Abstract

We experimentally determined the dispersion of the complex third-order nonlinear optical susceptibility χ(3) of Au nanorods over a wide bandwidth (370 – 800 nm). Compared to bulk Au, these nanorods exhibit greatly enhanced nonlinearities that can be manipulated by geometrical parameters. Accurately measuring the χ(3) values of nanostructured metals is challenging because χ(3) is strongly influenced by the local field effects. Hence the current published χ(3) values for Au nanorods have huge variations in both magnitude and sign because Z-scan measurements are used almost exclusively. This work combines pump-probe methods with spectroscopic ellipsometry to show that Au nanorods exhibit strong wavelength dependence and enhanced χ(3) in the vicinity of the longitudinal plasmon mode and explains where the regions of SA and RSA exist and how focusing and defocusing affects χ(3). In this context, the results highlight the importance of the dispersion of the quantity χ(3) to design plasmonic platforms for nanophotonics applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Plasmonic enhancement of third-order nonlinear optical susceptibilities in self-doped Cu2-xS nanoparticles

Yasushi Hamanaka, Tatsunori Hirose, Kaoru Yamada, and Toshihiro Kuzuya
Opt. Mater. Express 6(12) 3838-3848 (2016)

Near-UV-enhanced broad-band large third-order optical nonlinearity in aluminum nanorod array film with sub-10 nm gaps

Zong-Wei Ma, Cheng Chi, Ying Yu, Zhi-Qiang Zhong, Lin-Hua Yao, Zhang-Kai Zhou, Xia Wang, Yi-Bo Han, and Jun-Bo Han
Opt. Express 24(5) 5387-5394 (2016)

Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal–glass composites

Yasushi Hamanaka, Arao Nakamura, Nobuhiro Hayashi, and Shigeaki Omi
J. Opt. Soc. Am. B 20(6) 1227-1232 (2003)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  3. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  4. A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29(12), 123002 (2017).
    [Crossref] [PubMed]
  5. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
    [Crossref]
  6. Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6(1), 317–328 (2017).
    [Crossref]
  7. X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, and H. Misawa, “Enhanced water splitting under modal strong coupling conditions,” Nat. Nanotechnol. 13(10), 953–958 (2018).
    [Crossref] [PubMed]
  8. B. Zhang, R. Sato, K. Oyoshi, H. Mamiya, M. Ohnuma, and Y. Takeda, “Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 447, 38–42 (2019).
    [Crossref]
  9. A. D. Neira, N. Olivier, M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Eliminating material constraints for nonlinearity with plasmonic metamaterials,” Nat. Commun. 6(1), 7757 (2015).
    [Crossref] [PubMed]
  10. J. Watt, S. Cheong, and R. D. Tilley, “How to control the shape of metal nanostructures in organic solution phase synthesis for plasmonics and catalysis,” Nano Today 8(2), 198–215 (2013).
    [Crossref]
  11. H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
    [Crossref] [PubMed]
  12. R. W. Boyd, Z. Shi, and I. De Leon, “The third-order nonlinear optical susceptibility of gold,” Opt. Commun. 326, 74–79 (2014).
    [Crossref]
  13. J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
    [Crossref]
  14. E. V. García-Ramírez, S. Almaguer-Valenzuela, O. Sánchez-Dena, O. Baldovino-Pantaleón, and J. A. Reyes-Esqueda, “Third-order nonlinear optical properties of colloidal Au nanorods systems: saturable and reverse-saturable absorption,” Opt. Express 24(2), A154–A167 (2016).
    [Crossref] [PubMed]
  15. H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
    [Crossref]
  16. Y.-H. Qiu, F. Nan, Y.-F. Zhang, J.-H. Wang, G.-Y. He, L. Zhou, and Q.-Q. Wang, “Size-dependent plasmon relaxation dynamics and saturable absorption in gold nanorods,” J. Phys. D 49(18), 185107 (2016).
    [Crossref]
  17. W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
    [Crossref]
  18. K. Yu, L. Polavarapu, and Q.-H. Xu, “Excitation wavelength and fluence dependent femtosecond transient absorption studies on electron dynamics of gold nanorods,” J. Phys. Chem. A 115(16), 3820–3826 (2011).
    [Crossref] [PubMed]
  19. L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114(11), 4934–4938 (2010).
    [Crossref]
  20. A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High yield seeded growth of monodispersed pentatwinned gold nanoparticles through thermally-induced seed twinning,” J. Am. Chem. Soc. 139(1), 107–110 (2017).
    [Crossref] [PubMed]
  21. Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-Visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
    [Crossref]
  22. E. C. Glor, R. C. Ferrier, C. Li, R. J. Composto, and Z. Fakhraai, “Out-of-plane orientation alignment and reorientation dynamics of gold nanorods in polymer nanocomposite films,” Soft Matter 13(11), 2207–2215 (2017).
    [Crossref] [PubMed]
  23. K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett. 35(10), 1560–1562 (2010).
    [Crossref] [PubMed]
  24. S. Cai, X. Xiao, X. Ye, W. Li, and C. Zheng, “Nonlinear optical and optical limiting properties of ultra-long gold nanowires,” Mater. Lett. 166, 51–54 (2016).
    [Crossref]
  25. R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117(11), 113101 (2015).
    [Crossref]
  26. X. Hou, N. Djellali, and B. Palpant, “Absorption of ultrashort laser pulses by plasmonic nanoparticles: not necessarily what you might think,” ACS Photonics 5(9), 3856–3863 (2018).
    [Crossref]
  27. R. Sato, S. Ishii, T. Nagao, M. Naito, and Y. Takeda, “Broadband plasmon resonance enhanced third-order optical nonlinearity in refractory titanium nitride nanostructures,” ACS Photonics 5(9), 3452–3458 (2018).
    [Crossref]
  28. Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composite,” J. Opt. Soc. Am. B 20(6), 1227–1232 (2003).
    [Crossref]
  29. X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
    [Crossref] [PubMed]

2019 (1)

B. Zhang, R. Sato, K. Oyoshi, H. Mamiya, M. Ohnuma, and Y. Takeda, “Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 447, 38–42 (2019).
[Crossref]

2018 (3)

X. Hou, N. Djellali, and B. Palpant, “Absorption of ultrashort laser pulses by plasmonic nanoparticles: not necessarily what you might think,” ACS Photonics 5(9), 3856–3863 (2018).
[Crossref]

R. Sato, S. Ishii, T. Nagao, M. Naito, and Y. Takeda, “Broadband plasmon resonance enhanced third-order optical nonlinearity in refractory titanium nitride nanostructures,” ACS Photonics 5(9), 3452–3458 (2018).
[Crossref]

X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, and H. Misawa, “Enhanced water splitting under modal strong coupling conditions,” Nat. Nanotechnol. 13(10), 953–958 (2018).
[Crossref] [PubMed]

2017 (4)

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High yield seeded growth of monodispersed pentatwinned gold nanoparticles through thermally-induced seed twinning,” J. Am. Chem. Soc. 139(1), 107–110 (2017).
[Crossref] [PubMed]

E. C. Glor, R. C. Ferrier, C. Li, R. J. Composto, and Z. Fakhraai, “Out-of-plane orientation alignment and reorientation dynamics of gold nanorods in polymer nanocomposite films,” Soft Matter 13(11), 2207–2215 (2017).
[Crossref] [PubMed]

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29(12), 123002 (2017).
[Crossref] [PubMed]

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6(1), 317–328 (2017).
[Crossref]

2016 (3)

Y.-H. Qiu, F. Nan, Y.-F. Zhang, J.-H. Wang, G.-Y. He, L. Zhou, and Q.-Q. Wang, “Size-dependent plasmon relaxation dynamics and saturable absorption in gold nanorods,” J. Phys. D 49(18), 185107 (2016).
[Crossref]

S. Cai, X. Xiao, X. Ye, W. Li, and C. Zheng, “Nonlinear optical and optical limiting properties of ultra-long gold nanowires,” Mater. Lett. 166, 51–54 (2016).
[Crossref]

E. V. García-Ramírez, S. Almaguer-Valenzuela, O. Sánchez-Dena, O. Baldovino-Pantaleón, and J. A. Reyes-Esqueda, “Third-order nonlinear optical properties of colloidal Au nanorods systems: saturable and reverse-saturable absorption,” Opt. Express 24(2), A154–A167 (2016).
[Crossref] [PubMed]

2015 (3)

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117(11), 113101 (2015).
[Crossref]

X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
[Crossref] [PubMed]

A. D. Neira, N. Olivier, M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Eliminating material constraints for nonlinearity with plasmonic metamaterials,” Nat. Commun. 6(1), 7757 (2015).
[Crossref] [PubMed]

2014 (2)

R. W. Boyd, Z. Shi, and I. De Leon, “The third-order nonlinear optical susceptibility of gold,” Opt. Commun. 326, 74–79 (2014).
[Crossref]

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-Visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

2013 (2)

J. Watt, S. Cheong, and R. D. Tilley, “How to control the shape of metal nanostructures in organic solution phase synthesis for plasmonics and catalysis,” Nano Today 8(2), 198–215 (2013).
[Crossref]

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

2012 (2)

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

2011 (1)

K. Yu, L. Polavarapu, and Q.-H. Xu, “Excitation wavelength and fluence dependent femtosecond transient absorption studies on electron dynamics of gold nanorods,” J. Phys. Chem. A 115(16), 3820–3826 (2011).
[Crossref] [PubMed]

2010 (3)

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114(11), 4934–4938 (2010).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

K. Wang, H. Long, M. Fu, G. Yang, and P. Lu, “Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array,” Opt. Lett. 35(10), 1560–1562 (2010).
[Crossref] [PubMed]

2009 (1)

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

2008 (1)

W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
[Crossref]

2006 (1)

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

2005 (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

2003 (1)

Akozbek, N.

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-Visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Almaguer-Valenzuela, S.

Altantzis, T.

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High yield seeded growth of monodispersed pentatwinned gold nanoparticles through thermally-induced seed twinning,” J. Am. Chem. Soc. 139(1), 107–110 (2017).
[Crossref] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Baldovino-Pantaleón, O.

Bals, S.

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High yield seeded growth of monodispersed pentatwinned gold nanoparticles through thermally-induced seed twinning,” J. Am. Chem. Soc. 139(1), 107–110 (2017).
[Crossref] [PubMed]

Boyd, R. W.

R. W. Boyd, Z. Shi, and I. De Leon, “The third-order nonlinear optical susceptibility of gold,” Opt. Commun. 326, 74–79 (2014).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Brown, A. S.

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-Visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Cai, S.

S. Cai, X. Xiao, X. Ye, W. Li, and C. Zheng, “Nonlinear optical and optical limiting properties of ultra-long gold nanowires,” Mater. Lett. 166, 51–54 (2016).
[Crossref]

Chang, W.-S.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114(11), 4934–4938 (2010).
[Crossref]

Chen, H.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Cheong, S.

J. Watt, S. Cheong, and R. D. Tilley, “How to control the shape of metal nanostructures in organic solution phase synthesis for plasmonics and catalysis,” Nano Today 8(2), 198–215 (2013).
[Crossref]

Chu, S.-W.

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6(1), 317–328 (2017).
[Crossref]

Composto, R. J.

E. C. Glor, R. C. Ferrier, C. Li, R. J. Composto, and Z. Fakhraai, “Out-of-plane orientation alignment and reorientation dynamics of gold nanorods in polymer nanocomposite films,” Soft Matter 13(11), 2207–2215 (2017).
[Crossref] [PubMed]

Crut, A.

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29(12), 123002 (2017).
[Crossref] [PubMed]

De Leon, I.

R. W. Boyd, Z. Shi, and I. De Leon, “The third-order nonlinear optical susceptibility of gold,” Opt. Commun. 326, 74–79 (2014).
[Crossref]

Del Fatti, N.

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29(12), 123002 (2017).
[Crossref] [PubMed]

Dickson, W.

A. D. Neira, N. Olivier, M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Eliminating material constraints for nonlinearity with plasmonic metamaterials,” Nat. Commun. 6(1), 7757 (2015).
[Crossref] [PubMed]

Djellali, N.

X. Hou, N. Djellali, and B. Palpant, “Absorption of ultrashort laser pulses by plasmonic nanoparticles: not necessarily what you might think,” ACS Photonics 5(9), 3856–3863 (2018).
[Crossref]

Elim, H. I.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Everitt, H. O.

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-Visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Fakhraai, Z.

E. C. Glor, R. C. Ferrier, C. Li, R. J. Composto, and Z. Fakhraai, “Out-of-plane orientation alignment and reorientation dynamics of gold nanorods in polymer nanocomposite films,” Soft Matter 13(11), 2207–2215 (2017).
[Crossref] [PubMed]

Ferrier, R. C.

E. C. Glor, R. C. Ferrier, C. Li, R. J. Composto, and Z. Fakhraai, “Out-of-plane orientation alignment and reorientation dynamics of gold nanorods in polymer nanocomposite films,” Soft Matter 13(11), 2207–2215 (2017).
[Crossref] [PubMed]

Fu, M.

García-Ramírez, E. V.

Glor, E. C.

E. C. Glor, R. C. Ferrier, C. Li, R. J. Composto, and Z. Fakhraai, “Out-of-plane orientation alignment and reorientation dynamics of gold nanorods in polymer nanocomposite films,” Soft Matter 13(11), 2207–2215 (2017).
[Crossref] [PubMed]

Gonzalo, J.

X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
[Crossref] [PubMed]

Gordel, M.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Grzelczak, M.

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High yield seeded growth of monodispersed pentatwinned gold nanoparticles through thermally-induced seed twinning,” J. Am. Chem. Soc. 139(1), 107–110 (2017).
[Crossref] [PubMed]

Hamanaka, Y.

Hayashi, N.

He, G.-Y.

Y.-H. Qiu, F. Nan, Y.-F. Zhang, J.-H. Wang, G.-Y. He, L. Zhou, and Q.-Q. Wang, “Size-dependent plasmon relaxation dynamics and saturable absorption in gold nanorods,” J. Phys. D 49(18), 185107 (2016).
[Crossref]

Hou, X.

X. Hou, N. Djellali, and B. Palpant, “Absorption of ultrashort laser pulses by plasmonic nanoparticles: not necessarily what you might think,” ACS Photonics 5(9), 3856–3863 (2018).
[Crossref]

W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
[Crossref]

Ishii, S.

R. Sato, S. Ishii, T. Nagao, M. Naito, and Y. Takeda, “Broadband plasmon resonance enhanced third-order optical nonlinearity in refractory titanium nitride nanostructures,” ACS Photonics 5(9), 3452–3458 (2018).
[Crossref]

Ji, W.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Khanal, B. P.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114(11), 4934–4938 (2010).
[Crossref]

Kim, T.-H.

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-Visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Kolkowski, R.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Lee, J.-Y.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Li, C.

E. C. Glor, R. C. Ferrier, C. Li, R. J. Composto, and Z. Fakhraai, “Out-of-plane orientation alignment and reorientation dynamics of gold nanorods in polymer nanocomposite films,” Soft Matter 13(11), 2207–2215 (2017).
[Crossref] [PubMed]

Li, Q.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Li, W.

S. Cai, X. Xiao, X. Ye, W. Li, and C. Zheng, “Nonlinear optical and optical limiting properties of ultra-long gold nanowires,” Mater. Lett. 166, 51–54 (2016).
[Crossref]

Link, S.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114(11), 4934–4938 (2010).
[Crossref]

Liu, H.

W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
[Crossref]

Liz-Marzán, L. M.

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High yield seeded growth of monodispersed pentatwinned gold nanoparticles through thermally-induced seed twinning,” J. Am. Chem. Soc. 139(1), 107–110 (2017).
[Crossref] [PubMed]

Long, H.

Losurdo, M.

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-Visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Lu, P.

MacDonald, K. F.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Maioli, P.

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29(12), 123002 (2017).
[Crossref] [PubMed]

Mamiya, H.

B. Zhang, R. Sato, K. Oyoshi, H. Mamiya, M. Ohnuma, and Y. Takeda, “Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 447, 38–42 (2019).
[Crossref]

Matczyszyn, K.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Mi, J.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Misawa, H.

X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, and H. Misawa, “Enhanced water splitting under modal strong coupling conditions,” Nat. Nanotechnol. 13(10), 953–958 (2018).
[Crossref] [PubMed]

Morea, R.

X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
[Crossref] [PubMed]

Moreno, F.

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-Visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Nagao, T.

R. Sato, S. Ishii, T. Nagao, M. Naito, and Y. Takeda, “Broadband plasmon resonance enhanced third-order optical nonlinearity in refractory titanium nitride nanostructures,” ACS Photonics 5(9), 3452–3458 (2018).
[Crossref]

Naito, M.

R. Sato, S. Ishii, T. Nagao, M. Naito, and Y. Takeda, “Broadband plasmon resonance enhanced third-order optical nonlinearity in refractory titanium nitride nanostructures,” ACS Photonics 5(9), 3452–3458 (2018).
[Crossref]

Nakamura, A.

Nan, F.

Y.-H. Qiu, F. Nan, Y.-F. Zhang, J.-H. Wang, G.-Y. He, L. Zhou, and Q.-Q. Wang, “Size-dependent plasmon relaxation dynamics and saturable absorption in gold nanorods,” J. Phys. D 49(18), 185107 (2016).
[Crossref]

Nasir, M. E.

A. D. Neira, N. Olivier, M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Eliminating material constraints for nonlinearity with plasmonic metamaterials,” Nat. Commun. 6(1), 7757 (2015).
[Crossref] [PubMed]

Neira, A. D.

A. D. Neira, N. Olivier, M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Eliminating material constraints for nonlinearity with plasmonic metamaterials,” Nat. Commun. 6(1), 7757 (2015).
[Crossref] [PubMed]

Ohnuma, M.

B. Zhang, R. Sato, K. Oyoshi, H. Mamiya, M. Ohnuma, and Y. Takeda, “Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 447, 38–42 (2019).
[Crossref]

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117(11), 113101 (2015).
[Crossref]

Olesiak-Banska, J.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Olivier, N.

A. D. Neira, N. Olivier, M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Eliminating material constraints for nonlinearity with plasmonic metamaterials,” Nat. Commun. 6(1), 7757 (2015).
[Crossref] [PubMed]

Omi, S.

Oshikiri, T.

X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, and H. Misawa, “Enhanced water splitting under modal strong coupling conditions,” Nat. Nanotechnol. 13(10), 953–958 (2018).
[Crossref] [PubMed]

Oyoshi, K.

B. Zhang, R. Sato, K. Oyoshi, H. Mamiya, M. Ohnuma, and Y. Takeda, “Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 447, 38–42 (2019).
[Crossref]

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117(11), 113101 (2015).
[Crossref]

Palpant, B.

X. Hou, N. Djellali, and B. Palpant, “Absorption of ultrashort laser pulses by plasmonic nanoparticles: not necessarily what you might think,” ACS Photonics 5(9), 3856–3863 (2018).
[Crossref]

X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
[Crossref] [PubMed]

Polavarapu, L.

K. Yu, L. Polavarapu, and Q.-H. Xu, “Excitation wavelength and fluence dependent femtosecond transient absorption studies on electron dynamics of gold nanorods,” J. Phys. Chem. A 115(16), 3820–3826 (2011).
[Crossref] [PubMed]

Qiu, Y.-H.

Y.-H. Qiu, F. Nan, Y.-F. Zhang, J.-H. Wang, G.-Y. He, L. Zhou, and Q.-Q. Wang, “Size-dependent plasmon relaxation dynamics and saturable absorption in gold nanorods,” J. Phys. D 49(18), 185107 (2016).
[Crossref]

Reyes-Esqueda, J. A.

Samoc, M.

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

Sámson, Z. L.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Sánchez-Dena, O.

Sánchez-Iglesias, A.

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High yield seeded growth of monodispersed pentatwinned gold nanoparticles through thermally-induced seed twinning,” J. Am. Chem. Soc. 139(1), 107–110 (2017).
[Crossref] [PubMed]

Sanz, J. M.

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-Visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Sasaki, K.

X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, and H. Misawa, “Enhanced water splitting under modal strong coupling conditions,” Nat. Nanotechnol. 13(10), 953–958 (2018).
[Crossref] [PubMed]

Sato, R.

B. Zhang, R. Sato, K. Oyoshi, H. Mamiya, M. Ohnuma, and Y. Takeda, “Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 447, 38–42 (2019).
[Crossref]

R. Sato, S. Ishii, T. Nagao, M. Naito, and Y. Takeda, “Broadband plasmon resonance enhanced third-order optical nonlinearity in refractory titanium nitride nanostructures,” ACS Photonics 5(9), 3452–3458 (2018).
[Crossref]

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117(11), 113101 (2015).
[Crossref]

Shao, L.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Shi, X.

X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, and H. Misawa, “Enhanced water splitting under modal strong coupling conditions,” Nat. Nanotechnol. 13(10), 953–958 (2018).
[Crossref] [PubMed]

Shi, Z.

R. W. Boyd, Z. Shi, and I. De Leon, “The third-order nonlinear optical susceptibility of gold,” Opt. Commun. 326, 74–79 (2014).
[Crossref]

Si, J.

W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
[Crossref]

Sivan, Y.

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6(1), 317–328 (2017).
[Crossref]

Slaughter, L. S.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114(11), 4934–4938 (2010).
[Crossref]

Stockman, M. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Sun, Q.

X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, and H. Misawa, “Enhanced water splitting under modal strong coupling conditions,” Nat. Nanotechnol. 13(10), 953–958 (2018).
[Crossref] [PubMed]

Swanglap, P.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114(11), 4934–4938 (2010).
[Crossref]

Takeda, Y.

B. Zhang, R. Sato, K. Oyoshi, H. Mamiya, M. Ohnuma, and Y. Takeda, “Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 447, 38–42 (2019).
[Crossref]

R. Sato, S. Ishii, T. Nagao, M. Naito, and Y. Takeda, “Broadband plasmon resonance enhanced third-order optical nonlinearity in refractory titanium nitride nanostructures,” ACS Photonics 5(9), 3452–3458 (2018).
[Crossref]

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117(11), 113101 (2015).
[Crossref]

Tan, W.

W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
[Crossref]

Tcherniak, A.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114(11), 4934–4938 (2010).
[Crossref]

Tilley, R. D.

J. Watt, S. Cheong, and R. D. Tilley, “How to control the shape of metal nanostructures in organic solution phase synthesis for plasmonics and catalysis,” Nano Today 8(2), 198–215 (2013).
[Crossref]

Ueno, K.

X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, and H. Misawa, “Enhanced water splitting under modal strong coupling conditions,” Nat. Nanotechnol. 13(10), 953–958 (2018).
[Crossref] [PubMed]

Vallée, F.

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29(12), 123002 (2017).
[Crossref] [PubMed]

Wang, J.

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

Wang, J.-H.

Y.-H. Qiu, F. Nan, Y.-F. Zhang, J.-H. Wang, G.-Y. He, L. Zhou, and Q.-Q. Wang, “Size-dependent plasmon relaxation dynamics and saturable absorption in gold nanorods,” J. Phys. D 49(18), 185107 (2016).
[Crossref]

Wang, K.

Wang, Q.-Q.

Y.-H. Qiu, F. Nan, Y.-F. Zhang, J.-H. Wang, G.-Y. He, L. Zhou, and Q.-Q. Wang, “Size-dependent plasmon relaxation dynamics and saturable absorption in gold nanorods,” J. Phys. D 49(18), 185107 (2016).
[Crossref]

Wang, X.

X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
[Crossref] [PubMed]

Watt, J.

J. Watt, S. Cheong, and R. D. Tilley, “How to control the shape of metal nanostructures in organic solution phase synthesis for plasmonics and catalysis,” Nano Today 8(2), 198–215 (2013).
[Crossref]

Winckelmans, N.

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High yield seeded growth of monodispersed pentatwinned gold nanoparticles through thermally-induced seed twinning,” J. Am. Chem. Soc. 139(1), 107–110 (2017).
[Crossref] [PubMed]

Wurtz, G. A.

A. D. Neira, N. Olivier, M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Eliminating material constraints for nonlinearity with plasmonic metamaterials,” Nat. Commun. 6(1), 7757 (2015).
[Crossref] [PubMed]

Xiao, X.

S. Cai, X. Xiao, X. Ye, W. Li, and C. Zheng, “Nonlinear optical and optical limiting properties of ultra-long gold nanowires,” Mater. Lett. 166, 51–54 (2016).
[Crossref]

Xu, Q.-H.

K. Yu, L. Polavarapu, and Q.-H. Xu, “Excitation wavelength and fluence dependent femtosecond transient absorption studies on electron dynamics of gold nanorods,” J. Phys. Chem. A 115(16), 3820–3826 (2011).
[Crossref] [PubMed]

Yang, G.

Yang, J.

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

Yang, Y.

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-Visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Ye, X.

S. Cai, X. Xiao, X. Ye, W. Li, and C. Zheng, “Nonlinear optical and optical limiting properties of ultra-long gold nanowires,” Mater. Lett. 166, 51–54 (2016).
[Crossref]

Yu, K.

K. Yu, L. Polavarapu, and Q.-H. Xu, “Excitation wavelength and fluence dependent femtosecond transient absorption studies on electron dynamics of gold nanorods,” J. Phys. Chem. A 115(16), 3820–3826 (2011).
[Crossref] [PubMed]

Zayats, A. V.

A. D. Neira, N. Olivier, M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Eliminating material constraints for nonlinearity with plasmonic metamaterials,” Nat. Commun. 6(1), 7757 (2015).
[Crossref] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zhang, B.

B. Zhang, R. Sato, K. Oyoshi, H. Mamiya, M. Ohnuma, and Y. Takeda, “Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 447, 38–42 (2019).
[Crossref]

Zhang, Y.-F.

Y.-H. Qiu, F. Nan, Y.-F. Zhang, J.-H. Wang, G.-Y. He, L. Zhou, and Q.-Q. Wang, “Size-dependent plasmon relaxation dynamics and saturable absorption in gold nanorods,” J. Phys. D 49(18), 185107 (2016).
[Crossref]

Zheludev, N. I.

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

Zheng, C.

S. Cai, X. Xiao, X. Ye, W. Li, and C. Zheng, “Nonlinear optical and optical limiting properties of ultra-long gold nanowires,” Mater. Lett. 166, 51–54 (2016).
[Crossref]

Zhou, L.

Y.-H. Qiu, F. Nan, Y.-F. Zhang, J.-H. Wang, G.-Y. He, L. Zhou, and Q.-Q. Wang, “Size-dependent plasmon relaxation dynamics and saturable absorption in gold nanorods,” J. Phys. D 49(18), 185107 (2016).
[Crossref]

Zubarev, E. R.

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114(11), 4934–4938 (2010).
[Crossref]

ACS Photonics (3)

Y. Yang, N. Akozbek, T.-H. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet-Visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

X. Hou, N. Djellali, and B. Palpant, “Absorption of ultrashort laser pulses by plasmonic nanoparticles: not necessarily what you might think,” ACS Photonics 5(9), 3856–3863 (2018).
[Crossref]

R. Sato, S. Ishii, T. Nagao, M. Naito, and Y. Takeda, “Broadband plasmon resonance enhanced third-order optical nonlinearity in refractory titanium nitride nanostructures,” ACS Photonics 5(9), 3452–3458 (2018).
[Crossref]

Appl. Phys. Lett. (2)

H. I. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88(8), 083107 (2006).
[Crossref]

W. Tan, H. Liu, J. Si, and X. Hou, “Control of the gated spectra with narrow bandwidth from a supercontinuum using ultrafast optical Kerr gate of bismuth glass,” Appl. Phys. Lett. 93(5), 051109 (2008).
[Crossref]

Chem. Soc. Rev. (1)

H. Chen, L. Shao, Q. Li, and J. Wang, “Gold nanorods and their plasmonic properties,” Chem. Soc. Rev. 42(7), 2679–2724 (2013).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

A. Sánchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, and L. M. Liz-Marzán, “High yield seeded growth of monodispersed pentatwinned gold nanoparticles through thermally-induced seed twinning,” J. Am. Chem. Soc. 139(1), 107–110 (2017).
[Crossref] [PubMed]

J. Appl. Phys. (2)

R. Sato, M. Ohnuma, K. Oyoshi, and Y. Takeda, “Spectral investigation of nonlinear local field effects in Ag nanoparticles,” J. Appl. Phys. 117(11), 113101 (2015).
[Crossref]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

K. Yu, L. Polavarapu, and Q.-H. Xu, “Excitation wavelength and fluence dependent femtosecond transient absorption studies on electron dynamics of gold nanorods,” J. Phys. Chem. A 115(16), 3820–3826 (2011).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

L. S. Slaughter, W.-S. Chang, P. Swanglap, A. Tcherniak, B. P. Khanal, E. R. Zubarev, and S. Link, “Single-particle spectroscopy of gold nanorods beyond the quasi-static limit: Varying the width at constant aspect ratio,” J. Phys. Chem. C 114(11), 4934–4938 (2010).
[Crossref]

J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, and M. Samoc, “Third-order nonlinear optical properties of colloidal gold nanorods,” J. Phys. Chem. C 116(25), 13731–13737 (2012).
[Crossref]

J. Phys. Condens. Matter (1)

A. Crut, P. Maioli, F. Vallée, and N. Del Fatti, “Linear and ultrafast nonlinear plasmonics of single nano-objects,” J. Phys. Condens. Matter 29(12), 123002 (2017).
[Crossref] [PubMed]

J. Phys. D (1)

Y.-H. Qiu, F. Nan, Y.-F. Zhang, J.-H. Wang, G.-Y. He, L. Zhou, and Q.-Q. Wang, “Size-dependent plasmon relaxation dynamics and saturable absorption in gold nanorods,” J. Phys. D 49(18), 185107 (2016).
[Crossref]

Mater. Lett. (1)

S. Cai, X. Xiao, X. Ye, W. Li, and C. Zheng, “Nonlinear optical and optical limiting properties of ultra-long gold nanowires,” Mater. Lett. 166, 51–54 (2016).
[Crossref]

Nano Lett. (1)

X. Wang, R. Morea, J. Gonzalo, and B. Palpant, “Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles,” Nano Lett. 15(4), 2633–2639 (2015).
[Crossref] [PubMed]

Nano Today (1)

J. Watt, S. Cheong, and R. D. Tilley, “How to control the shape of metal nanostructures in organic solution phase synthesis for plasmonics and catalysis,” Nano Today 8(2), 198–215 (2013).
[Crossref]

Nanophotonics (1)

Y. Sivan and S.-W. Chu, “Nonlinear plasmonics at high temperatures,” Nanophotonics 6(1), 317–328 (2017).
[Crossref]

Nat. Commun. (1)

A. D. Neira, N. Olivier, M. E. Nasir, W. Dickson, G. A. Wurtz, and A. V. Zayats, “Eliminating material constraints for nonlinearity with plasmonic metamaterials,” Nat. Commun. 6(1), 7757 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

X. Shi, K. Ueno, T. Oshikiri, Q. Sun, K. Sasaki, and H. Misawa, “Enhanced water splitting under modal strong coupling conditions,” Nat. Nanotechnol. 13(10), 953–958 (2018).
[Crossref] [PubMed]

Nat. Photonics (3)

K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonic beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

B. Zhang, R. Sato, K. Oyoshi, H. Mamiya, M. Ohnuma, and Y. Takeda, “Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 447, 38–42 (2019).
[Crossref]

Opt. Commun. (1)

R. W. Boyd, Z. Shi, and I. De Leon, “The third-order nonlinear optical susceptibility of gold,” Opt. Commun. 326, 74–79 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Soft Matter (1)

E. C. Glor, R. C. Ferrier, C. Li, R. J. Composto, and Z. Fakhraai, “Out-of-plane orientation alignment and reorientation dynamics of gold nanorods in polymer nanocomposite films,” Soft Matter 13(11), 2207–2215 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) A TEM image of the Au nanorods with a scale bar of 40 nm. Histograms of the (b) length and (c) width of the Au nanorods.
Fig. 2
Fig. 2 (a) Experimental and calculated extinction spectra and the (b) dielectric function of the Au nanorods embedded in PVA film.
Fig. 3
Fig. 3 (a) Comparison of the steady-state extinction of Au nanorods versus the transient transmission changes at peak power of 3.4 GW/cm2. (b) The pump power dependence in the vicinity of the L mode and T mode. Inset: Pump power dependence at 770 nm up to 8 GW/cm2.
Fig. 4
Fig. 4 The third-order susceptibility of the Au nanorods embedded in PVA film.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δε( ω )=¾ χ (3) ( ω )I

Metrics