Abstract

Integrated photonics is increasing in importance for compact, robust, and scalable enabling quantum technologies. This is particularly interesting for developing quantum communication networks, where resources need to be deployed in the field. We exploit photonic chip-based Si3N4 microring resonators to realise a photon pair source with low-loss, high-noise suppression and coincidence rates of 80×103 s−1. A simple photonic noise characterisation technique is presented that distinguishes linear and nonlinear contributions useful for system design and optimisation. We then demonstrate an all-fiber 750 MHz clock-rate sequential Time-Bin entanglement scheme with raw interference visibilities > 98 %.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time-bin entangled photon pair generation from Si micro-ring resonator

Ryota Wakabayashi, Mikio Fujiwara, Ken-ichiro Yoshino, Yoshihiro Nambu, Masahide Sasaki, and Takao Aoki
Opt. Express 23(2) 1103-1113 (2015)

Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using Si ring resonator

Mikio Fujiwara, Ryota Wakabayashi, Masahide Sasaki, and Masahiro Takeoka
Opt. Express 25(4) 3445-3453 (2017)

Non-degenerated sequential time-bin entanglement generation using periodically poled KTP waveguide

Lijun Ma, Oliver Slattery, Tiejun Chang, and Xiao Tang
Opt. Express 17(18) 15799-15807 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
    [Crossref]
  2. S. Tanzilli, A. Martin, F. Kaiser, M. P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photonics Rev. 6, 115–143 (2011).
    [Crossref]
  3. J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  4. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
    [Crossref] [PubMed]
  5. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
    [Crossref]
  6. H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
    [Crossref]
  7. X. Zhang, Y. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18, 074016 (2016).
    [Crossref]
  8. M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
    [Crossref] [PubMed]
  9. X. Lu, S. Rogers, T. Gerrits, W. C. Jiang, S. W. Nam, and Q. Lin, “Heralding single photons from a high-Q silicon microdisk,” Optica 3, 1331–1338 (2016).
    [Crossref]
  10. F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, É. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016).
    [Crossref] [PubMed]
  11. A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
    [Crossref]
  12. M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
    [Crossref] [PubMed]
  13. M. Fujiwara, R. Wakabayashi, M. Sasaki, and M. Takeoka, “Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using si ring resonator,” Opt. Express 25, 3445–3453 (2017).
    [Crossref] [PubMed]
  14. P. Imany, J. A. Jaramillo-Villegas, O. D. Odele, K. Han, D. E. Leaird, J. M. Lukens, P. Lougovski, M. Qi, and A. M. Weiner, “50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator,” Opt. Express 26, 1825–1840 (2018).
    [Crossref] [PubMed]
  15. M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
    [Crossref] [PubMed]
  16. J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z. Y. Ou, M. Qi, and A. M. Weiner, “Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb,” Optica 4, 655–658 (2017).
    [Crossref]
  17. J. M. Lukens and P. Lougovski, “Frequency-encoded photonic qubits for scalable quantum information processing,” Optica 4, 8–16 (2017).
    [Crossref]
  18. A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: Concepts and experiments,” Phys. Rev. Lett. 119, 180510 (2017).
    [Crossref] [PubMed]
  19. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
    [Crossref]
  20. M. Akbari and A. A. Kalachev, “Third-order spontaneous parametric down-conversion in a ring microcavity,” Laser Phys. Lett. 13, 115204 (2016).
    [Crossref]
  21. S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson, and A. L. Gaeta, “Silicon-nitride platform for narrowband entangled photon generation,” arXiv:1508.04358 (2015).
  22. C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
    [Crossref]
  23. I. I. Faruque, G. F. Sinclair, D. Bonneau, J. G. Rarity, and M. G. Thompson, “On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics,” Opt. Express 26, 20379–20395 (2018).
    [Crossref] [PubMed]
  24. E. Hemsley, D. Bonneau, J. Pelc, R. Beausoleil, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in hydrogenated amorphous silicon microring resonators,” Sci. Rep. 6, 38908 (2016).
    [Crossref] [PubMed]
  25. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
    [Crossref]
  26. C. Ma, X. Wang, V. Anant, A. D. Beyer, M. D. Shaw, and S. Mookherjea, “Silicon photonic entangled photon-pair and heralded single photon generation with CAR > 12,000 and g(2)(0) < 0.006,” Opt. Express 25, 32995–33006 (2017).
    [Crossref]
  27. W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
    [Crossref] [PubMed]
  28. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
    [Crossref]
  29. C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
    [Crossref] [PubMed]
  30. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  31. C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
    [Crossref] [PubMed]
  32. X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible–telecom entangled photon pair source for quantum communication,” Nat. Phys. 15, 373–381 (2019).
    [Crossref]
  33. M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
    [Crossref]
  34. M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the damascene reflow process: fabrication and loss origins,” Optica 5, 884–892 (2018).
    [Crossref]
  35. M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
    [Crossref]
  36. J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43, 3200–3203 (2018).
    [Crossref] [PubMed]
  37. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, 6402 (2018).
    [Crossref]
  38. V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
    [Crossref] [PubMed]
  39. Q. Zhang, C. Langrock, H. Takesue, X. Xie, M. Fejer, and Y. Yamamoto, “Generation of 10-GHz clock sequential time-bin entanglement,” Opt. Express 16, 3293–3298 (2008).
    [Crossref] [PubMed]
  40. M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a p-i-n diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
    [Crossref]
  41. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
    [Crossref]
  42. M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
    [Crossref]
  43. P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
    [Crossref]
  44. N. Le Thomas, A. Dhakal, A. Raza, F. Peyskens, and R. Baets, “Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials,” Optica 5, 328–336 (2018).
    [Crossref]
  45. C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
    [Crossref]
  46. S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
    [Crossref]
  47. N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, and R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” Opt. Express 22, 17246–17253 (2014).
    [Crossref] [PubMed]
  48. P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
    [Crossref]
  49. A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
    [Crossref]
  50. Z. Vernon, M. Liscidini, and J. E. Sipe, “No free lunch: the trade-off between heralding rate and efficiency in microresonator-based heralded single photon sources,” Opt. Lett. 41, 788–791 (2016).
    [Crossref] [PubMed]
  51. C. C. Tison, J. A. Steidle, M. L. Fanto, Z. Wang, N. A. Mogent, A. Rizzo, S. F. Preble, and P. M. Alsing, “Path to increasing the coincidence efficiency of integrated resonant photon sources,” Opt. Express 25, 33088–33096 (2017).
    [Crossref]
  52. J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43, 3200–3203 (2018).
    [Crossref] [PubMed]
  53. Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
    [Crossref]

2019 (1)

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible–telecom entangled photon pair source for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

2018 (9)

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, 6402 (2018).
[Crossref]

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

P. Imany, J. A. Jaramillo-Villegas, O. D. Odele, K. Han, D. E. Leaird, J. M. Lukens, P. Lougovski, M. Qi, and A. M. Weiner, “50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator,” Opt. Express 26, 1825–1840 (2018).
[Crossref] [PubMed]

N. Le Thomas, A. Dhakal, A. Raza, F. Peyskens, and R. Baets, “Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials,” Optica 5, 328–336 (2018).
[Crossref]

J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43, 3200–3203 (2018).
[Crossref] [PubMed]

J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43, 3200–3203 (2018).
[Crossref] [PubMed]

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the damascene reflow process: fabrication and loss origins,” Optica 5, 884–892 (2018).
[Crossref]

I. I. Faruque, G. F. Sinclair, D. Bonneau, J. G. Rarity, and M. G. Thompson, “On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics,” Opt. Express 26, 20379–20395 (2018).
[Crossref] [PubMed]

2017 (8)

J. M. Lukens and P. Lougovski, “Frequency-encoded photonic qubits for scalable quantum information processing,” Optica 4, 8–16 (2017).
[Crossref]

M. Fujiwara, R. Wakabayashi, M. Sasaki, and M. Takeoka, “Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using si ring resonator,” Opt. Express 25, 3445–3453 (2017).
[Crossref] [PubMed]

J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z. Y. Ou, M. Qi, and A. M. Weiner, “Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb,” Optica 4, 655–658 (2017).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

C. Ma, X. Wang, V. Anant, A. D. Beyer, M. D. Shaw, and S. Mookherjea, “Silicon photonic entangled photon-pair and heralded single photon generation with CAR > 12,000 and g(2)(0) < 0.006,” Opt. Express 25, 32995–33006 (2017).
[Crossref]

C. C. Tison, J. A. Steidle, M. L. Fanto, Z. Wang, N. A. Mogent, A. Rizzo, S. F. Preble, and P. M. Alsing, “Path to increasing the coincidence efficiency of integrated resonant photon sources,” Opt. Express 25, 33088–33096 (2017).
[Crossref]

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: Concepts and experiments,” Phys. Rev. Lett. 119, 180510 (2017).
[Crossref] [PubMed]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

2016 (11)

E. Hemsley, D. Bonneau, J. Pelc, R. Beausoleil, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in hydrogenated amorphous silicon microring resonators,” Sci. Rep. 6, 38908 (2016).
[Crossref] [PubMed]

M. Akbari and A. A. Kalachev, “Third-order spontaneous parametric down-conversion in a ring microcavity,” Laser Phys. Lett. 13, 115204 (2016).
[Crossref]

X. Zhang, Y. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18, 074016 (2016).
[Crossref]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref] [PubMed]

Z. Vernon, M. Liscidini, and J. E. Sipe, “No free lunch: the trade-off between heralding rate and efficiency in microresonator-based heralded single photon sources,” Opt. Lett. 41, 788–791 (2016).
[Crossref] [PubMed]

X. Lu, S. Rogers, T. Gerrits, W. C. Jiang, S. W. Nam, and Q. Lin, “Heralding single photons from a high-Q silicon microdisk,” Optica 3, 1331–1338 (2016).
[Crossref]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, É. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016).
[Crossref] [PubMed]

2015 (2)

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a p-i-n diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (2)

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

2011 (3)

S. Tanzilli, A. Martin, F. Kaiser, M. P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photonics Rev. 6, 115–143 (2011).
[Crossref]

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

2010 (4)

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

2009 (2)

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

2008 (1)

2007 (2)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

2001 (1)

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

1999 (2)

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
[Crossref]

1998 (1)

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
[Crossref]

Afzelius, M.

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Aiello, A.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[Crossref] [PubMed]

Akbari, M.

M. Akbari and A. A. Kalachev, “Third-order spontaneous parametric down-conversion in a ring microcavity,” Laser Phys. Lett. 13, 115204 (2016).
[Crossref]

Aktas, D.

Alibart, O.

S. Tanzilli, A. Martin, F. Kaiser, M. P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photonics Rev. 6, 115–143 (2011).
[Crossref]

Alsing, P. M.

Anant, V.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible–telecom entangled photon pair source for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

C. Ma, X. Wang, V. Anant, A. D. Beyer, M. D. Shaw, and S. Mookherjea, “Silicon photonic entangled photon-pair and heralded single photon generation with CAR > 12,000 and g(2)(0) < 0.006,” Opt. Express 25, 32995–33006 (2017).
[Crossref]

Appel, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Autebert, C.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

Azaña, J.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Babazadeh, A.

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: Concepts and experiments,” Phys. Rev. Lett. 119, 180510 (2017).
[Crossref] [PubMed]

Baets, R.

Baldi, P.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Beausoleil, R.

E. Hemsley, D. Bonneau, J. Pelc, R. Beausoleil, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in hydrogenated amorphous silicon microring resonators,” Sci. Rep. 6, 38908 (2016).
[Crossref] [PubMed]

Belabas-Plougonven, N.

Bentivegna, M.

Beyer, A. D.

Bonneau, D.

I. I. Faruque, G. F. Sinclair, D. Bonneau, J. G. Rarity, and M. G. Thompson, “On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics,” Opt. Express 26, 20379–20395 (2018).
[Crossref] [PubMed]

E. Hemsley, D. Bonneau, J. Pelc, R. Beausoleil, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in hydrogenated amorphous silicon microring resonators,” Sci. Rep. 6, 38908 (2016).
[Crossref] [PubMed]

Boyer de la Giroday, A.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Brasch, V.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

Brendel, J.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Bromberg, Y.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

Bruno, N.

Bussières, F.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

Caloz, M.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

Caspani, L.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

Cassan, É.

Cassemiro, K. N.

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Chekhova, M. V.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[Crossref] [PubMed]

Chembo, Y. K.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Christ, A.

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Chu, S. T.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

Cino, A.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Clausen, C.

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

Clemmen, S.

S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson, and A. L. Gaeta, “Silicon-nitride platform for narrowband entangled photon generation,” arXiv:1508.04358 (2015).

Clerici, M.

Coen, S.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Cortés, L. R.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Davanço, M.

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

De Micheli, M.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

De Micheli, M. P.

S. Tanzilli, A. Martin, F. Kaiser, M. P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photonics Rev. 6, 115–143 (2011).
[Crossref]

De Riedmatten, H.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Del’Haye, P.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Dewhurst, S. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Dhakal, A.

Eckstein, A.

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Eggleton, B. J.

X. Zhang, Y. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18, 074016 (2016).
[Crossref]

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Eraerds, P.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Erhard, M.

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: Concepts and experiments,” Phys. Rev. Lett. 119, 180510 (2017).
[Crossref] [PubMed]

Erkintalo, M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Fanto, M. L.

Farsi, A.

S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson, and A. L. Gaeta, “Silicon-nitride platform for narrowband entangled photon generation,” arXiv:1508.04358 (2015).

Faruque, I. I.

Fejer, M.

Ferrera, M.

Förtsch, M.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[Crossref] [PubMed]

Foster, M. A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Freude, W.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Fujiwara, M.

Fukuda, H.

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

Fürst, J. U.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[Crossref] [PubMed]

Furusawa, A.

J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Gaeta, A. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, 6402 (2018).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson, and A. L. Gaeta, “Silicon-nitride platform for narrowband entangled photon generation,” arXiv:1508.04358 (2015).

Geiselmann, M.

Gerrits, T.

Ghadiani, B.

Gisin, N.

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Gorodetsky, M. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, 6402 (2018).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Grazioso, F.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

Guerreiro, T.

Guo, H.

Han, K.

Hansson, T.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Hemsley, E.

E. Hemsley, D. Bonneau, J. Pelc, R. Beausoleil, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in hydrogenated amorphous silicon microring resonators,” Sci. Rep. 6, 38908 (2016).
[Crossref] [PubMed]

Herkommer, C.

Herr, T.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Herrmann, H.

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

Hu, C. Y.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Imany, P.

Itabashi, S. I.

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

Jaramillo-Villegas, J. A.

Jelezko, F.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Jiang, W. C.

Johnston, T.

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

Jost, J. D.

Kaiser, F.

Kalachev, A. A.

M. Akbari and A. A. Kalachev, “Third-order spontaneous parametric down-conversion in a ring microcavity,” Laser Phys. Lett. 13, 115204 (2016).
[Crossref]

Karpov, M.

Kippenberg, T. J.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, 6402 (2018).
[Crossref]

J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43, 3200–3203 (2018).
[Crossref] [PubMed]

J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, and T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43, 3200–3203 (2018).
[Crossref] [PubMed]

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the damascene reflow process: fabrication and loss origins,” Optica 5, 884–892 (2018).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Koos, C.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Kordts, A.

Korzh, B.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

Krenn, M.

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: Concepts and experiments,” Phys. Rev. Lett. 119, 180510 (2017).
[Crossref] [PubMed]

Kröll, S.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Kues, M.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

Kumar, R.

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref] [PubMed]

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a p-i-n diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

Labonté, L.

Laiho, K.

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Langrock, C.

Le Roux, X.

Le Thomas, N.

Leaird, D. E.

Legré, M.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Leuchs, G.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[Crossref] [PubMed]

Leuthold, J.

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

Levy, J. S.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Li, Q.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible–telecom entangled photon pair source for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

Lihachev, G.

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Lin, Q.

Lipson, M.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, 6402 (2018).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson, and A. L. Gaeta, “Silicon-nitride platform for narrowband entangled photon generation,” arXiv:1508.04358 (2015).

Liscidini, M.

Little, B. E.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

Liu, J.

Lougovski, P.

Lu, X.

Lu, Y. J.

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
[Crossref]

Lucas, E.

Luke, K.

S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson, and A. L. Gaeta, “Silicon-nitride platform for narrowband entangled photon generation,” arXiv:1508.04358 (2015).

Lukens, J. M.

Lunghi, T.

Ma, C.

Malik, M.

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: Concepts and experiments,” Phys. Rev. Lett. 119, 180510 (2017).
[Crossref] [PubMed]

Marquardt, C.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[Crossref] [PubMed]

Marris-Morini, D.

Martin, A.

N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, and R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” Opt. Express 22, 17246–17253 (2014).
[Crossref] [PubMed]

S. Tanzilli, A. Martin, F. Kaiser, M. P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photonics Rev. 6, 115–143 (2011).
[Crossref]

Matthews, J. C. F.

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Mazeas, F.

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Mogent, N. A.

Moille, G.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible–telecom entangled photon pair source for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

Mookherjea, S.

Morais, T.

Morandotti, R.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Moss, D. J.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Müller, J. H.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Nam, S. W.

Ngah, L. A.

Nouroozi, R.

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: Concepts and experiments,” Phys. Rev. Lett. 119, 180510 (2017).
[Crossref] [PubMed]

Nunn, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

O’Brien, J. L.

E. Hemsley, D. Bonneau, J. Pelc, R. Beausoleil, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in hydrogenated amorphous silicon microring resonators,” Sci. Rep. 6, 38908 (2016).
[Crossref] [PubMed]

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Odele, O. D.

Orquiza, D.

S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson, and A. L. Gaeta, “Silicon-nitride platform for narrowband entangled photon generation,” arXiv:1508.04358 (2015).

Ostrowsky, D. B.

S. Tanzilli, A. Martin, F. Kaiser, M. P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photonics Rev. 6, 115–143 (2011).
[Crossref]

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Ou, Z. Y.

J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z. Y. Ou, M. Qi, and A. M. Weiner, “Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb,” Optica 4, 655–658 (2017).
[Crossref]

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
[Crossref]

Painter, O.

Pasquazi, A.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

Peccianti, M.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

Pelc, J.

E. Hemsley, D. Bonneau, J. Pelc, R. Beausoleil, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in hydrogenated amorphous silicon microring resonators,” Sci. Rep. 6, 38908 (2016).
[Crossref] [PubMed]

Perrenoud, M.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

Peyskens, F.

Pfeiffer, M. H. P.

Picholle, É.

Politi, A.

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Polzik, E. S.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Preble, S. F.

Qi, M.

Raja, A. S.

Ramelow, S.

S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson, and A. L. Gaeta, “Silicon-nitride platform for narrowband entangled photon generation,” arXiv:1508.04358 (2015).

Ramos, C. A.

Rarity, J. G.

I. I. Faruque, G. F. Sinclair, D. Bonneau, J. G. Rarity, and M. G. Thompson, “On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics,” Opt. Express 26, 20379–20395 (2018).
[Crossref] [PubMed]

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
[Crossref]

Raza, A.

Razzari, L.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

Reimer, C.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

Rizzo, A.

Rogers, S.

Rosenfeld, W.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Roztocki, P.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

Sanguinetti, B.

Sasaki, M.

Sauder, G.

Savanier, M.

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref] [PubMed]

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a p-i-n diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

Schönenberger, C.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

Sciara, S.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

Shaw, M. D.

Shields, A. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Silberhorn, C.

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[Crossref] [PubMed]

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

Simon, C.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Sinclair, G. F.

Singh, A.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible–telecom entangled photon pair source for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

Sipe, J. E.

Sköld, N.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Sohler, W.

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

Srinivasan, K.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible–telecom entangled photon pair source for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

Steidle, J. A.

Stevenson, R. M.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Strekalov, D.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[Crossref] [PubMed]

Takeoka, M.

Takesue, H.

Q. Zhang, C. Langrock, H. Takesue, X. Xie, M. Fejer, and Y. Yamamoto, “Generation of 10-GHz clock sequential time-bin entanglement,” Opt. Express 16, 3293–3298 (2008).
[Crossref] [PubMed]

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

Tanzilli, S.

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, É. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016).
[Crossref] [PubMed]

S. Tanzilli, A. Martin, F. Kaiser, M. P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photonics Rev. 6, 115–143 (2011).
[Crossref]

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Tapster, P. R.

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
[Crossref]

Thew, R.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

Thew, R. T.

Thompson, M. G.

I. I. Faruque, G. F. Sinclair, D. Bonneau, J. G. Rarity, and M. G. Thompson, “On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics,” Opt. Express 26, 20379–20395 (2018).
[Crossref] [PubMed]

E. Hemsley, D. Bonneau, J. Pelc, R. Beausoleil, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in hydrogenated amorphous silicon microring resonators,” Sci. Rep. 6, 38908 (2016).
[Crossref] [PubMed]

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

Tiranov, A.

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

Tison, C. C.

Tittel, H.

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Tittel, W.

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Tokura, Y.

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

Traetta, M.

Tsuchizawa, T.

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

Vernon, Z.

Vivien, L.

Vuckovic, J.

J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Wabnitz, S.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Wakabayashi, R.

Walenta, N.

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Walmsley, I. A.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Wang, F.

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: Concepts and experiments,” Phys. Rev. Lett. 119, 180510 (2017).
[Crossref] [PubMed]

Wang, X.

Wang, Z.

Warburton, R. J.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

Watanabe, T.

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

Weber, M. C.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Weiner, A. M.

Weinfurter, H.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Weiss, M.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

Westly, D. A.

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible–telecom entangled photon pair source for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

Wetzel, B.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

Wittmann, C.

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[Crossref] [PubMed]

Wrachtrup, J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Xie, X.

Xiong, C.

X. Zhang, Y. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18, 074016 (2016).
[Crossref]

Xue, X.

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Yamada, K.

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

Yamamoto, Y.

Young, R. J.

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

Zbinden, H.

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Zeilinger, A.

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: Concepts and experiments,” Phys. Rev. Lett. 119, 180510 (2017).
[Crossref] [PubMed]

Zervas, M.

Zhang, J.

Zhang, Q.

Zhang, W.

Zhang, X.

X. Zhang, Y. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18, 074016 (2016).
[Crossref]

Zhang, Y.

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

X. Zhang, Y. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18, 074016 (2016).
[Crossref]

Appl. Phys. Lett. (3)

H. Takesue, Y. Tokura, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. I. Itabashi, “Entanglement generation using silicon wire waveguide,” Appl. Phys. Lett. 91, 201108 (2007).
[Crossref]

M. Savanier, R. Kumar, and S. Mookherjea, “Optimizing photon-pair generation electronically using a p-i-n diode incorporated in a silicon microring resonator,” Appl. Phys. Lett. 107, 131101 (2015).
[Crossref]

M. Caloz, M. Perrenoud, C. Autebert, B. Korzh, M. Weiss, C. Schönenberger, R. J. Warburton, H. Zbinden, and F. Bussières, “High-detection efficiency and low-timing jitter with amorphous superconducting nanowire single-photon detectors,” Appl. Phys. Lett. 112, 061103 (2018).
[Crossref]

Electron. Lett. (1)

S. Tanzilli, H. De Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 37, 26–28 (2001).
[Crossref]

Eur. Phys. J. D (1)

C. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kröll, J. H. Müller, J. Nunn, E. S. Polzik, J. G. Rarity, H. De Riedmatten, W. Rosenfeld, A. J. Shields, N. Sköld, R. M. Stevenson, R. Thew, I. A. Walmsley, M. C. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories,” Eur. Phys. J. D 58, 1–22 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Politi, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Integrated quantum photonics,” IEEE J. Sel. Top. Quantum Electron. 15, 1673–1684 (2009).
[Crossref]

J. Mod. Opt. (1)

P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt. 45, 595–604 (1998).
[Crossref]

J. Opt. (1)

X. Zhang, Y. Zhang, C. Xiong, and B. J. Eggleton, “Correlated photon pair generation in low-loss double-stripe silicon nitride waveguides,” J. Opt. 18, 074016 (2016).
[Crossref]

Laser Photonics Rev. (1)

S. Tanzilli, A. Martin, F. Kaiser, M. P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser Photonics Rev. 6, 115–143 (2011).
[Crossref]

Laser Phys. Lett. (1)

M. Akbari and A. A. Kalachev, “Third-order spontaneous parametric down-conversion in a ring microcavity,” Laser Phys. Lett. 13, 115204 (2016).
[Crossref]

Nat. Commun. (1)

M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, A. Aiello, M. V. Chekhova, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Commun. 4, 1818 (2013).
[Crossref] [PubMed]

Nat. Photonics (6)

J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photonics 4, 535–544 (2010).
[Crossref]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37–40 (2010).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Q. Li, M. Davanço, and K. Srinivasan, “Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics,” Nat. Photonics 10, 406–414 (2016).
[Crossref]

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

Nat. Phys. (1)

X. Lu, Q. Li, D. A. Westly, G. Moille, A. Singh, V. Anant, and K. Srinivasan, “Chip-integrated visible–telecom entangled photon pair source for quantum communication,” Nat. Phys. 15, 373–381 (2019).
[Crossref]

Nature (1)

M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, “On-chip generation of high-dimensional entangled quantum states and their coherent control,” Nature 546, 622–626 (2017).
[Crossref] [PubMed]

New J. Phys. (3)

A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys. 13, 033027 (2011).
[Crossref]

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius, and N. Gisin, “A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons,” New J. Phys. 16, 093058 (2014).
[Crossref]

P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010).
[Crossref]

Opt. Express (11)

Q. Zhang, C. Langrock, H. Takesue, X. Xie, M. Fejer, and Y. Yamamoto, “Generation of 10-GHz clock sequential time-bin entanglement,” Opt. Express 16, 3293–3298 (2008).
[Crossref] [PubMed]

C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Integrated frequency comb source of heralded single photons,” Opt. Express 22, 6535–6546 (2014).
[Crossref] [PubMed]

N. Bruno, A. Martin, T. Guerreiro, B. Sanguinetti, and R. T. Thew, “Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths,” Opt. Express 22, 17246–17253 (2014).
[Crossref] [PubMed]

W. C. Jiang, X. Lu, J. Zhang, O. Painter, and Q. Lin, “Silicon-chip source of bright photon pairs,” Opt. Express 23, 20884–20904 (2015).
[Crossref] [PubMed]

M. Savanier, R. Kumar, and S. Mookherjea, “Photon pair generation from compact silicon microring resonators using microwatt-level pump powers,” Opt. Express 24, 3313–3328 (2016).
[Crossref] [PubMed]

F. Mazeas, M. Traetta, M. Bentivegna, F. Kaiser, D. Aktas, W. Zhang, C. A. Ramos, L. A. Ngah, T. Lunghi, É. Picholle, N. Belabas-Plougonven, X. Le Roux, É. Cassan, D. Marris-Morini, L. Vivien, G. Sauder, L. Labonté, and S. Tanzilli, “High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip,” Opt. Express 24, 28731–28738 (2016).
[Crossref] [PubMed]

I. I. Faruque, G. F. Sinclair, D. Bonneau, J. G. Rarity, and M. G. Thompson, “On-chip quantum interference with heralded photons from two independent micro-ring resonator sources in silicon photonics,” Opt. Express 26, 20379–20395 (2018).
[Crossref] [PubMed]

C. Ma, X. Wang, V. Anant, A. D. Beyer, M. D. Shaw, and S. Mookherjea, “Silicon photonic entangled photon-pair and heralded single photon generation with CAR > 12,000 and g(2)(0) < 0.006,” Opt. Express 25, 32995–33006 (2017).
[Crossref]

C. C. Tison, J. A. Steidle, M. L. Fanto, Z. Wang, N. A. Mogent, A. Rizzo, S. F. Preble, and P. M. Alsing, “Path to increasing the coincidence efficiency of integrated resonant photon sources,” Opt. Express 25, 33088–33096 (2017).
[Crossref]

P. Imany, J. A. Jaramillo-Villegas, O. D. Odele, K. Han, D. E. Leaird, J. M. Lukens, P. Lougovski, M. Qi, and A. M. Weiner, “50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator,” Opt. Express 26, 1825–1840 (2018).
[Crossref] [PubMed]

M. Fujiwara, R. Wakabayashi, M. Sasaki, and M. Takeoka, “Wavelength division multiplexed and double-port pumped time-bin entangled photon pair generation using si ring resonator,” Opt. Express 25, 3445–3453 (2017).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (7)

X. Lu, S. Rogers, T. Gerrits, W. C. Jiang, S. W. Nam, and Q. Lin, “Heralding single photons from a high-Q silicon microdisk,” Optica 3, 1331–1338 (2016).
[Crossref]

J. M. Lukens and P. Lougovski, “Frequency-encoded photonic qubits for scalable quantum information processing,” Optica 4, 8–16 (2017).
[Crossref]

M. H. P. Pfeiffer, A. Kordts, V. Brasch, M. Zervas, M. Geiselmann, J. D. Jost, and T. J. Kippenberg, “Photonic damascene process for integrated high-q microresonator based nonlinear photonics,” Optica 3, 20–25 (2016).
[Crossref]

M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the damascene reflow process: fabrication and loss origins,” Optica 5, 884–892 (2018).
[Crossref]

J. A. Jaramillo-Villegas, P. Imany, O. D. Odele, D. E. Leaird, Z. Y. Ou, M. Qi, and A. M. Weiner, “Persistent energy–time entanglement covering multiple resonances of an on-chip biphoton frequency comb,” Optica 4, 655–658 (2017).
[Crossref]

M. H. P. Pfeiffer, C. Herkommer, J. Liu, H. Guo, M. Karpov, E. Lucas, M. Zervas, and T. J. Kippenberg, “Octave-spanning dissipative kerr soliton frequency combs in Si3N4 microresonators,” Optica 4, 684–691 (2017).
[Crossref]

N. Le Thomas, A. Dhakal, A. Raza, F. Peyskens, and R. Baets, “Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials,” Optica 5, 328–336 (2018).
[Crossref]

Phys. Rep. (1)

A. Pasquazi, M. Peccianti, L. Razzari, D. J. Moss, S. Coen, M. Erkintalo, Y. K. Chembo, T. Hansson, S. Wabnitz, P. Del’Haye, X. Xue, A. M. Weiner, and R. Morandotti, “Micro-combs: A novel generation of optical sources,” Phys. Rep. 729, 1–81 (2018).
[Crossref]

Phys. Rev. Lett. (3)

A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger, “High-dimensional single-photon quantum gates: Concepts and experiments,” Phys. Rev. Lett. 119, 180510 (2017).
[Crossref] [PubMed]

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
[Crossref]

J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82, 2594–2597 (1999).
[Crossref]

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum. 82, 071101 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

E. Hemsley, D. Bonneau, J. Pelc, R. Beausoleil, J. L. O’Brien, and M. G. Thompson, “Photon pair generation in hydrogenated amorphous silicon microring resonators,” Sci. Rep. 6, 38908 (2016).
[Crossref] [PubMed]

Science (3)

C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, “Generation of multiphoton entangled quantum states by means of integrated frequency combs,” Science 351, 1176–1180 (2016).
[Crossref] [PubMed]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, 6402 (2018).
[Crossref]

V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, “Photonic chip–based optical frequency comb using soliton cherenkov radiation,” Science 351, 357–360 (2016).
[Crossref] [PubMed]

Other (1)

S. Ramelow, A. Farsi, S. Clemmen, D. Orquiza, K. Luke, M. Lipson, and A. L. Gaeta, “Silicon-nitride platform for narrowband entangled photon generation,” arXiv:1508.04358 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental schematic. On the left is the pump laser preparation which is then injected into the Si3N4 MRR. On the right, we have the set-up for characterising the source and a folded Michelson interferometer for analysing the sequential Time-Bin entanglement. EOM: electro-optical modulator; EDFA: erbium doped fiber amplifier. PC: polarisation controller. PBS: fiber polarising beam-splitter. BPF: Band-Pass Filter. PM: power meter. FM: Faraday mirror.
Fig. 2
Fig. 2 (a) Spontaneous Raman scattering generated by the set-up without the MRR. It is possible to observe two dips around the pump wavelength of 1557.43 nm; A narrow dip due to the pump rejection filters, and a wide dip due to spontaneous Raman scattering in the fibers. (b) The spectral response of the MRR for both on- and off-resonance cases.
Fig. 3
Fig. 3 (a) Detected photons (Singles) as a function of injected laser pump power for both the off and on resonance cases. For the off-resonance case, only the singles from the signal wavelength are shown. (b) The singles as a function of power for each resonant line is separated into its linear and quadratic terms.
Fig. 4
Fig. 4 (a) Coincidence count rate Rc and coincidence-to-accidental ratio CAR as a function of the pump laser power. The predicted CAR and the quadratic fitting of the coincidences at low power (before detector saturation) are given by solid lines. (b) The coincidence histogram corrisponding to maximum photon pair detection rate of 80 × 103 s−1.
Fig. 5
Fig. 5 The auto-correlation coincidence histogram, from which we can extract the purity of the generated photons.
Fig. 6
Fig. 6 (a) The phase averaged coincidence histogram, and the coincidence histogram corresponding to maximum destructive interference (insert). (b) Coincidence counts in the central and side histogram peaks as a function of the phase - voltage on the piezo.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| ψ | t i , t i ω 1 ω 2 + e i ϕ | t i + 1 , t i + 1 ω 1 ω 2 .

Metrics