Abstract

In this paper we describe an upconversion detector in the mid infrared (around 3.5 μm). We take advantage of the PPLN ridge waveguide technology to achieve single photon detection at room temperature on a single spatial mode. With a pump power of 192 mW we obtain a detection efficiency of 0.4% for 22k dark count per second, which corresponds to a noise equivalent power of 3.0 fW · Hz−1/2 and an internal conversion efficiency of 85 %/W of pump.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer
Opt. Express 19(22) 21445-21456 (2011)

Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides

Carsten Langrock, Eleni Diamanti, Rostislav V. Roussev, Yoshihisa Yamamoto, M. M. Fejer, and Hiroki Takesue
Opt. Lett. 30(13) 1725-1727 (2005)

Quantum detector tomography of a single-photon frequency upconversion detection system

Jianhui Ma, Xiuliang Chen, Huiqin Hu, Haifeng Pan, E Wu, and Heping Zeng
Opt. Express 24(18) 20973-20981 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Rogalski and K. Chrzanowski, “Infrared devices and techniques (revision),” Metrol. Meas. Syst.21 (2014).
    [Crossref]
  2. C. L. Tan and H. Mohseni, “Emerging technologies for high performance infrared detectors,” Nanophotonics 7, 169–197 (2018).
    [Crossref]
  3. F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
    [Crossref] [PubMed]
  4. X. Sun, J. B. Abshire, J. D. Beck, P. Mitra, K. Reiff, and G. Yang, “HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths,” Opt. Express 25, 16589 (2017).
    [Crossref] [PubMed]
  5. G. Temporão, S. Tanzilli, H. Zbinden, N. Gisin, T. Aellen, M. Giovannini, and J. Faist, “Mid-infrared single-photon counting,” Opt. Lett. 31, 1094 (2006).
    [Crossref] [PubMed]
  6. M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
    [Crossref] [PubMed]
  7. P. Darré, L. Lehmann, L. Grossard, L. Delage, and F. Reynaud, “Control of the coherence behavior in a SFG interferometer through the multipump phases command,” Opt. Express 26, 7098 (2018).
    [Crossref] [PubMed]
  8. L. Lehmann, P. Darré, H. Boulogne, L. Delage, L. Grossard, and F. Reynaud, “Multichannel spectral mode of the ALOHA up-conversion interferometer,” Mon. Notices Royal Astron. Soc. 477, 190–194 (2018).
    [Crossref]
  9. K.-D. F. Büchter, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Waveguide-based mid-infrared up-conversion detectors,” in Advanced Photonics (2011), Paper IWF3, (Optical Society of America, 2011), p. IWF3.
    [Crossref]
  10. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518 (2004).
    [Crossref] [PubMed]
  11. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [Crossref]
  12. E. Courjon, N. Courjal, W. Daniau, G. Lengaigne, L. Gauthier-Manuel, S. Ballandras, and J. Hauden, “Lamb wave transducers built on periodically poled Z-cut LiNbO3 wafers,” Eur. Phys. Journal: Appl. Phys. 102, 114107 (2007).
  13. R. Kou, S. Kurimura, K. Kikuchi, A. Terasaki, H. Nakajima, K. Kondou, and J. Ichikawa, “High-gain, wide-dynamic-range parametric interaction in Mg-doped LiNbO3 quasi-phase-matched adhered ridge waveguide,” Opt. Express 19, 11867–11872 (2011).
    [Crossref] [PubMed]
  14. S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
    [Crossref]
  15. M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt. 18, 085503 (2016).
    [Crossref]
  16. M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24, 1386–1391 (2016).
    [Crossref] [PubMed]
  17. N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D: Appl. Phys. 44, 305101 (2011).
    [Crossref]
  18. T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
    [Crossref]

2018 (3)

C. L. Tan and H. Mohseni, “Emerging technologies for high performance infrared detectors,” Nanophotonics 7, 169–197 (2018).
[Crossref]

L. Lehmann, P. Darré, H. Boulogne, L. Delage, L. Grossard, and F. Reynaud, “Multichannel spectral mode of the ALOHA up-conversion interferometer,” Mon. Notices Royal Astron. Soc. 477, 190–194 (2018).
[Crossref]

P. Darré, L. Lehmann, L. Grossard, L. Delage, and F. Reynaud, “Control of the coherence behavior in a SFG interferometer through the multipump phases command,” Opt. Express 26, 7098 (2018).
[Crossref] [PubMed]

2017 (2)

X. Sun, J. B. Abshire, J. D. Beck, P. Mitra, K. Reiff, and G. Yang, “HgCdTe avalanche photodiode detectors for airborne and spaceborne lidar at infrared wavelengths,” Opt. Express 25, 16589 (2017).
[Crossref] [PubMed]

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

2016 (2)

M. F. Volk, S. Suntsov, C. E. Rüter, and D. Kip, “Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing,” Opt. Express 24, 1386–1391 (2016).
[Crossref] [PubMed]

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt. 18, 085503 (2016).
[Crossref]

2012 (1)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

2011 (2)

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D: Appl. Phys. 44, 305101 (2011).
[Crossref]

R. Kou, S. Kurimura, K. Kikuchi, A. Terasaki, H. Nakajima, K. Kondou, and J. Ichikawa, “High-gain, wide-dynamic-range parametric interaction in Mg-doped LiNbO3 quasi-phase-matched adhered ridge waveguide,” Opt. Express 19, 11867–11872 (2011).
[Crossref] [PubMed]

2010 (1)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[Crossref]

2007 (1)

E. Courjon, N. Courjal, W. Daniau, G. Lengaigne, L. Gauthier-Manuel, S. Ballandras, and J. Hauden, “Lamb wave transducers built on periodically poled Z-cut LiNbO3 wafers,” Eur. Phys. Journal: Appl. Phys. 102, 114107 (2007).

2006 (2)

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
[Crossref]

G. Temporão, S. Tanzilli, H. Zbinden, N. Gisin, T. Aellen, M. Giovannini, and J. Faist, “Mid-infrared single-photon counting,” Opt. Lett. 31, 1094 (2006).
[Crossref] [PubMed]

2004 (1)

1997 (1)

Abshire, J. B.

Aellen, T.

Asobe, M.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[Crossref]

Ballandras, S.

E. Courjon, N. Courjal, W. Daniau, G. Lengaigne, L. Gauthier-Manuel, S. Ballandras, and J. Hauden, “Lamb wave transducers built on periodically poled Z-cut LiNbO3 wafers,” Eur. Phys. Journal: Appl. Phys. 102, 114107 (2007).

Bassignot, F.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt. 18, 085503 (2016).
[Crossref]

Beck, J. D.

Bellei, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Berggren, K. K.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Bernal, M.-P.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D: Appl. Phys. 44, 305101 (2011).
[Crossref]

Boulogne, H.

L. Lehmann, P. Darré, H. Boulogne, L. Delage, L. Grossard, and F. Reynaud, “Multichannel spectral mode of the ALOHA up-conversion interferometer,” Mon. Notices Royal Astron. Soc. 477, 190–194 (2018).
[Crossref]

Büchter, K.-D. F.

K.-D. F. Büchter, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Waveguide-based mid-infrared up-conversion detectors,” in Advanced Photonics (2011), Paper IWF3, (Optical Society of America, 2011), p. IWF3.
[Crossref]

Chauvet, M.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt. 18, 085503 (2016).
[Crossref]

Chrzanowski, K.

A. Rogalski and K. Chrzanowski, “Infrared devices and techniques (revision),” Metrol. Meas. Syst.21 (2014).
[Crossref]

Courjal, N.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D: Appl. Phys. 44, 305101 (2011).
[Crossref]

E. Courjon, N. Courjal, W. Daniau, G. Lengaigne, L. Gauthier-Manuel, S. Ballandras, and J. Hauden, “Lamb wave transducers built on periodically poled Z-cut LiNbO3 wafers,” Eur. Phys. Journal: Appl. Phys. 102, 114107 (2007).

Courjon, E.

E. Courjon, N. Courjal, W. Daniau, G. Lengaigne, L. Gauthier-Manuel, S. Ballandras, and J. Hauden, “Lamb wave transducers built on periodically poled Z-cut LiNbO3 wafers,” Eur. Phys. Journal: Appl. Phys. 102, 114107 (2007).

Dahmani, B.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt. 18, 085503 (2016).
[Crossref]

Dam, J. S.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Dane, A. E.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Daniau, W.

E. Courjon, N. Courjal, W. Daniau, G. Lengaigne, L. Gauthier-Manuel, S. Ballandras, and J. Hauden, “Lamb wave transducers built on periodically poled Z-cut LiNbO3 wafers,” Eur. Phys. Journal: Appl. Phys. 102, 114107 (2007).

Darré, P.

L. Lehmann, P. Darré, H. Boulogne, L. Delage, L. Grossard, and F. Reynaud, “Multichannel spectral mode of the ALOHA up-conversion interferometer,” Mon. Notices Royal Astron. Soc. 477, 190–194 (2018).
[Crossref]

P. Darré, L. Lehmann, L. Grossard, L. Delage, and F. Reynaud, “Control of the coherence behavior in a SFG interferometer through the multipump phases command,” Opt. Express 26, 7098 (2018).
[Crossref] [PubMed]

Dauler, E. A.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Delage, L.

L. Lehmann, P. Darré, H. Boulogne, L. Delage, L. Grossard, and F. Reynaud, “Multichannel spectral mode of the ALOHA up-conversion interferometer,” Mon. Notices Royal Astron. Soc. 477, 190–194 (2018).
[Crossref]

P. Darré, L. Lehmann, L. Grossard, L. Delage, and F. Reynaud, “Control of the coherence behavior in a SFG interferometer through the multipump phases command,” Opt. Express 26, 7098 (2018).
[Crossref] [PubMed]

Devaux, F.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt. 18, 085503 (2016).
[Crossref]

Faist, J.

Fejer, M. M.

Fontana, G.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Gauthier-Manuel, L.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt. 18, 085503 (2016).
[Crossref]

E. Courjon, N. Courjal, W. Daniau, G. Lengaigne, L. Gauthier-Manuel, S. Ballandras, and J. Hauden, “Lamb wave transducers built on periodically poled Z-cut LiNbO3 wafers,” Eur. Phys. Journal: Appl. Phys. 102, 114107 (2007).

Giovannini, M.

Gisin, N.

Grossard, L.

L. Lehmann, P. Darré, H. Boulogne, L. Delage, L. Grossard, and F. Reynaud, “Multichannel spectral mode of the ALOHA up-conversion interferometer,” Mon. Notices Royal Astron. Soc. 477, 190–194 (2018).
[Crossref]

P. Darré, L. Lehmann, L. Grossard, L. Delage, and F. Reynaud, “Control of the coherence behavior in a SFG interferometer through the multipump phases command,” Opt. Express 26, 7098 (2018).
[Crossref] [PubMed]

Guichardaz, B.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D: Appl. Phys. 44, 305101 (2011).
[Crossref]

Hauden, J.

E. Courjon, N. Courjal, W. Daniau, G. Lengaigne, L. Gauthier-Manuel, S. Ballandras, and J. Hauden, “Lamb wave transducers built on periodically poled Z-cut LiNbO3 wafers,” Eur. Phys. Journal: Appl. Phys. 102, 114107 (2007).

Henrot, F.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt. 18, 085503 (2016).
[Crossref]

Herrmann, H.

K.-D. F. Büchter, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Waveguide-based mid-infrared up-conversion detectors,” in Advanced Photonics (2011), Paper IWF3, (Optical Society of America, 2011), p. IWF3.
[Crossref]

Ichikawa, J.

Jundt, D. H.

Kato, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
[Crossref]

Kikuchi, K.

Kip, D.

Kondou, K.

Kou, R.

Kurimura, S.

Kurz, J. R.

Langrock, C.

Lehmann, L.

L. Lehmann, P. Darré, H. Boulogne, L. Delage, L. Grossard, and F. Reynaud, “Multichannel spectral mode of the ALOHA up-conversion interferometer,” Mon. Notices Royal Astron. Soc. 477, 190–194 (2018).
[Crossref]

P. Darré, L. Lehmann, L. Grossard, L. Delage, and F. Reynaud, “Control of the coherence behavior in a SFG interferometer through the multipump phases command,” Opt. Express 26, 7098 (2018).
[Crossref] [PubMed]

Lengaigne, G.

E. Courjon, N. Courjal, W. Daniau, G. Lengaigne, L. Gauthier-Manuel, S. Ballandras, and J. Hauden, “Lamb wave transducers built on periodically poled Z-cut LiNbO3 wafers,” Eur. Phys. Journal: Appl. Phys. 102, 114107 (2007).

Lu, H.-H.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D: Appl. Phys. 44, 305101 (2011).
[Crossref]

Maillotte, H.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt. 18, 085503 (2016).
[Crossref]

Mancinelli, M.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Marsili, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Maruyama, M.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
[Crossref]

Mitra, P.

Mohseni, H.

C. L. Tan and H. Mohseni, “Emerging technologies for high performance infrared detectors,” Nanophotonics 7, 169–197 (2018).
[Crossref]

Molnar, R. J.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Najafi, F.

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Nakajima, H.

Pavesi, L.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Pêcheur, V.

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt. 18, 085503 (2016).
[Crossref]

Pedersen, C.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Piccione, S.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Quiring, V.

K.-D. F. Büchter, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Waveguide-based mid-infrared up-conversion detectors,” in Advanced Photonics (2011), Paper IWF3, (Optical Society of America, 2011), p. IWF3.
[Crossref]

Rauch, J.-Y.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D: Appl. Phys. 44, 305101 (2011).
[Crossref]

Reiff, K.

Reynaud, F.

P. Darré, L. Lehmann, L. Grossard, L. Delage, and F. Reynaud, “Control of the coherence behavior in a SFG interferometer through the multipump phases command,” Opt. Express 26, 7098 (2018).
[Crossref] [PubMed]

L. Lehmann, P. Darré, H. Boulogne, L. Delage, L. Grossard, and F. Reynaud, “Multichannel spectral mode of the ALOHA up-conversion interferometer,” Mon. Notices Royal Astron. Soc. 477, 190–194 (2018).
[Crossref]

Ricken, R.

K.-D. F. Büchter, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Waveguide-based mid-infrared up-conversion detectors,” in Advanced Photonics (2011), Paper IWF3, (Optical Society of America, 2011), p. IWF3.
[Crossref]

Rogalski, A.

A. Rogalski and K. Chrzanowski, “Infrared devices and techniques (revision),” Metrol. Meas. Syst.21 (2014).
[Crossref]

Roussev, R. V.

Rüter, C. E.

Sadani, B.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D: Appl. Phys. 44, 305101 (2011).
[Crossref]

Sohler, W.

K.-D. F. Büchter, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Waveguide-based mid-infrared up-conversion detectors,” in Advanced Photonics (2011), Paper IWF3, (Optical Society of America, 2011), p. IWF3.
[Crossref]

Sun, X.

Suntsov, S.

Tadanaga, O.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[Crossref]

Tan, C. L.

C. L. Tan and H. Mohseni, “Emerging technologies for high performance infrared detectors,” Nanophotonics 7, 169–197 (2018).
[Crossref]

Tanzilli, S.

Temporão, G.

Terasaki, A.

Tidemand-Lichtenberg, P.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Trenti, A.

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Ulliac, G.

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D: Appl. Phys. 44, 305101 (2011).
[Crossref]

Umeki, T.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[Crossref]

Usui, Y.

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
[Crossref]

Volk, M. F.

Yang, G.

Zbinden, H.

Appl. Phys. Lett. (1)

S. Kurimura, Y. Kato, M. Maruyama, Y. Usui, and H. Nakajima, “Quasi-phase-matched adhered ridge waveguide in LiNbO3,” Appl. Phys. Lett. 89, 191123 (2006).
[Crossref]

Eur. Phys. Journal: Appl. Phys. (1)

E. Courjon, N. Courjal, W. Daniau, G. Lengaigne, L. Gauthier-Manuel, S. Ballandras, and J. Hauden, “Lamb wave transducers built on periodically poled Z-cut LiNbO3 wafers,” Eur. Phys. Journal: Appl. Phys. 102, 114107 (2007).

IEEE J. Quantum Electron. (1)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[Crossref]

J. Opt. (1)

M. Chauvet, F. Henrot, F. Bassignot, F. Devaux, L. Gauthier-Manuel, V. Pêcheur, H. Maillotte, and B. Dahmani, “High efficiency frequency doubling in fully diced LiNbO3 ridge waveguides on silicon,” J. Opt. 18, 085503 (2016).
[Crossref]

J. Phys. D: Appl. Phys. (1)

N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, and M.-P. Bernal, “High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing,” J. Phys. D: Appl. Phys. 44, 305101 (2011).
[Crossref]

Mon. Notices Royal Astron. Soc. (1)

L. Lehmann, P. Darré, H. Boulogne, L. Delage, L. Grossard, and F. Reynaud, “Multichannel spectral mode of the ALOHA up-conversion interferometer,” Mon. Notices Royal Astron. Soc. 477, 190–194 (2018).
[Crossref]

Nano Lett. (1)

F. Marsili, F. Bellei, F. Najafi, A. E. Dane, E. A. Dauler, R. J. Molnar, and K. K. Berggren, “Efficient single photon detection from 500 nm to 5 μm wavelength,” Nano Lett. 12, 4799–4804 (2012).
[Crossref] [PubMed]

Nanophotonics (1)

C. L. Tan and H. Mohseni, “Emerging technologies for high performance infrared detectors,” Nanophotonics 7, 169–197 (2018).
[Crossref]

Nat. Commun. (1)

M. Mancinelli, A. Trenti, S. Piccione, G. Fontana, J. S. Dam, P. Tidemand-Lichtenberg, C. Pedersen, and L. Pavesi, “Mid-infrared coincidence measurements on twin photons at room temperature,” Nat. Commun. 8, 15184 (2017).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Other (2)

A. Rogalski and K. Chrzanowski, “Infrared devices and techniques (revision),” Metrol. Meas. Syst.21 (2014).
[Crossref]

K.-D. F. Büchter, H. Herrmann, R. Ricken, V. Quiring, and W. Sohler, “Waveguide-based mid-infrared up-conversion detectors,” in Advanced Photonics (2011), Paper IWF3, (Optical Society of America, 2011), p. IWF3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic waveguide cross section, (b) normalized horizontal and vertical TM00 mode profiles for 3390 nm signal and 810 nm SFG, (c) waveguide poling period versus signal wavelength and waveguide height L for SFG with a 1064 nm pump in a 8 μm wide ridge waveguide at 20 °C, (d) SEM image of a fabricated ridge.
Fig. 2
Fig. 2 Scheme of the experimental setup. Px: off axis parabola; L CaF2: CaF2 lens; Ox: microscope objectives; D: dichroic mirror (HR@1064 nm; AR@3.5 μm); ZFG SM fiber: ZBLAN fluoride glass single mode fiber; MM fiber: multimode fiber; M: mirror.
Fig. 3
Fig. 3 (a) Conversion spectrum of the SFG process. (b) Differential number of converted photons as a function of the temperature of the thermal source.
Fig. 4
Fig. 4 (a) Evolution of the Dark Count as a function of the pump power. (b) Evolution of the NEP as a function of the pump power. The theoretical NEP and the asymptote are derived from the DC fit shown in Fig. 4(a) and the measured detection efficiency.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ k = 2 π n s ν s c + 2 π n p ν p c 2 π n c ν c c 2 π Λ = 0 ,
η ( Δ k ) = N c N s = η nor P pump L 2 sinc 2 ( Δ k L 2 ) ,
η nor = 1 A eff ( 8 π 2 ν s ν c d eff 2 n s n p n c c 3 0 ) ,
η ( ν c ) = η nor P pump L 2 sinc 2 ( π ( ν c ν c 0 ) Δ ν c ) ,
DE = N / ( B 0 Δ ν c )
X ˜ ( f mod ) = 1 2 N TS . exp [ i ϕ 0 ] + 1 2 N chp . exp [ i ( ϕ 0 + π ) ]
Δ N = N TS N chp = 2 ( X ˜ ( f mod ) . exp [ i ϕ 0 ] ) .
Δ N th = DE Δ ν s ( B 0 TS B 0 chp ) / 4
Δ N th = DE Δ λ s Δ Ω Δ S λ s 4 h c [ L λ s ( T TS ) L λ s ( T chp ) ]
Δ N th = DE c Δ λ s 2 λ s 2 ( 1 exp [ h c λ s k B T TS ] 1 1 exp [ h c λ s k B T chp ] 1 ) ,
DE = T MIR η ( ν c 0 ) T NIR QE
NEP = h ν s DE 2 DC
= h ν s α P 2 ( a P 2 + b P + c )
P + h ν s 2 a α

Metrics