3), 267–284 (2003).
    [Crossref]
  3. A. Züttel, A. Borgschulte, and L. Schlapbach, Hydrogen as a Future Energy Carrier (Wiley‐VCH Verlag GmbH & Co. KGaA, 2008).
  4. W. Shin, “Medical applications of breath hydrogen measurements,” Anal. Bioanal. Chem. 406(16), 3931–3939 (2014).
    [Crossref] [PubMed]
  5. K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol. 18(7), 615–619 (2003).
    [Crossref]
  6. K. Skucha, Z. Fan, K. Jeon, A. Javey, and B. Boser, “Palladium/Silicon Nanowire Schottky Barrier-Based Hydrogen Sensors,” Sens. Actuators B Chem. 145(1), 232–238 (2010).
    [Crossref]
  7. E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
    [Crossref]
  8. M. Zhao, H. W. Man, C. W. Ong, N. H. Ng, and H. C. Man, “Tunability of Pd-nanogapped H2 sensors made on SiO2-coated Si micropillar arrays,” Sens. Actuators B Chem. 255, 944–951 (2018).
    [Crossref]
  9. X. Li, M. Le Thai, R. K. Dutta, S. Qiao, G. T. Chandran, and R. M. Penner, “Sub-6 nm Palladium Nanoparticles for Faster, More Sensitive H2 Detection Using Carbon Nanotube Ropes,” ACS Sens. 2(2), 282–289 (2017).
    [Crossref] [PubMed]
  10. J. Villatoro, D. Luna-Moreno, and D. Monzón-Hernández, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem. 110(1), 23–27 (2005).
    [Crossref]
  11. C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Express 21(1), 382–390 (2013).
    [Crossref] [PubMed]
  12. R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
    [Crossref]
  13. C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
    [Crossref] [PubMed]
  14. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
    [Crossref] [PubMed]
  15. T. Shegai and C. Langhammer, “Hydride Formation in Single Palladium and Magnesium Nanoparticles Studied by Nanoplasmonic Dark-Field Scattering Spectroscopy,” Adv. Mater. 23(38), 4409–4414 (2011).
    [Crossref] [PubMed]
  16. A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing,” Nano Lett. 11(10), 4366–4369 (2011).
    [Crossref] [PubMed]
  17. T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
    [Crossref] [PubMed]
  18. A. Tittl, X. Yin, H. Giessen, X. D. Tian, Z. Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
    [Crossref] [PubMed]
  19. C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano 8(12), 11925–11940 (2014).
    [Crossref] [PubMed]
  20. S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
    [Crossref] [PubMed]
  21. N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
    [Crossref]
  22. A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing,” ACS Nano 8(8), 7639–7647 (2014).
    [Crossref] [PubMed]
  23. C. Wadell, F. A. A. Nugroho, E. Lidström, B. Iandolo, J. B. Wagner, and C. Langhammer, “Hysteresis-Free Nanoplasmonic Pd-Au Alloy Hydrogen Sensors,” Nano Lett. 15(5), 3563–3570 (2015).
    [Crossref] [PubMed]
  24. R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive Plasmonic Response of Bimetallic Au/Pd Nanostructures to Hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
    [Crossref]
  25. K. Y. Hang, X. Zhu, X. Zhuo, R. Jiang, Z. Yang, and J. Wang, “Gold Nanobipyramid‐Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching ≈140 nm at 2 vol% Hydrogen Concentration,” Adv. Opt. Mater. 5(24), 1700740 (2017).
    [Crossref]
  26. N. Strohfeldt, A. Tittl, and H. Giessen, “Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications,” Opt. Mater. Express 3(2), 194 (2013).
    [Crossref]
  27. R. Griessen, N. Strohfeldt, and H. Giessen, “Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles,” Nat. Mater. 15(3), 311–317 (2016).
    [Crossref] [PubMed]
  28. R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
    [Crossref] [PubMed]
  29. A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
    [Crossref] [PubMed]
  30. S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
    [Crossref] [PubMed]
  31. T. C. Narayan, A. Baldi, A. L. Koh, R. Sinclair, and J. A. Dionne, “Reconstructing solute-induced phase transformations within individual nanocrystals,” Nat. Mater. 15(7), 768–774 (2016).
    [Crossref] [PubMed]
  32. A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
    [Crossref] [PubMed]
  33. W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496(2), 189–196 (2006).
    [Crossref]
  34. I. Zorić, E. M. Larsson, B. Kasemo, and C. Langhammer, “Localized surface plasmons shed light on nanoscale metal hydrides,” Adv. Mater. 22(41), 4628–4633 (2010).
    [Crossref] [PubMed]
  35. Y. Shen, X. She, and C. Jin, “Mechanically Reconfigurable Pd Nanogroove Array: An Ultrasensitive Optical Hydrogen Detector,” ACS Photonics 5(4), 1334–1342 (2018).
    [Crossref]
  36. N. Strohfeldt, J. Zhao, A. Tittl, and H. Giessen, “Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors,” Opt. Mater. Express 5(11), 2525–2535 (2015).
    [Crossref]
  37. A. Hierro-Rodriguez, I. T. Leite, P. Rocha-Rodrigues, P. Fernandes, J. P. Araujo, P. A. Jorge, J. L. Santos, J. M. Teixeira, and A. Guerreiro, “Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials,” Nanotechnology 27(18), 185501 (2016).
    [Crossref] [PubMed]
  38. N. R. Fong, P. Berini, and R. N. Tait, “Hydrogen sensing with Pd-coated long-range surface plasmon membrane waveguides,” Nanoscale 8(7), 4284–4290 (2016).
    [Crossref] [PubMed]
  39. M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral Plasmonic Hydrogen Sensors,” Small 14(7), 1702990 (2018).
    [Crossref] [PubMed]
  40. F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single‐Crystal Pd and its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
    [Crossref]
  41. S. Chang, S. Sen, P. Zhang, B. Gyarfas, B. Ashcroft, S. Lefkowitz, H. Peng, and S. Lindsay, “Palladium Electrodes for Molecular Tunnel Junctions,” Nanotechnology 23(42), 425202 (2012).
    [Crossref] [PubMed]
  42. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref] [PubMed]
  43. G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
    [Crossref] [PubMed]
  44. C. W. Cheng, Y. J. Liao, C. Y. Liu, B. H. Wu, S. S. Raja, C. Y. Wang, X. Li, C. K. Shih, L. J. Chen, and S. Gwo, “Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions,” ACS Photonics 5(7), 2624–2630 (2018).
    [Crossref]
  45. F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
    [Crossref] [PubMed]
  46. M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas,” Nano Lett. 11(11), 4674–4678 (2011).
    [Crossref] [PubMed]
  47. L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
    [Crossref] [PubMed]
  48. K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
    [Crossref] [PubMed]
  49. X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
    [Crossref] [PubMed]
  50. M. Miyata, H. Hatada, and J. Takahara, “Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas,” Nano Lett. 16(5), 3166–3172 (2016).
    [Crossref] [PubMed]
  51. K. Ikeda, S. Uchiyama, T. Mai, and K. Murakoshi, “Hydrogen-Induced Tuning of Plasmon Resonance in Palladium–Silver Layered Nanodimer Arrays,” ACS Photonics 2(1), 66–72 (2015).
    [Crossref]
  52. A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
    [Crossref] [PubMed]
  53. Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space,” Nano Lett. 17(12), 7620–7628 (2017).
    [Crossref] [PubMed]
  54. Weber and J .Marvin, Handbook of Optical Materials (CRC, 2003).
  55. C. Wadell and C. Langhammer, “Drift-corrected nanoplasmonic hydrogen sensing by polarization,” Nanoscale 7(25), 10963–10969 (2015).
    [Crossref] [PubMed]
  56. J. He, N. S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, and W. Shang, “Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing,” RSC Advances 8(57), 32395–32400 (2018).
    [Crossref]
  57. C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander, and N. J. Halas, “Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts,” Nano Lett. 16(10), 6677–6682 (2016).
    [Crossref] [PubMed]
  58. D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
    [Crossref] [PubMed]
  59. S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
    [Crossref] [PubMed]
  60. D. Sil, K. D. Gilroy, A. Niaux, A. Boulesbaa, S. Neretina, and E. Borguet, “Seeing Is Believing: Hot Electron Based Gold Nanoplasmonic Optical Hydrogen Sensor,” ACS Nano 8(8), 7755–7762 (2014).
    [Crossref] [PubMed]
  61. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
    [Crossref] [PubMed]
  62. S. Bagheri, N. Strohfeldt, F. Sterl, A. Berrier, A. Tittl, and H. Giessen, “Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography,” ACS Sens. 1(9), 1148–1154 (2016).
    [Crossref]

2018 (5)

M. Zhao, H. W. Man, C. W. Ong, N. H. Ng, and H. C. Man, “Tunability of Pd-nanogapped H2 sensors made on SiO2-coated Si micropillar arrays,” Sens. Actuators B Chem. 255, 944–951 (2018).
[Crossref]

Y. Shen, X. She, and C. Jin, “Mechanically Reconfigurable Pd Nanogroove Array: An Ultrasensitive Optical Hydrogen Detector,” ACS Photonics 5(4), 1334–1342 (2018).
[Crossref]

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral Plasmonic Hydrogen Sensors,” Small 14(7), 1702990 (2018).
[Crossref] [PubMed]

C. W. Cheng, Y. J. Liao, C. Y. Liu, B. H. Wu, S. S. Raja, C. Y. Wang, X. Li, C. K. Shih, L. J. Chen, and S. Gwo, “Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions,” ACS Photonics 5(7), 2624–2630 (2018).
[Crossref]

J. He, N. S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, and W. Shang, “Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing,” RSC Advances 8(57), 32395–32400 (2018).
[Crossref]

2017 (4)

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

K. Y. Hang, X. Zhu, X. Zhuo, R. Jiang, Z. Yang, and J. Wang, “Gold Nanobipyramid‐Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching ≈140 nm at 2 vol% Hydrogen Concentration,” Adv. Opt. Mater. 5(24), 1700740 (2017).
[Crossref]

X. Li, M. Le Thai, R. K. Dutta, S. Qiao, G. T. Chandran, and R. M. Penner, “Sub-6 nm Palladium Nanoparticles for Faster, More Sensitive H2 Detection Using Carbon Nanotube Ropes,” ACS Sens. 2(2), 282–289 (2017).
[Crossref] [PubMed]

2016 (10)

E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
[Crossref]

R. Griessen, N. Strohfeldt, and H. Giessen, “Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles,” Nat. Mater. 15(3), 311–317 (2016).
[Crossref] [PubMed]

T. C. Narayan, A. Baldi, A. L. Koh, R. Sinclair, and J. A. Dionne, “Reconstructing solute-induced phase transformations within individual nanocrystals,” Nat. Mater. 15(7), 768–774 (2016).
[Crossref] [PubMed]

S. Bagheri, N. Strohfeldt, F. Sterl, A. Berrier, A. Tittl, and H. Giessen, “Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography,” ACS Sens. 1(9), 1148–1154 (2016).
[Crossref]

C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander, and N. J. Halas, “Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts,” Nano Lett. 16(10), 6677–6682 (2016).
[Crossref] [PubMed]

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

M. Miyata, H. Hatada, and J. Takahara, “Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

A. Hierro-Rodriguez, I. T. Leite, P. Rocha-Rodrigues, P. Fernandes, J. P. Araujo, P. A. Jorge, J. L. Santos, J. M. Teixeira, and A. Guerreiro, “Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials,” Nanotechnology 27(18), 185501 (2016).
[Crossref] [PubMed]

N. R. Fong, P. Berini, and R. N. Tait, “Hydrogen sensing with Pd-coated long-range surface plasmon membrane waveguides,” Nanoscale 8(7), 4284–4290 (2016).
[Crossref] [PubMed]

2015 (6)

K. Ikeda, S. Uchiyama, T. Mai, and K. Murakoshi, “Hydrogen-Induced Tuning of Plasmon Resonance in Palladium–Silver Layered Nanodimer Arrays,” ACS Photonics 2(1), 66–72 (2015).
[Crossref]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

C. Wadell and C. Langhammer, “Drift-corrected nanoplasmonic hydrogen sensing by polarization,” Nanoscale 7(25), 10963–10969 (2015).
[Crossref] [PubMed]

N. Strohfeldt, J. Zhao, A. Tittl, and H. Giessen, “Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors,” Opt. Mater. Express 5(11), 2525–2535 (2015).
[Crossref]

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

C. Wadell, F. A. A. Nugroho, E. Lidström, B. Iandolo, J. B. Wagner, and C. Langhammer, “Hysteresis-Free Nanoplasmonic Pd-Au Alloy Hydrogen Sensors,” Nano Lett. 15(5), 3563–3570 (2015).
[Crossref] [PubMed]

2014 (12)

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive Plasmonic Response of Bimetallic Au/Pd Nanostructures to Hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
[Crossref] [PubMed]

W. Shin, “Medical applications of breath hydrogen measurements,” Anal. Bioanal. Chem. 406(16), 3931–3939 (2014).
[Crossref] [PubMed]

C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano 8(12), 11925–11940 (2014).
[Crossref] [PubMed]

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

D. Sil, K. D. Gilroy, A. Niaux, A. Boulesbaa, S. Neretina, and E. Borguet, “Seeing Is Believing: Hot Electron Based Gold Nanoplasmonic Optical Hydrogen Sensor,” ACS Nano 8(8), 7755–7762 (2014).
[Crossref] [PubMed]

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single‐Crystal Pd and its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

2013 (7)

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref] [PubMed]

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Express 21(1), 382–390 (2013).
[Crossref] [PubMed]

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
[Crossref]

A. Tittl, X. Yin, H. Giessen, X. D. Tian, Z. Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[Crossref] [PubMed]

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

N. Strohfeldt, A. Tittl, and H. Giessen, “Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications,” Opt. Mater. Express 3(2), 194 (2013).
[Crossref]

2012 (3)

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
[Crossref] [PubMed]

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

S. Chang, S. Sen, P. Zhang, B. Gyarfas, B. Ashcroft, S. Lefkowitz, H. Peng, and S. Lindsay, “Palladium Electrodes for Molecular Tunnel Junctions,” Nanotechnology 23(42), 425202 (2012).
[Crossref] [PubMed]

2011 (4)

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas,” Nano Lett. 11(11), 4674–4678 (2011).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

T. Shegai and C. Langhammer, “Hydride Formation in Single Palladium and Magnesium Nanoparticles Studied by Nanoplasmonic Dark-Field Scattering Spectroscopy,” Adv. Mater. 23(38), 4409–4414 (2011).
[Crossref] [PubMed]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

2010 (2)

K. Skucha, Z. Fan, K. Jeon, A. Javey, and B. Boser, “Palladium/Silicon Nanowire Schottky Barrier-Based Hydrogen Sensors,” Sens. Actuators B Chem. 145(1), 232–238 (2010).
[Crossref]

I. Zorić, E. M. Larsson, B. Kasemo, and C. Langhammer, “Localized surface plasmons shed light on nanoscale metal hydrides,” Adv. Mater. 22(41), 4628–4633 (2010).
[Crossref] [PubMed]

2007 (1)

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
[Crossref] [PubMed]

2006 (2)

W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496(2), 189–196 (2006).
[Crossref]

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

2005 (1)

J. Villatoro, D. Luna-Moreno, and D. Monzón-Hernández, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem. 110(1), 23–27 (2005).
[Crossref]

2004 (1)

J. A. Turner, C. Linkous, and N. Muradov, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
[Crossref] [PubMed]

2003 (2)

L. Barreto, A. Makihira, and K. Riahi, “The hydrogen economy in the 21st century: a sustainable development scenario,” Int. J. Hydrogen Energy 28(3), 267–284 (2003).
[Crossref]

K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol. 18(7), 615–619 (2003).
[Crossref]

Alabastri, A.

F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
[Crossref] [PubMed]

Alivisatos, A. P.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

An, S.

J. He, N. S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, and W. Shang, “Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing,” RSC Advances 8(57), 32395–32400 (2018).
[Crossref]

Andolfi, L.

F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
[Crossref] [PubMed]

Ang, L. K.

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single‐Crystal Pd and its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Anghinolfi, L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Antosiewicz, T. J.

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

Araujo, J. P.

A. Hierro-Rodriguez, I. T. Leite, P. Rocha-Rodrigues, P. Fernandes, J. P. Araujo, P. A. Jorge, J. L. Santos, J. M. Teixeira, and A. Guerreiro, “Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials,” Nanotechnology 27(18), 185501 (2016).
[Crossref] [PubMed]

Ashcroft, B.

S. Chang, S. Sen, P. Zhang, B. Gyarfas, B. Ashcroft, S. Lefkowitz, H. Peng, and S. Lindsay, “Palladium Electrodes for Molecular Tunnel Junctions,” Nanotechnology 23(42), 425202 (2012).
[Crossref] [PubMed]

Azofeifa, D. E.

W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496(2), 189–196 (2006).
[Crossref]

Bagheri, S.

S. Bagheri, N. Strohfeldt, F. Sterl, A. Berrier, A. Tittl, and H. Giessen, “Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography,” ACS Sens. 1(9), 1148–1154 (2016).
[Crossref]

Baldi, A.

T. C. Narayan, A. Baldi, A. L. Koh, R. Sinclair, and J. A. Dionne, “Reconstructing solute-induced phase transformations within individual nanocrystals,” Nat. Mater. 15(7), 768–774 (2016).
[Crossref] [PubMed]

A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
[Crossref] [PubMed]

Bardhan, R.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

Barreto, L.

L. Barreto, A. Makihira, and K. Riahi, “The hydrogen economy in the 21st century: a sustainable development scenario,” Int. J. Hydrogen Energy 28(3), 267–284 (2003).
[Crossref]

Berg, F.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Berini, P.

N. R. Fong, P. Berini, and R. N. Tait, “Hydrogen sensing with Pd-coated long-range surface plasmon membrane waveguides,” Nanoscale 8(7), 4284–4290 (2016).
[Crossref] [PubMed]

Berrier, A.

S. Bagheri, N. Strohfeldt, F. Sterl, A. Berrier, A. Tittl, and H. Giessen, “Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography,” ACS Sens. 1(9), 1148–1154 (2016).
[Crossref]

Bisio, F.

F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Borguet, E.

E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
[Crossref]

D. Sil, K. D. Gilroy, A. Niaux, A. Boulesbaa, S. Neretina, and E. Borguet, “Seeing Is Believing: Hot Electron Based Gold Nanoplasmonic Optical Hydrogen Sensor,” ACS Nano 8(8), 7755–7762 (2014).
[Crossref] [PubMed]

Boser, B.

K. Skucha, Z. Fan, K. Jeon, A. Javey, and B. Boser, “Palladium/Silicon Nanowire Schottky Barrier-Based Hydrogen Sensors,” Sens. Actuators B Chem. 145(1), 232–238 (2010).
[Crossref]

Boulesbaa, A.

D. Sil, K. D. Gilroy, A. Niaux, A. Boulesbaa, S. Neretina, and E. Borguet, “Seeing Is Believing: Hot Electron Based Gold Nanoplasmonic Optical Hydrogen Sensor,” ACS Nano 8(8), 7755–7762 (2014).
[Crossref] [PubMed]

Brinks, D.

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas,” Nano Lett. 11(11), 4674–4678 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Brown, L. V.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref] [PubMed]

Canepa, M.

F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Cardinal, M. F.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

Carter, E. A.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref] [PubMed]

Castro-Lopez, M.

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas,” Nano Lett. 11(11), 4674–4678 (2011).
[Crossref] [PubMed]

Cha, W.

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

Chandran, G. T.

X. Li, M. Le Thai, R. K. Dutta, S. Qiao, G. T. Chandran, and R. M. Penner, “Sub-6 nm Palladium Nanoparticles for Faster, More Sensitive H2 Detection Using Carbon Nanotube Ropes,” ACS Sens. 2(2), 282–289 (2017).
[Crossref] [PubMed]

Chang, S.

S. Chang, S. Sen, P. Zhang, B. Gyarfas, B. Ashcroft, S. Lefkowitz, H. Peng, and S. Lindsay, “Palladium Electrodes for Molecular Tunnel Junctions,” Nanotechnology 23(42), 425202 (2012).
[Crossref] [PubMed]

Chen, C. Y.

K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol. 18(7), 615–619 (2003).
[Crossref]

Chen, H. I.

K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol. 18(7), 615–619 (2003).
[Crossref]

Chen, L. J.

C. W. Cheng, Y. J. Liao, C. Y. Liu, B. H. Wu, S. S. Raja, C. Y. Wang, X. Li, C. K. Shih, L. J. Chen, and S. Gwo, “Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions,” ACS Photonics 5(7), 2624–2630 (2018).
[Crossref]

Cheng, C. W.

C. W. Cheng, Y. J. Liao, C. Y. Liu, B. H. Wu, S. S. Raja, C. Y. Wang, X. Li, C. K. Shih, L. J. Chen, and S. Gwo, “Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions,” ACS Photonics 5(7), 2624–2630 (2018).
[Crossref]

Cheng, J.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref] [PubMed]

Chigrin, D. N.

A. Tittl, X. Yin, H. Giessen, X. D. Tian, Z. Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[Crossref] [PubMed]

Chuang, H. M.

K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol. 18(7), 615–619 (2003).
[Crossref]

Clark, J. N.

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

Clark, N.

W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496(2), 189–196 (2006).
[Crossref]

Clemens, B. M.

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
[Crossref] [PubMed]

Dahlin, A. B.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

Dai, H. L.

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Dam, B.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
[Crossref]

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Express 21(1), 382–390 (2013).
[Crossref] [PubMed]

Deng, T.

J. He, N. S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, and W. Shang, “Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing,” RSC Advances 8(57), 32395–32400 (2018).
[Crossref]

Diaz Fernandez, Y. A.

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

Dikin, D. A.

E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
[Crossref]

Ding, B.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Dionne, J. A.

T. C. Narayan, A. Baldi, A. L. Koh, R. Sinclair, and J. A. Dionne, “Reconstructing solute-induced phase transformations within individual nanocrystals,” Nat. Mater. 15(7), 768–774 (2016).
[Crossref] [PubMed]

A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
[Crossref] [PubMed]

Dong, L.

C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander, and N. J. Halas, “Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts,” Nano Lett. 16(10), 6677–6682 (2016).
[Crossref] [PubMed]

Dong, Z.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Dregely, D.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Duan, H.

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Dutta, R. K.

X. Li, M. Le Thai, R. K. Dutta, S. Qiao, G. T. Chandran, and R. M. Penner, “Sub-6 nm Palladium Nanoparticles for Faster, More Sensitive H2 Detection Using Carbon Nanotube Ropes,” ACS Sens. 2(2), 282–289 (2017).
[Crossref] [PubMed]

Everitt, H. O.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Fan, Z.

K. Skucha, Z. Fan, K. Jeon, A. Javey, and B. Boser, “Palladium/Silicon Nanowire Schottky Barrier-Based Hydrogen Sensors,” Sens. Actuators B Chem. 145(1), 232–238 (2010).
[Crossref]

Fernandes, P.

A. Hierro-Rodriguez, I. T. Leite, P. Rocha-Rodrigues, P. Fernandes, J. P. Araujo, P. A. Jorge, J. L. Santos, J. M. Teixeira, and A. Guerreiro, “Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials,” Nanotechnology 27(18), 185501 (2016).
[Crossref] [PubMed]

Fischer, P.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral Plasmonic Hydrogen Sensors,” Small 14(7), 1702990 (2018).
[Crossref] [PubMed]

Fong, N. R.

N. R. Fong, P. Berini, and R. N. Tait, “Hydrogen sensing with Pd-coated long-range surface plasmon membrane waveguides,” Nanoscale 8(7), 4284–4290 (2016).
[Crossref] [PubMed]

Fu, Y. H.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Gheorghe, D. G.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
[Crossref]

Giessen, H.

R. Griessen, N. Strohfeldt, and H. Giessen, “Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles,” Nat. Mater. 15(3), 311–317 (2016).
[Crossref] [PubMed]

S. Bagheri, N. Strohfeldt, F. Sterl, A. Berrier, A. Tittl, and H. Giessen, “Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography,” ACS Sens. 1(9), 1148–1154 (2016).
[Crossref]

N. Strohfeldt, J. Zhao, A. Tittl, and H. Giessen, “Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors,” Opt. Mater. Express 5(11), 2525–2535 (2015).
[Crossref]

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

A. Tittl, X. Yin, H. Giessen, X. D. Tian, Z. Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[Crossref] [PubMed]

N. Strohfeldt, A. Tittl, and H. Giessen, “Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications,” Opt. Mater. Express 3(2), 194 (2013).
[Crossref]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Giglia, A.

F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Gilroy, K. D.

D. Sil, K. D. Gilroy, A. Niaux, A. Boulesbaa, S. Neretina, and E. Borguet, “Seeing Is Believing: Hot Electron Based Gold Nanoplasmonic Optical Hydrogen Sensor,” ACS Nano 8(8), 7755–7762 (2014).
[Crossref] [PubMed]

Goh, X. M.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Gonella, G.

F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Griessen, R.

R. Griessen, N. Strohfeldt, and H. Giessen, “Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles,” Nat. Mater. 15(3), 311–317 (2016).
[Crossref] [PubMed]

Gschneidtner, T. A.

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

Gu, F.

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single‐Crystal Pd and its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Guerreiro, A.

A. Hierro-Rodriguez, I. T. Leite, P. Rocha-Rodrigues, P. Fernandes, J. P. Araujo, P. A. Jorge, J. L. Santos, J. M. Teixeira, and A. Guerreiro, “Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials,” Nanotechnology 27(18), 185501 (2016).
[Crossref] [PubMed]

Guru, S.

E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
[Crossref]

Gwo, S.

C. W. Cheng, Y. J. Liao, C. Y. Liu, B. H. Wu, S. S. Raja, C. Y. Wang, X. Li, C. K. Shih, L. J. Chen, and S. Gwo, “Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions,” ACS Photonics 5(7), 2624–2630 (2018).
[Crossref]

Gyarfas, B.

S. Chang, S. Sen, P. Zhang, B. Gyarfas, B. Ashcroft, S. Lefkowitz, H. Peng, and S. Lindsay, “Palladium Electrodes for Molecular Tunnel Junctions,” Nanotechnology 23(42), 425202 (2012).
[Crossref] [PubMed]

Halas, N. J.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander, and N. J. Halas, “Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts,” Nano Lett. 16(10), 6677–6682 (2016).
[Crossref] [PubMed]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref] [PubMed]

Hang, K. Y.

K. Y. Hang, X. Zhu, X. Zhuo, R. Jiang, Z. Yang, and J. Wang, “Gold Nanobipyramid‐Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching ≈140 nm at 2 vol% Hydrogen Concentration,” Adv. Opt. Mater. 5(24), 1700740 (2017).
[Crossref]

Harder, R.

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

Hatada, H.

M. Miyata, H. Hatada, and J. Takahara, “Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

He, J.

J. He, N. S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, and W. Shang, “Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing,” RSC Advances 8(57), 32395–32400 (2018).
[Crossref]

Hedges, L. O.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

Hegde, R. S.

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Hentschel, M.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Hierro-Rodriguez, A.

A. Hierro-Rodriguez, I. T. Leite, P. Rocha-Rodrigues, P. Fernandes, J. P. Araujo, P. A. Jorge, J. L. Santos, J. M. Teixeira, and A. Guerreiro, “Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials,” Nanotechnology 27(18), 185501 (2016).
[Crossref] [PubMed]

Highland, M. J.

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

Ho, J.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Höök, F.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

Hruszkewycz, S. O.

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

Hughes, R. A.

E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
[Crossref]

Huntington, M. D.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

Hutapea, P.

E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
[Crossref]

Iandolo, B.

C. Wadell, F. A. A. Nugroho, E. Lidström, B. Iandolo, J. B. Wagner, and C. Langhammer, “Hysteresis-Free Nanoplasmonic Pd-Au Alloy Hydrogen Sensors,” Nano Lett. 15(5), 3563–3570 (2015).
[Crossref] [PubMed]

Ikeda, K.

K. Ikeda, S. Uchiyama, T. Mai, and K. Murakoshi, “Hydrogen-Induced Tuning of Plasmon Resonance in Palladium–Silver Layered Nanodimer Arrays,” ACS Photonics 2(1), 66–72 (2015).
[Crossref]

Javahiraly, N.

Javey, A.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

K. Skucha, Z. Fan, K. Jeon, A. Javey, and B. Boser, “Palladium/Silicon Nanowire Schottky Barrier-Based Hydrogen Sensors,” Sens. Actuators B Chem. 145(1), 232–238 (2010).
[Crossref]

Jeon, K.

K. Skucha, Z. Fan, K. Jeon, A. Javey, and B. Boser, “Palladium/Silicon Nanowire Schottky Barrier-Based Hydrogen Sensors,” Sens. Actuators B Chem. 145(1), 232–238 (2010).
[Crossref]

Jeong, H. H.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral Plasmonic Hydrogen Sensors,” Small 14(7), 1702990 (2018).
[Crossref] [PubMed]

Jiang, R.

K. Y. Hang, X. Zhu, X. Zhuo, R. Jiang, Z. Yang, and J. Wang, “Gold Nanobipyramid‐Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching ≈140 nm at 2 vol% Hydrogen Concentration,” Adv. Opt. Mater. 5(24), 1700740 (2017).
[Crossref]

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive Plasmonic Response of Bimetallic Au/Pd Nanostructures to Hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

Jin, C.

Y. Shen, X. She, and C. Jin, “Mechanically Reconfigurable Pd Nanogroove Array: An Ultrasensitive Optical Hydrogen Detector,” ACS Photonics 5(4), 1334–1342 (2018).
[Crossref]

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive Plasmonic Response of Bimetallic Au/Pd Nanostructures to Hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

Johansson, P.

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
[Crossref] [PubMed]

Jorge, P. A.

A. Hierro-Rodriguez, I. T. Leite, P. Rocha-Rodrigues, P. Fernandes, J. P. Araujo, P. A. Jorge, J. L. Santos, J. M. Teixeira, and A. Guerreiro, “Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials,” Nanotechnology 27(18), 185501 (2016).
[Crossref] [PubMed]

Käll, M.

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
[Crossref] [PubMed]

Kasemo, B.

I. Zorić, E. M. Larsson, B. Kasemo, and C. Langhammer, “Localized surface plasmons shed light on nanoscale metal hydrides,” Adv. Mater. 22(41), 4628–4633 (2010).
[Crossref] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
[Crossref] [PubMed]

Kim, J. W.

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Koh, A. L.

T. C. Narayan, A. Baldi, A. L. Koh, R. Sinclair, and J. A. Dionne, “Reconstructing solute-induced phase transformations within individual nanocrystals,” Nat. Mater. 15(7), 768–774 (2016).
[Crossref] [PubMed]

A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
[Crossref] [PubMed]

Koh, S. C.

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Krauter, C. M.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

Kremers, C.

A. Tittl, X. Yin, H. Giessen, X. D. Tian, Z. Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[Crossref] [PubMed]

Kumar, K.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Kuznetsov, A. I.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Langhammer, C.

C. Wadell and C. Langhammer, “Drift-corrected nanoplasmonic hydrogen sensing by polarization,” Nanoscale 7(25), 10963–10969 (2015).
[Crossref] [PubMed]

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

C. Wadell, F. A. A. Nugroho, E. Lidström, B. Iandolo, J. B. Wagner, and C. Langhammer, “Hysteresis-Free Nanoplasmonic Pd-Au Alloy Hydrogen Sensors,” Nano Lett. 15(5), 3563–3570 (2015).
[Crossref] [PubMed]

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano 8(12), 11925–11940 (2014).
[Crossref] [PubMed]

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
[Crossref] [PubMed]

T. Shegai and C. Langhammer, “Hydride Formation in Single Palladium and Magnesium Nanoparticles Studied by Nanoplasmonic Dark-Field Scattering Spectroscopy,” Adv. Mater. 23(38), 4409–4414 (2011).
[Crossref] [PubMed]

I. Zorić, E. M. Larsson, B. Kasemo, and C. Langhammer, “Localized surface plasmons shed light on nanoscale metal hydrides,” Adv. Mater. 22(41), 4628–4633 (2010).
[Crossref] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
[Crossref] [PubMed]

Large, N.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref] [PubMed]

Larsson, E. M.

I. Zorić, E. M. Larsson, B. Kasemo, and C. Langhammer, “Localized surface plasmons shed light on nanoscale metal hydrides,” Adv. Mater. 22(41), 4628–4633 (2010).
[Crossref] [PubMed]

Lassiter, J. B.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref] [PubMed]

Le Thai, M.

X. Li, M. Le Thai, R. K. Dutta, S. Qiao, G. T. Chandran, and R. M. Penner, “Sub-6 nm Palladium Nanoparticles for Faster, More Sensitive H2 Detection Using Carbon Nanotube Ropes,” ACS Sens. 2(2), 282–289 (2017).
[Crossref] [PubMed]

Leclercq, L.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
[Crossref]

Lee, F. X.

E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
[Crossref]

Lefkowitz, S.

S. Chang, S. Sen, P. Zhang, B. Gyarfas, B. Ashcroft, S. Lefkowitz, H. Peng, and S. Lindsay, “Palladium Electrodes for Molecular Tunnel Junctions,” Nanotechnology 23(42), 425202 (2012).
[Crossref] [PubMed]

Leite, I. T.

A. Hierro-Rodriguez, I. T. Leite, P. Rocha-Rodrigues, P. Fernandes, J. P. Araujo, P. A. Jorge, J. L. Santos, J. M. Teixeira, and A. Guerreiro, “Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials,” Nanotechnology 27(18), 185501 (2016).
[Crossref] [PubMed]

Li, N.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Li, X.

C. W. Cheng, Y. J. Liao, C. Y. Liu, B. H. Wu, S. S. Raja, C. Y. Wang, X. Li, C. K. Shih, L. J. Chen, and S. Gwo, “Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions,” ACS Photonics 5(7), 2624–2630 (2018).
[Crossref]

X. Li, M. Le Thai, R. K. Dutta, S. Qiao, G. T. Chandran, and R. M. Penner, “Sub-6 nm Palladium Nanoparticles for Faster, More Sensitive H2 Detection Using Carbon Nanotube Ropes,” ACS Sens. 2(2), 282–289 (2017).
[Crossref] [PubMed]

Liao, Y. J.

C. W. Cheng, Y. J. Liao, C. Y. Liu, B. H. Wu, S. S. Raja, C. Y. Wang, X. Li, C. K. Shih, L. J. Chen, and S. Gwo, “Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions,” ACS Photonics 5(7), 2624–2630 (2018).
[Crossref]

Libisch, F.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref] [PubMed]

Lidström, E.

C. Wadell, F. A. A. Nugroho, E. Lidström, B. Iandolo, J. B. Wagner, and C. Langhammer, “Hysteresis-Free Nanoplasmonic Pd-Au Alloy Hydrogen Sensors,” Nano Lett. 15(5), 3563–3570 (2015).
[Crossref] [PubMed]

Lin, K. W.

K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol. 18(7), 615–619 (2003).
[Crossref]

Lindsay, S.

S. Chang, S. Sen, P. Zhang, B. Gyarfas, B. Ashcroft, S. Lefkowitz, H. Peng, and S. Lindsay, “Palladium Electrodes for Molecular Tunnel Junctions,” Nanotechnology 23(42), 425202 (2012).
[Crossref] [PubMed]

Linkous, C.

J. A. Turner, C. Linkous, and N. Muradov, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
[Crossref] [PubMed]

Liu, C. Y.

C. W. Cheng, Y. J. Liao, C. Y. Liu, B. H. Wu, S. S. Raja, C. Y. Wang, X. Li, C. K. Shih, L. J. Chen, and S. Gwo, “Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions,” ACS Photonics 5(7), 2624–2630 (2018).
[Crossref]

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Liu, N.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral Plasmonic Hydrogen Sensors,” Small 14(7), 1702990 (2018).
[Crossref] [PubMed]

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

A. Tittl, X. Yin, H. Giessen, X. D. Tian, Z. Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Liu, W. C.

K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol. 18(7), 615–619 (2003).
[Crossref]

Liu, Y.

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

Lu, C. T.

K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol. 18(7), 615–619 (2003).
[Crossref]

Luna-Moreno, D.

J. Villatoro, D. Luna-Moreno, and D. Monzón-Hernández, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem. 110(1), 23–27 (2005).
[Crossref]

Luo, Z.

J. He, N. S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, and W. Shang, “Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing,” RSC Advances 8(57), 32395–32400 (2018).
[Crossref]

Mai, P.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Mai, T.

K. Ikeda, S. Uchiyama, T. Mai, and K. Murakoshi, “Hydrogen-Induced Tuning of Plasmon Resonance in Palladium–Silver Layered Nanodimer Arrays,” ACS Photonics 2(1), 66–72 (2015).
[Crossref]

Maidecchi, G.

F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Mak, T.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
[Crossref]

Makihira, A.

L. Barreto, A. Makihira, and K. Riahi, “The hydrogen economy in the 21st century: a sustainable development scenario,” Int. J. Hydrogen Energy 28(3), 267–284 (2003).
[Crossref]

Man, H. C.

M. Zhao, H. W. Man, C. W. Ong, N. H. Ng, and H. C. Man, “Tunability of Pd-nanogapped H2 sensors made on SiO2-coated Si micropillar arrays,” Sens. Actuators B Chem. 255, 944–951 (2018).
[Crossref]

Man, H. W.

M. Zhao, H. W. Man, C. W. Ong, N. H. Ng, and H. C. Man, “Tunability of Pd-nanogapped H2 sensors made on SiO2-coated Si micropillar arrays,” Sens. Actuators B Chem. 255, 944–951 (2018).
[Crossref]

Manjavacas, A.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Marks, B. A.

E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
[Crossref]

Martirez, J. M. P.

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

Masango, S. S.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

Mattera, L.

F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Matuschek, M.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral Plasmonic Hydrogen Sensors,” Small 14(7), 1702990 (2018).
[Crossref] [PubMed]

Maxey, E.

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

McClain, M. J.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander, and N. J. Halas, “Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts,” Nano Lett. 16(10), 6677–6682 (2016).
[Crossref] [PubMed]

Menumerov, E.

E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
[Crossref]

Meyrueis, P.

Miyata, M.

M. Miyata, H. Hatada, and J. Takahara, “Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Monzón-Hernández, D.

J. Villatoro, D. Luna-Moreno, and D. Monzón-Hernández, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem. 110(1), 23–27 (2005).
[Crossref]

Mooij, L.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
[Crossref]

Moroni, R.

F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Moth-Poulsen, K.

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

Mukherjee, S.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref] [PubMed]

Muradov, N.

J. A. Turner, C. Linkous, and N. Muradov, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
[Crossref] [PubMed]

Murakoshi, K.

K. Ikeda, S. Uchiyama, T. Mai, and K. Murakoshi, “Hydrogen-Induced Tuning of Plasmon Resonance in Palladium–Silver Layered Nanodimer Arrays,” ACS Photonics 2(1), 66–72 (2015).
[Crossref]

Nalin, G.

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

Nannarone, S.

F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Narayan, T. C.

T. C. Narayan, A. Baldi, A. L. Koh, R. Sinclair, and J. A. Dionne, “Reconstructing solute-induced phase transformations within individual nanocrystals,” Nat. Mater. 15(7), 768–774 (2016).
[Crossref] [PubMed]

A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
[Crossref] [PubMed]

Neretina, S.

E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
[Crossref]

D. Sil, K. D. Gilroy, A. Niaux, A. Boulesbaa, S. Neretina, and E. Borguet, “Seeing Is Believing: Hot Electron Based Gold Nanoplasmonic Optical Hydrogen Sensor,” ACS Nano 8(8), 7755–7762 (2014).
[Crossref] [PubMed]

Nesterov, M.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral Plasmonic Hydrogen Sensors,” Small 14(7), 1702990 (2018).
[Crossref] [PubMed]

Neubrech, F.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral Plasmonic Hydrogen Sensors,” Small 14(7), 1702990 (2018).
[Crossref] [PubMed]

Neumann, O.

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref] [PubMed]

Ng, N. H.

M. Zhao, H. W. Man, C. W. Ong, N. H. Ng, and H. C. Man, “Tunability of Pd-nanogapped H2 sensors made on SiO2-coated Si micropillar arrays,” Sens. Actuators B Chem. 255, 944–951 (2018).
[Crossref]

Niaux, A.

D. Sil, K. D. Gilroy, A. Niaux, A. Boulesbaa, S. Neretina, and E. Borguet, “Seeing Is Believing: Hot Electron Based Gold Nanoplasmonic Optical Hydrogen Sensor,” ACS Nano 8(8), 7755–7762 (2014).
[Crossref] [PubMed]

Nordlander, P.

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander, and N. J. Halas, “Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts,” Nano Lett. 16(10), 6677–6682 (2016).
[Crossref] [PubMed]

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref] [PubMed]

Nugroho, F. A. A.

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

C. Wadell, F. A. A. Nugroho, E. Lidström, B. Iandolo, J. B. Wagner, and C. Langhammer, “Hysteresis-Free Nanoplasmonic Pd-Au Alloy Hydrogen Sensors,” Nano Lett. 15(5), 3563–3570 (2015).
[Crossref] [PubMed]

Odom, T. W.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

Ong, C. W.

M. Zhao, H. W. Man, C. W. Ong, N. H. Ng, and H. C. Man, “Tunability of Pd-nanogapped H2 sensors made on SiO2-coated Si micropillar arrays,” Sens. Actuators B Chem. 255, 944–951 (2018).
[Crossref]

Paniagua-Dominguez, R.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Peng, H.

S. Chang, S. Sen, P. Zhang, B. Gyarfas, B. Ashcroft, S. Lefkowitz, H. Peng, and S. Lindsay, “Palladium Electrodes for Molecular Tunnel Junctions,” Nanotechnology 23(42), 425202 (2012).
[Crossref] [PubMed]

Penner, R. M.

X. Li, M. Le Thai, R. K. Dutta, S. Qiao, G. T. Chandran, and R. M. Penner, “Sub-6 nm Palladium Nanoparticles for Faster, More Sensitive H2 Detection Using Carbon Nanotube Ropes,” ACS Sens. 2(2), 282–289 (2017).
[Crossref] [PubMed]

Perrotton, C.

Pint, C. L.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

Polak, L.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
[Crossref]

Proietti Zaccaria, R.

F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

Qiao, S.

X. Li, M. Le Thai, R. K. Dutta, S. Qiao, G. T. Chandran, and R. M. Penner, “Sub-6 nm Palladium Nanoparticles for Faster, More Sensitive H2 Detection Using Carbon Nanotube Ropes,” ACS Sens. 2(2), 282–289 (2017).
[Crossref] [PubMed]

Qin, F.

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive Plasmonic Response of Bimetallic Au/Pd Nanostructures to Hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

Qiu, C. W.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Radeva, T.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
[Crossref]

Raja, S. S.

C. W. Cheng, Y. J. Liao, C. Y. Liu, B. H. Wu, S. S. Raja, C. Y. Wang, X. Li, C. K. Shih, L. J. Chen, and S. Gwo, “Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions,” ACS Photonics 5(7), 2624–2630 (2018).
[Crossref]

Rasing, T.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
[Crossref]

Riahi, K.

L. Barreto, A. Makihira, and K. Riahi, “The hydrogen economy in the 21st century: a sustainable development scenario,” Int. J. Hydrogen Energy 28(3), 267–284 (2003).
[Crossref]

Ringe, E.

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

Robatjazi, H.

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

Rocha-Rodrigues, P.

A. Hierro-Rodriguez, I. T. Leite, P. Rocha-Rodrigues, P. Fernandes, J. P. Araujo, P. A. Jorge, J. L. Santos, J. M. Teixeira, and A. Guerreiro, “Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials,” Nanotechnology 27(18), 185501 (2016).
[Crossref] [PubMed]

Rojas, I.

W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496(2), 189–196 (2006).
[Crossref]

Rooijmans, J. S. A.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
[Crossref]

Ruan, Q.

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive Plasmonic Response of Bimetallic Au/Pd Nanostructures to Hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

Santos, J. L.

A. Hierro-Rodriguez, I. T. Leite, P. Rocha-Rodrigues, P. Fernandes, J. P. Araujo, P. A. Jorge, J. L. Santos, J. M. Teixeira, and A. Guerreiro, “Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials,” Nanotechnology 27(18), 185501 (2016).
[Crossref] [PubMed]

Sapienza, R.

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas,” Nano Lett. 11(11), 4674–4678 (2011).
[Crossref] [PubMed]

Schlather, A. E.

C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander, and N. J. Halas, “Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts,” Nano Lett. 16(10), 6677–6682 (2016).
[Crossref] [PubMed]

Schreuders, H.

Sen, S.

S. Chang, S. Sen, P. Zhang, B. Gyarfas, B. Ashcroft, S. Lefkowitz, H. Peng, and S. Lindsay, “Palladium Electrodes for Molecular Tunnel Junctions,” Nanotechnology 23(42), 425202 (2012).
[Crossref] [PubMed]

Shang, W.

J. He, N. S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, and W. Shang, “Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing,” RSC Advances 8(57), 32395–32400 (2018).
[Crossref]

She, X.

Y. Shen, X. She, and C. Jin, “Mechanically Reconfigurable Pd Nanogroove Array: An Ultrasensitive Optical Hydrogen Detector,” ACS Photonics 5(4), 1334–1342 (2018).
[Crossref]

Shegai, T.

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
[Crossref] [PubMed]

T. Shegai and C. Langhammer, “Hydride Formation in Single Palladium and Magnesium Nanoparticles Studied by Nanoplasmonic Dark-Field Scattering Spectroscopy,” Adv. Mater. 23(38), 4409–4414 (2011).
[Crossref] [PubMed]

Shen, Q.

J. He, N. S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, and W. Shang, “Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing,” RSC Advances 8(57), 32395–32400 (2018).
[Crossref]

Shen, Y.

Y. Shen, X. She, and C. Jin, “Mechanically Reconfigurable Pd Nanogroove Array: An Ultrasensitive Optical Hydrogen Detector,” ACS Photonics 5(4), 1334–1342 (2018).
[Crossref]

Shih, C. K.

C. W. Cheng, Y. J. Liao, C. Y. Liu, B. H. Wu, S. S. Raja, C. Y. Wang, X. Li, C. K. Shih, L. J. Chen, and S. Gwo, “Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions,” ACS Photonics 5(7), 2624–2630 (2018).
[Crossref]

Shin, W.

W. Shin, “Medical applications of breath hydrogen measurements,” Anal. Bioanal. Chem. 406(16), 3931–3939 (2014).
[Crossref] [PubMed]

Sil, D.

E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
[Crossref]

D. Sil, K. D. Gilroy, A. Niaux, A. Boulesbaa, S. Neretina, and E. Borguet, “Seeing Is Believing: Hot Electron Based Gold Nanoplasmonic Optical Hydrogen Sensor,” ACS Nano 8(8), 7755–7762 (2014).
[Crossref] [PubMed]

Sinclair, R.

T. C. Narayan, A. Baldi, A. L. Koh, R. Sinclair, and J. A. Dionne, “Reconstructing solute-induced phase transformations within individual nanocrystals,” Nat. Mater. 15(7), 768–774 (2016).
[Crossref] [PubMed]

Singh, D. P.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral Plasmonic Hydrogen Sensors,” Small 14(7), 1702990 (2018).
[Crossref] [PubMed]

Skucha, K.

K. Skucha, Z. Fan, K. Jeon, A. Javey, and B. Boser, “Palladium/Silicon Nanowire Schottky Barrier-Based Hydrogen Sensors,” Sens. Actuators B Chem. 145(1), 232–238 (2010).
[Crossref]

Slaman, M.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
[Crossref]

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Express 21(1), 382–390 (2013).
[Crossref] [PubMed]

Song, C.

J. He, N. S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, and W. Shang, “Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing,” RSC Advances 8(57), 32395–32400 (2018).
[Crossref]

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Stephenson, G. B.

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

Sterl, F.

S. Bagheri, N. Strohfeldt, F. Sterl, A. Berrier, A. Tittl, and H. Giessen, “Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography,” ACS Sens. 1(9), 1148–1154 (2016).
[Crossref]

Strohfeldt, N.

S. Bagheri, N. Strohfeldt, F. Sterl, A. Berrier, A. Tittl, and H. Giessen, “Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography,” ACS Sens. 1(9), 1148–1154 (2016).
[Crossref]

R. Griessen, N. Strohfeldt, and H. Giessen, “Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles,” Nat. Mater. 15(3), 311–317 (2016).
[Crossref] [PubMed]

N. Strohfeldt, J. Zhao, A. Tittl, and H. Giessen, “Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors,” Opt. Mater. Express 5(11), 2525–2535 (2015).
[Crossref]

N. Strohfeldt, A. Tittl, and H. Giessen, “Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications,” Opt. Mater. Express 3(2), 194 (2013).
[Crossref]

Swearer, D. F.

C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander, and N. J. Halas, “Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts,” Nano Lett. 16(10), 6677–6682 (2016).
[Crossref] [PubMed]

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

Switlik, D.

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

Syrenova, S.

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano 8(12), 11925–11940 (2014).
[Crossref] [PubMed]

Tait, R. N.

N. R. Fong, P. Berini, and R. N. Tait, “Hydrogen sensing with Pd-coated long-range surface plasmon membrane waveguides,” Nanoscale 8(7), 4284–4290 (2016).
[Crossref] [PubMed]

Takahara, J.

M. Miyata, H. Hatada, and J. Takahara, “Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Tan, S. J.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Tang, M. L.

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Tao, P.

J. He, N. S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, and W. Shang, “Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing,” RSC Advances 8(57), 32395–32400 (2018).
[Crossref]

Taubert, R.

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Tegenfeldt, J. O.

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

Teixeira, J. M.

A. Hierro-Rodriguez, I. T. Leite, P. Rocha-Rodrigues, P. Fernandes, J. P. Araujo, P. A. Jorge, J. L. Santos, J. M. Teixeira, and A. Guerreiro, “Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials,” Nanotechnology 27(18), 185501 (2016).
[Crossref] [PubMed]

Tian, S.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

Tian, X. D.

A. Tittl, X. Yin, H. Giessen, X. D. Tian, Z. Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[Crossref] [PubMed]

Tian, Z. Q.

A. Tittl, X. Yin, H. Giessen, X. D. Tian, Z. Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[Crossref] [PubMed]

Tittl, A.

S. Bagheri, N. Strohfeldt, F. Sterl, A. Berrier, A. Tittl, and H. Giessen, “Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography,” ACS Sens. 1(9), 1148–1154 (2016).
[Crossref]

N. Strohfeldt, J. Zhao, A. Tittl, and H. Giessen, “Sensitivity engineering in direct contact palladium-gold nano-sandwich hydrogen sensors,” Opt. Mater. Express 5(11), 2525–2535 (2015).
[Crossref]

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

A. Tittl, X. Yin, H. Giessen, X. D. Tian, Z. Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[Crossref] [PubMed]

N. Strohfeldt, A. Tittl, and H. Giessen, “Long-term stability of capped and buffered palladium-nickel thin films and nanostructures for plasmonic hydrogen sensing applications,” Opt. Mater. Express 3(2), 194 (2013).
[Crossref]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

Tsai, Y. Y.

K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol. 18(7), 615–619 (2003).
[Crossref]

Turner, J. A.

J. A. Turner, C. Linkous, and N. Muradov, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
[Crossref] [PubMed]

Uchiyama, S.

K. Ikeda, S. Uchiyama, T. Mai, and K. Murakoshi, “Hydrogen-Induced Tuning of Plasmon Resonance in Palladium–Silver Layered Nanodimer Arrays,” ACS Photonics 2(1), 66–72 (2015).
[Crossref]

Ulvestad, A.

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

Urban, J. J.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

Van Duyne, R. P.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

van Hulst, N. F.

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas,” Nano Lett. 11(11), 4674–4678 (2011).
[Crossref] [PubMed]

Vargas, W. E.

W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496(2), 189–196 (2006).
[Crossref]

Villa, N. S.

J. He, N. S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, and W. Shang, “Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing,” RSC Advances 8(57), 32395–32400 (2018).
[Crossref]

Villatoro, J.

J. Villatoro, D. Luna-Moreno, and D. Monzón-Hernández, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem. 110(1), 23–27 (2005).
[Crossref]

Wadell, C.

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

C. Wadell, F. A. A. Nugroho, E. Lidström, B. Iandolo, J. B. Wagner, and C. Langhammer, “Hysteresis-Free Nanoplasmonic Pd-Au Alloy Hydrogen Sensors,” Nano Lett. 15(5), 3563–3570 (2015).
[Crossref] [PubMed]

C. Wadell and C. Langhammer, “Drift-corrected nanoplasmonic hydrogen sensing by polarization,” Nanoscale 7(25), 10963–10969 (2015).
[Crossref] [PubMed]

C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano 8(12), 11925–11940 (2014).
[Crossref] [PubMed]

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

Wagner, J. B.

C. Wadell, F. A. A. Nugroho, E. Lidström, B. Iandolo, J. B. Wagner, and C. Langhammer, “Hysteresis-Free Nanoplasmonic Pd-Au Alloy Hydrogen Sensors,” Nano Lett. 15(5), 3563–3570 (2015).
[Crossref] [PubMed]

Wang, C. Y.

C. W. Cheng, Y. J. Liao, C. Y. Liu, B. H. Wu, S. S. Raja, C. Y. Wang, X. Li, C. K. Shih, L. J. Chen, and S. Gwo, “Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions,” ACS Photonics 5(7), 2624–2630 (2018).
[Crossref]

Wang, J.

K. Y. Hang, X. Zhu, X. Zhuo, R. Jiang, Z. Yang, and J. Wang, “Gold Nanobipyramid‐Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching ≈140 nm at 2 vol% Hydrogen Concentration,” Adv. Opt. Mater. 5(24), 1700740 (2017).
[Crossref]

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive Plasmonic Response of Bimetallic Au/Pd Nanostructures to Hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

Wang, S.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Wei, J. N.

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Weiss, T.

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral Plasmonic Hydrogen Sensors,” Small 14(7), 1702990 (2018).
[Crossref] [PubMed]

Welland, M. J.

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

Westerlund, F.

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

Westerwaal, R. J.

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
[Crossref]

C. Perrotton, R. J. Westerwaal, N. Javahiraly, M. Slaman, H. Schreuders, B. Dam, and P. Meyrueis, “A reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance,” Opt. Express 21(1), 382–390 (2013).
[Crossref] [PubMed]

Whitelam, S.

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

Winslow, R. D.

E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
[Crossref]

Wu, B. H.

C. W. Cheng, Y. J. Liao, C. Y. Liu, B. H. Wu, S. S. Raja, C. Y. Wang, X. Li, C. K. Shih, L. J. Chen, and S. Gwo, “Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions,” ACS Photonics 5(7), 2624–2630 (2018).
[Crossref]

Wu, J.

J. He, N. S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, and W. Shang, “Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing,” RSC Advances 8(57), 32395–32400 (2018).
[Crossref]

Yang, A.

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

Yang, J. K.

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Yang, J. K. W.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Yang, Q.

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single‐Crystal Pd and its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Yang, Z.

K. Y. Hang, X. Zhu, X. Zhuo, R. Jiang, Z. Yang, and J. Wang, “Gold Nanobipyramid‐Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching ≈140 nm at 2 vol% Hydrogen Concentration,” Adv. Opt. Mater. 5(24), 1700740 (2017).
[Crossref]

Yazdi, S.

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

Yin, X.

A. Tittl, X. Yin, H. Giessen, X. D. Tian, Z. Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[Crossref] [PubMed]

You, H.

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

Yu, Y. F.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Yue, S.

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Zapol, P.

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

Zeng, H.

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single‐Crystal Pd and its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Zhang, C.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander, and N. J. Halas, “Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts,” Nano Lett. 16(10), 6677–6682 (2016).
[Crossref] [PubMed]

Zhang, L.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Zhang, P.

S. Chang, S. Sen, P. Zhang, B. Gyarfas, B. Ashcroft, S. Lefkowitz, H. Peng, and S. Lindsay, “Palladium Electrodes for Molecular Tunnel Junctions,” Nanotechnology 23(42), 425202 (2012).
[Crossref] [PubMed]

Zhao, H.

C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander, and N. J. Halas, “Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts,” Nano Lett. 16(10), 6677–6682 (2016).
[Crossref] [PubMed]

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

Zhao, J.

Zhao, M.

M. Zhao, H. W. Man, C. W. Ong, N. H. Ng, and H. C. Man, “Tunability of Pd-nanogapped H2 sensors made on SiO2-coated Si micropillar arrays,” Sens. Actuators B Chem. 255, 944–951 (2018).
[Crossref]

Zhdanov, V. P.

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

Zheng, Y.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Zhou, L.

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander, and N. J. Halas, “Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts,” Nano Lett. 16(10), 6677–6682 (2016).
[Crossref] [PubMed]

Zhu, X.

K. Y. Hang, X. Zhu, X. Zhuo, R. Jiang, Z. Yang, and J. Wang, “Gold Nanobipyramid‐Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching ≈140 nm at 2 vol% Hydrogen Concentration,” Adv. Opt. Mater. 5(24), 1700740 (2017).
[Crossref]

Zhu, Y. B.

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single‐Crystal Pd and its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Zhuang, S.

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single‐Crystal Pd and its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Zhuo, X.

K. Y. Hang, X. Zhu, X. Zhuo, R. Jiang, Z. Yang, and J. Wang, “Gold Nanobipyramid‐Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching ≈140 nm at 2 vol% Hydrogen Concentration,” Adv. Opt. Mater. 5(24), 1700740 (2017).
[Crossref]

Zoric, I.

I. Zorić, E. M. Larsson, B. Kasemo, and C. Langhammer, “Localized surface plasmons shed light on nanoscale metal hydrides,” Adv. Mater. 22(41), 4628–4633 (2010).
[Crossref] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
[Crossref] [PubMed]

ACS Nano (6)

C. Wadell, S. Syrenova, and C. Langhammer, “Plasmonic hydrogen sensing with nanostructured metal hydrides,” ACS Nano 8(12), 11925–11940 (2014).
[Crossref] [PubMed]

A. Yang, M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. Van Duyne, and T. W. Odom, “Hetero-oligomer Nanoparticle Arrays for Plasmon-Enhanced Hydrogen Sensing,” ACS Nano 8(8), 7639–7647 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for Plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

G. Maidecchi, G. Gonella, R. Proietti Zaccaria, R. Moroni, L. Anghinolfi, A. Giglia, S. Nannarone, L. Mattera, H. L. Dai, M. Canepa, and F. Bisio, “Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays,” ACS Nano 7(7), 5834–5841 (2013).
[Crossref] [PubMed]

F. Bisio, R. Proietti Zaccaria, R. Moroni, G. Maidecchi, A. Alabastri, G. Gonella, A. Giglia, L. Andolfi, S. Nannarone, L. Mattera, and M. Canepa, “Pushing the high-energy limit of plasmonics,” ACS Nano 8(9), 9239–9247 (2014).
[Crossref] [PubMed]

D. Sil, K. D. Gilroy, A. Niaux, A. Boulesbaa, S. Neretina, and E. Borguet, “Seeing Is Believing: Hot Electron Based Gold Nanoplasmonic Optical Hydrogen Sensor,” ACS Nano 8(8), 7755–7762 (2014).
[Crossref] [PubMed]

ACS Photonics (3)

C. W. Cheng, Y. J. Liao, C. Y. Liu, B. H. Wu, S. S. Raja, C. Y. Wang, X. Li, C. K. Shih, L. J. Chen, and S. Gwo, “Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions,” ACS Photonics 5(7), 2624–2630 (2018).
[Crossref]

K. Ikeda, S. Uchiyama, T. Mai, and K. Murakoshi, “Hydrogen-Induced Tuning of Plasmon Resonance in Palladium–Silver Layered Nanodimer Arrays,” ACS Photonics 2(1), 66–72 (2015).
[Crossref]

Y. Shen, X. She, and C. Jin, “Mechanically Reconfigurable Pd Nanogroove Array: An Ultrasensitive Optical Hydrogen Detector,” ACS Photonics 5(4), 1334–1342 (2018).
[Crossref]

ACS Sens. (3)

E. Menumerov, B. A. Marks, D. A. Dikin, F. X. Lee, R. D. Winslow, S. Guru, D. Sil, E. Borguet, P. Hutapea, R. A. Hughes, and S. Neretina, “Sensing Hydrogen Gas from Atmospheric Pressure to a Hundred Parts per Million with Nanogaps Fabricated Using a Single-Step Bending Deformation,” ACS Sens. 1(1), 73–80 (2016).
[Crossref]

X. Li, M. Le Thai, R. K. Dutta, S. Qiao, G. T. Chandran, and R. M. Penner, “Sub-6 nm Palladium Nanoparticles for Faster, More Sensitive H2 Detection Using Carbon Nanotube Ropes,” ACS Sens. 2(2), 282–289 (2017).
[Crossref] [PubMed]

S. Bagheri, N. Strohfeldt, F. Sterl, A. Berrier, A. Tittl, and H. Giessen, “Large-Area Low-Cost Plasmonic Perfect Absorber Chemical Sensor Fabricated by Laser Interference Lithography,” ACS Sens. 1(9), 1148–1154 (2016).
[Crossref]

Adv. Funct. Mater. (1)

R. Jiang, F. Qin, Q. Ruan, J. Wang, and C. Jin, “Ultrasensitive Plasmonic Response of Bimetallic Au/Pd Nanostructures to Hydrogen,” Adv. Funct. Mater. 24(46), 7328–7337 (2014).
[Crossref]

Adv. Mater. (2)

I. Zorić, E. M. Larsson, B. Kasemo, and C. Langhammer, “Localized surface plasmons shed light on nanoscale metal hydrides,” Adv. Mater. 22(41), 4628–4633 (2010).
[Crossref] [PubMed]

T. Shegai and C. Langhammer, “Hydride Formation in Single Palladium and Magnesium Nanoparticles Studied by Nanoplasmonic Dark-Field Scattering Spectroscopy,” Adv. Mater. 23(38), 4409–4414 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

K. Y. Hang, X. Zhu, X. Zhuo, R. Jiang, Z. Yang, and J. Wang, “Gold Nanobipyramid‐Enhanced Hydrogen Sensing with Plasmon Red Shifts Reaching ≈140 nm at 2 vol% Hydrogen Concentration,” Adv. Opt. Mater. 5(24), 1700740 (2017).
[Crossref]

F. Gu, H. Zeng, Y. B. Zhu, Q. Yang, L. K. Ang, and S. Zhuang, “Single‐Crystal Pd and its Alloy Nanowires for Plasmon Propagation and Highly Sensitive Hydrogen Detection,” Adv. Opt. Mater. 2(2), 189–196 (2014).
[Crossref]

Anal. Bioanal. Chem. (1)

W. Shin, “Medical applications of breath hydrogen measurements,” Anal. Bioanal. Chem. 406(16), 3931–3939 (2014).
[Crossref] [PubMed]

Anal. Chem. (1)

A. B. Dahlin, J. O. Tegenfeldt, and F. Höök, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem. 78(13), 4416–4423 (2006).
[Crossref] [PubMed]

Int. J. Hydrogen Energy (2)

L. Barreto, A. Makihira, and K. Riahi, “The hydrogen economy in the 21st century: a sustainable development scenario,” Int. J. Hydrogen Energy 28(3), 267–284 (2003).
[Crossref]

R. J. Westerwaal, J. S. A. Rooijmans, L. Leclercq, D. G. Gheorghe, T. Radeva, L. Mooij, T. Mak, L. Polak, M. Slaman, B. Dam, and T. Rasing, “Nanostructured Pd–Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures,” Int. J. Hydrogen Energy 38(10), 4201–4212 (2013).
[Crossref]

Light Sci. Appl. (1)

N. Li, A. Tittl, S. Yue, H. Giessen, C. Song, B. Ding, and N. Liu, “DNA-assembled bimetallic plasmonic nanosensors,” Light Sci. Appl. 3(12), e226 (2014).
[Crossref]

Nano Lett. (12)

C. Wadell, F. A. A. Nugroho, E. Lidström, B. Iandolo, J. B. Wagner, and C. Langhammer, “Hysteresis-Free Nanoplasmonic Pd-Au Alloy Hydrogen Sensors,” Nano Lett. 15(5), 3563–3570 (2015).
[Crossref] [PubMed]

S. Syrenova, C. Wadell, and C. Langhammer, “Shrinking-hole colloidal lithography: self-aligned nanofabrication of complex plasmonic nanoantennas,” Nano Lett. 14(5), 2655–2663 (2014).
[Crossref] [PubMed]

C. Langhammer, I. Zorić, B. Kasemo, and B. M. Clemens, “Hydrogen storage in Pd nanodisks characterized with a novel nanoplasmonic sensing scheme,” Nano Lett. 7(10), 3122–3127 (2007).
[Crossref] [PubMed]

A. Tittl, P. Mai, R. Taubert, D. Dregely, N. Liu, and H. Giessen, “Palladium-Based Plasmonic Perfect Absorber in the Visible Wavelength Range and Its Application to Hydrogen Sensing,” Nano Lett. 11(10), 4366–4369 (2011).
[Crossref] [PubMed]

T. Shegai, P. Johansson, C. Langhammer, and M. Käll, “Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas,” Nano Lett. 12(5), 2464–2469 (2012).
[Crossref] [PubMed]

A. Tittl, X. Yin, H. Giessen, X. D. Tian, Z. Q. Tian, C. Kremers, D. N. Chigrin, and N. Liu, “Plasmonic smart dust for probing local chemical reactions,” Nano Lett. 13(4), 1816–1821 (2013).
[Crossref] [PubMed]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing Beyond sRGB Color Gamut by Mimicking Silicon Nanostructures in Free-Space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

M. Castro-Lopez, D. Brinks, R. Sapienza, and N. F. van Hulst, “Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas,” Nano Lett. 11(11), 4674–4678 (2011).
[Crossref] [PubMed]

L. Zhou, C. Zhang, M. J. McClain, A. Manjavacas, C. M. Krauter, S. Tian, F. Berg, H. O. Everitt, E. A. Carter, P. Nordlander, and N. J. Halas, “Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation,” Nano Lett. 16(2), 1478–1484 (2016).
[Crossref] [PubMed]

C. Zhang, H. Zhao, L. Zhou, A. E. Schlather, L. Dong, M. J. McClain, D. F. Swearer, P. Nordlander, and N. J. Halas, “Al-Pd Nanodisk Heterodimers as Antenna-Reactor Photocatalysts,” Nano Lett. 16(10), 6677–6682 (2016).
[Crossref] [PubMed]

M. Miyata, H. Hatada, and J. Takahara, “Full-Color Subwavelength Printing with Gap-Plasmonic Optical Antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

S. Mukherjee, F. Libisch, N. Large, O. Neumann, L. V. Brown, J. Cheng, J. B. Lassiter, E. A. Carter, P. Nordlander, and N. J. Halas, “Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au,” Nano Lett. 13(1), 240–247 (2013).
[Crossref] [PubMed]

Nanoscale (2)

C. Wadell and C. Langhammer, “Drift-corrected nanoplasmonic hydrogen sensing by polarization,” Nanoscale 7(25), 10963–10969 (2015).
[Crossref] [PubMed]

N. R. Fong, P. Berini, and R. N. Tait, “Hydrogen sensing with Pd-coated long-range surface plasmon membrane waveguides,” Nanoscale 8(7), 4284–4290 (2016).
[Crossref] [PubMed]

Nanotechnology (2)

A. Hierro-Rodriguez, I. T. Leite, P. Rocha-Rodrigues, P. Fernandes, J. P. Araujo, P. A. Jorge, J. L. Santos, J. M. Teixeira, and A. Guerreiro, “Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials,” Nanotechnology 27(18), 185501 (2016).
[Crossref] [PubMed]

S. Chang, S. Sen, P. Zhang, B. Gyarfas, B. Ashcroft, S. Lefkowitz, H. Peng, and S. Lindsay, “Palladium Electrodes for Molecular Tunnel Junctions,” Nanotechnology 23(42), 425202 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Nat. Mater. (7)

R. Griessen, N. Strohfeldt, and H. Giessen, “Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles,” Nat. Mater. 15(3), 311–317 (2016).
[Crossref] [PubMed]

R. Bardhan, L. O. Hedges, C. L. Pint, A. Javey, S. Whitelam, and J. J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals,” Nat. Mater. 12(10), 905–912 (2013).
[Crossref] [PubMed]

A. Baldi, T. C. Narayan, A. L. Koh, and J. A. Dionne, “In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals,” Nat. Mater. 13(12), 1143–1148 (2014).
[Crossref] [PubMed]

S. Syrenova, C. Wadell, F. A. A. Nugroho, T. A. Gschneidtner, Y. A. Diaz Fernandez, G. Nalin, D. Świtlik, F. Westerlund, T. J. Antosiewicz, V. P. Zhdanov, K. Moth-Poulsen, and C. Langhammer, “Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape,” Nat. Mater. 14(12), 1236–1244 (2015).
[Crossref] [PubMed]

T. C. Narayan, A. Baldi, A. L. Koh, R. Sinclair, and J. A. Dionne, “Reconstructing solute-induced phase transformations within individual nanocrystals,” Nat. Mater. 15(7), 768–774 (2016).
[Crossref] [PubMed]

A. Ulvestad, M. J. Welland, W. Cha, Y. Liu, J. W. Kim, R. Harder, E. Maxey, J. N. Clark, M. J. Highland, H. You, P. Zapol, S. O. Hruszkewycz, and G. B. Stephenson, “Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation,” Nat. Mater. 16(5), 565–571 (2017).
[Crossref] [PubMed]

N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, “Nanoantenna-enhanced gas sensing in a single tailored nanofocus,” Nat. Mater. 10(8), 631–636 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

K. Kumar, H. Duan, R. S. Hegde, S. C. Koh, J. N. Wei, and J. K. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. Express (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

D. F. Swearer, H. Zhao, L. Zhou, C. Zhang, H. Robatjazi, J. M. P. Martirez, C. M. Krauter, S. Yazdi, M. J. McClain, E. Ringe, E. A. Carter, P. Nordlander, and N. J. Halas, “Heterometallic antenna-reactor complexes for photocatalysis,” Proc. Natl. Acad. Sci. U.S.A. 113(32), 8916–8920 (2016).
[Crossref] [PubMed]

RSC Advances (1)

J. He, N. S. Villa, Z. Luo, S. An, Q. Shen, P. Tao, C. Song, J. Wu, T. Deng, and W. Shang, “Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified Morpho butterfly wings for sensitive hydrogen gas sensing,” RSC Advances 8(57), 32395–32400 (2018).
[Crossref]

Science (1)

J. A. Turner, C. Linkous, and N. Muradov, “Sustainable hydrogen production,” Science 305(5686), 972–974 (2004).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol. 18(7), 615–619 (2003).
[Crossref]

Sens. Actuators B Chem. (3)

K. Skucha, Z. Fan, K. Jeon, A. Javey, and B. Boser, “Palladium/Silicon Nanowire Schottky Barrier-Based Hydrogen Sensors,” Sens. Actuators B Chem. 145(1), 232–238 (2010).
[Crossref]

J. Villatoro, D. Luna-Moreno, and D. Monzón-Hernández, “Optical fiber hydrogen sensor for concentrations below the lower explosive limit,” Sens. Actuators B Chem. 110(1), 23–27 (2005).
[Crossref]

M. Zhao, H. W. Man, C. W. Ong, N. H. Ng, and H. C. Man, “Tunability of Pd-nanogapped H2 sensors made on SiO2-coated Si micropillar arrays,” Sens. Actuators B Chem. 255, 944–951 (2018).
[Crossref]

Small (1)

M. Matuschek, D. P. Singh, H. H. Jeong, M. Nesterov, T. Weiss, P. Fischer, F. Neubrech, and N. Liu, “Chiral Plasmonic Hydrogen Sensors,” Small 14(7), 1702990 (2018).
[Crossref] [PubMed]

Thin Solid Films (1)

W. E. Vargas, I. Rojas, D. E. Azofeifa, and N. Clark, “Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements,” Thin Solid Films 496(2), 189–196 (2006).
[Crossref]

Other (2)

A. Züttel, A. Borgschulte, and L. Schlapbach, Hydrogen as a Future Energy Carrier (Wiley‐VCH Verlag GmbH & Co. KGaA, 2008).

Weber and J .Marvin, Handbook of Optical Materials (CRC, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Proposed high-density hybrid nanorod array plasmonic hydrogen sensor and the platform for hydrogen sensing experiments. (a) Schematic illustration of the proposed Al-Pd (bottom layer: Al) hybrid nanorod array on top of a 500 μm-thick Si substrate, separated by a 100 nm-thick SiO2 oxidization layer. (b) SEM image of a typical fabricated Al-Pd nanorod array (Px = Py = 250 nm, L = 200 nm), demonstrating good homogeneity. Scale bar: 200 nm. (c) Bright-field reflective optical microscope image of some fabricated Al-Pd nanorod arrays, which appear as various color patches under white-light illumination. All the color patches have the same periodicity in x-direction, i.e., Px = 250 nm. From left to right column, the periodicity in y-direction decreases from 300 nm to 100 nm in steps of 50 nm, and from top to bottom row, the length of nanorods decreases from 225 nm to 125 nm in steps of 25 nm. Scale bar: 10 µm. (d) Artistic illustration of the optical characterization and gas sensing setup. A home-built sample stage allows gas-mixture with precise concentration to flow across the sample while continuously monitoring the white light reflection spectra.
Fig. 2
Fig. 2 Optical response of hybrid nanorod arrays under pure N2 and 3% H2 in N2 gas environment. Experimentally measured (a) and numerically simulated (b) normalized reflectance spectra of a Pd-Al nanorod array (Px = 250 nm, Py = 150 nm, L = 225 nm) under pure N2 (corresponding to Pd, solid blue curves) and 3% H2 in N2 (corresponding to PdH, dashed blue curves) gas environment. (c) and (d) The same as (a) and (b), but for an Al-Pd nanorod array with the same dimension.
Fig. 3
Fig. 3 Typical hydrogen sensing performance of a Pd-Al (a) and an Al-Pd (b) hybrid nanorod array. Blue and green circles correspond to measured data points, and the blue and green curves are just lines connecting the data points. Red bars correspond to the hydrogen concentration. Baselines are subtracted from original time traces of centroid spectral shifts to highlight sensing responses. Step-wise hydrogen sensing signals as well as the responses at 40 ppm, indicated by the black arrows, are clearly visible.
Fig. 4
Fig. 4 Comparison of the sensing behavior of the two sensor configurations. Response time τRise (a) and maximal shift Δλm (b) of the nanorod array sensors for the Pd-Al (blue circle) and Al-Pd (green diamond) configuration under different hydrogen concentrations. Error bars come from statistics of 9 (12) data points at each concentration. Blue and green curves connect the data points and serve as a guidance to the eye.
Fig. 5
Fig. 5 Simulation results to show that the Pd-Al and Al-Pd layered hybrid nanorods behave like a single nanorod. Surface charge distributions of (a) Pd-Al and (b) Al-Pd hybrid nanorod at wavelengths of 700 and 750 nm, respectively, whose dimensions are the same as that in Fig. 2. Electric field distributions of (c) Pd-Al and (d) Al-Pd hybrid nanorod under the same condition as (a) and (b). Color plots represent the norm of electric field, while arrows indicate local electric field at each position. It is clear that charges in the two layers oscillate in-phase in both cases (a.u. = arbitrary unit).
Fig. 6
Fig. 6 SEM characterization of a typical Pd-Al nanorod array (design: Px = 400 nm, Py = 300 nm, L = 350 nm, W = 40 nm) demonstrates minor but observable deviations of periodicities and dimensions of fabricated nanorods from the design as well as the surface roughness of the nanorods, especially when Al layer is on the top.
Fig. 7
Fig. 7 Original sensor response and the procedure of baseline subtraction. (a) Measured original time trace of the centroid peak wavelengths of the reflection spectrum under various hydrogen concentrations (open blue circles). Through finding the local minima, a baseline (thick blue curve) is created and then subtracted from the original time trace. After subtraction, sensing signal (time trace of centroid shift) is obtained (b).
Fig. 8
Fig. 8 Time traces of original centroid wavelengths for hybrid nanorod arrays with other dimensions. (a) Pd-Al nanorod array (Px = 350 nm, Py = 150 nm, L = 300 nm), (b) Pd-Al nanorod array (Px = 350 nm, Py = 150 nm, L = 275 nm), (c) Al-Pd nanorod array (Px = 300 nm, Py = 100 nm, L = 200 nm), and (d) Al-Pd nanorod array (Px = 300 nm, Py = 100 nm, L = 150 nm).

Tables (1)

Tables Icon

Table 1 Gas-flow sequence with various hydrogen concentrations.

Metrics