Abstract

A cavity ringdown system for probing the spatial variation of optical loss across high-reflectivity mirrors is described. This system is employed to examine substrate-transferred crystalline supermirrors and to quantify the effect of manufacturing process imperfections. Excellent agreement is observed between the ringdown-generated spatial measurements and differential interference contrast microscopy images. A 2-mm diameter ringdown scan in the center of a crystalline supermirror reveals highly uniform coating properties with excess loss variations below 1 ppm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-performance near- and mid-infrared crystalline coatings

Garrett D. Cole, Wei Zhang, Bryce J. Bjork, David Follman, Paula Heu, Christoph Deutsch, Lindsay Sonderhouse, John Robinson, Chris Franz, Alexei Alexandrovski, Mark Notcutt, Oliver H. Heckl, Jun Ye, and Markus Aspelmeyer
Optica 3(6) 647-656 (2016)

Characterization of thin-film losses with a synchronously pumped ringdown cavity

Georgiy Vaschenko, Yogesh Godwal, Carmen S. Menoni, Claude Montcalm, Richard Blacker, and Daniel Siegfried
Appl. Opt. 42(22) 4584-4589 (2003)

Measurement of ultralow supermirror birefringence by use of the polarimetric differential cavity ringdown technique

Jae Yong Lee, Hai-Woong Lee, Jae Wan Kim, Yong Shim Yoo, and Jae Won Hahn
Appl. Opt. 39(12) 1941-1945 (2000)

References

  • View by:
  • |
  • |
  • |

  1. G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
    [Crossref]
  2. G. Harry, T. P. Bodiya, and R. DeSalvo, eds., Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University, 2012).
  3. T. Kessler, T. Legero, and U. Sterr, “Thermal noise in optical cavities revisited,” J. Opt. Soc. Am. B 29(1), 178–184 (2012).
    [Crossref]
  4. J. M. Robinson, E. Oelker, W. R. Milner, W. Zhang, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Crystalline optical cavity at 4 K with thermal-noise-limited instability and ultralow drift,” Optica 6(2), 240–243 (2019).
    [Crossref]
  5. K. U. Schreiber and J.-P. R. Wells, “Invited Review Article: Large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84(4), 041101 (2013).
    [Crossref]
  6. C. L. Anyi, R. J. Thirkettle, D. Zou, D. Follman, G. D. Cole, K. U. Schreiber, and J.-P. R. Wells, “The Macek and Davis experiment revisited: a large ring laser interferometer operating on the 2s2 -> 2p4 transition of neon,” Appl. Opt. 58(2), 302–307 (2019).
    [Crossref]
  7. The LIGO Scientific Collaboration and The Virgo Collaboration, “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119(16), 161101 (2017).
    [Crossref]
  8. V. P. Mitrofanov, S. Chao, H.-W. Pan, L.-C. Kuo, G. Cole, J. Degallaix, and B. Willke, “Technology for the next gravitational wave detectors,” Sci. China: Phys., Mech. Astron. 58(12), 120404 (2015).
    [Crossref]
  9. G. D. Cole, W. Zhang, B. J. Bjork, D. Follman, P. Heu, C. Deutsch, L. Sonderhouse, J. Robinson, C. Franz, A. Alexandrovski, M. Notcutt, O. H. Heckl, J. Ye, and M. Aspelmeyer, “High-performance near- and mid-infrared crystalline coatings,” Optica 3(6), 647–656 (2016).
    [Crossref]
  10. M. Marchiò, R. Flaminio, L. Pinard, D. Forest, C. Deutsch, P. Heu, D. Follman, and G. D. Cole, “Optical performance of large-area crystalline coatings,” Opt. Express 26(5), 6114–6125 (2018).
    [Crossref]
  11. H. Cui, B. Li, S. Xiao, Y. Han, J. Wang, C. Gao, and Y. Wang, “Simultaneous mapping of reflectance, transmittance and optical loss of highly reflective and anti-reflective coatings with two-channel cavity ring-down technique,” Opt. Express 25(5), 5807–5820 (2017).
    [Crossref]
  12. Y. Han, B. Li, G. Lifeng, and S. Xiong, “Reflectivity mapping of large-aperture mirrors with cavity ringdown technique,” Appl. Opt. 56(4), C35–C40 (2017).
    [Crossref]
  13. Z. Tan, K. Yang, X. Long, Y. Zhang, and H.-P. Loock, “Spatial coating inhomogeneity of highly reflective mirrors determined by cavity ringdown measurements,” Appl. Opt. 53(13), 2917–2923 (2014).
    [Crossref]
  14. B. Dahmani, L. Hollberg, and R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12(11), 876–878 (1987).
    [Crossref]
  15. Y. Zhao, Q. Wang, F. Meng, Y. Lin, S. Wang, Y. Li, B. Lin, S. Cao, J. Cao, Z. Fang, T. Li, and E. Zang, “High-finesse cavity external optical feedback DFB laser with hertz relative linewidth,” Opt. Lett. 37(22), 4729–4731 (2012).
    [Crossref]
  16. J. Steinlechner, I. W. Martin, A. Bell, G. Cole, J. Hough, S. Penn, S. Rowan, and S. Steinlechner, “Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 µm,” Classical Quantum Gravity 32(10), 105008 (2015).
    [Crossref]
  17. A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” in Solid State Lasers XVIII: Technology and Devices (International Society for Optics and Photonics, 2009), Vol. 7193, p. 71930D.
  18. G.-W. Truong, “Digital delay generator/gate based on the Teensy microcontroller,” https://github.com/geedubs/teensytrigger.
  19. K. Fujiwara, K. Kanamoto, Y. N. Ohta, Y. Tokuda, and T. Nakayama, “Classification and origins of GaAs oval defects grown by molecular beam epitaxy,” J. Cryst. Growth 80(1), 104–112 (1987).
    [Crossref]

2019 (2)

2018 (1)

2017 (3)

2016 (1)

2015 (2)

V. P. Mitrofanov, S. Chao, H.-W. Pan, L.-C. Kuo, G. Cole, J. Degallaix, and B. Willke, “Technology for the next gravitational wave detectors,” Sci. China: Phys., Mech. Astron. 58(12), 120404 (2015).
[Crossref]

J. Steinlechner, I. W. Martin, A. Bell, G. Cole, J. Hough, S. Penn, S. Rowan, and S. Steinlechner, “Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 µm,” Classical Quantum Gravity 32(10), 105008 (2015).
[Crossref]

2014 (1)

2013 (2)

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

K. U. Schreiber and J.-P. R. Wells, “Invited Review Article: Large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84(4), 041101 (2013).
[Crossref]

2012 (2)

1987 (2)

K. Fujiwara, K. Kanamoto, Y. N. Ohta, Y. Tokuda, and T. Nakayama, “Classification and origins of GaAs oval defects grown by molecular beam epitaxy,” J. Cryst. Growth 80(1), 104–112 (1987).
[Crossref]

B. Dahmani, L. Hollberg, and R. Drullinger, “Frequency stabilization of semiconductor lasers by resonant optical feedback,” Opt. Lett. 12(11), 876–878 (1987).
[Crossref]

Alexandrovski, A.

G. D. Cole, W. Zhang, B. J. Bjork, D. Follman, P. Heu, C. Deutsch, L. Sonderhouse, J. Robinson, C. Franz, A. Alexandrovski, M. Notcutt, O. H. Heckl, J. Ye, and M. Aspelmeyer, “High-performance near- and mid-infrared crystalline coatings,” Optica 3(6), 647–656 (2016).
[Crossref]

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” in Solid State Lasers XVIII: Technology and Devices (International Society for Optics and Photonics, 2009), Vol. 7193, p. 71930D.

Anyi, C. L.

Aspelmeyer, M.

Bell, A.

J. Steinlechner, I. W. Martin, A. Bell, G. Cole, J. Hough, S. Penn, S. Rowan, and S. Steinlechner, “Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 µm,” Classical Quantum Gravity 32(10), 105008 (2015).
[Crossref]

Bjork, B. J.

Cao, J.

Cao, S.

Chao, S.

V. P. Mitrofanov, S. Chao, H.-W. Pan, L.-C. Kuo, G. Cole, J. Degallaix, and B. Willke, “Technology for the next gravitational wave detectors,” Sci. China: Phys., Mech. Astron. 58(12), 120404 (2015).
[Crossref]

Cole, G.

J. Steinlechner, I. W. Martin, A. Bell, G. Cole, J. Hough, S. Penn, S. Rowan, and S. Steinlechner, “Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 µm,” Classical Quantum Gravity 32(10), 105008 (2015).
[Crossref]

V. P. Mitrofanov, S. Chao, H.-W. Pan, L.-C. Kuo, G. Cole, J. Degallaix, and B. Willke, “Technology for the next gravitational wave detectors,” Sci. China: Phys., Mech. Astron. 58(12), 120404 (2015).
[Crossref]

Cole, G. D.

Cui, H.

Dahmani, B.

Degallaix, J.

V. P. Mitrofanov, S. Chao, H.-W. Pan, L.-C. Kuo, G. Cole, J. Degallaix, and B. Willke, “Technology for the next gravitational wave detectors,” Sci. China: Phys., Mech. Astron. 58(12), 120404 (2015).
[Crossref]

Deutsch, C.

Drullinger, R.

Fang, Z.

Fejer, M.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” in Solid State Lasers XVIII: Technology and Devices (International Society for Optics and Photonics, 2009), Vol. 7193, p. 71930D.

Flaminio, R.

Follman, D.

Forest, D.

Franz, C.

Fujiwara, K.

K. Fujiwara, K. Kanamoto, Y. N. Ohta, Y. Tokuda, and T. Nakayama, “Classification and origins of GaAs oval defects grown by molecular beam epitaxy,” J. Cryst. Growth 80(1), 104–112 (1987).
[Crossref]

Gao, C.

Han, Y.

Heckl, O. H.

Heu, P.

Hollberg, L.

Hough, J.

J. Steinlechner, I. W. Martin, A. Bell, G. Cole, J. Hough, S. Penn, S. Rowan, and S. Steinlechner, “Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 µm,” Classical Quantum Gravity 32(10), 105008 (2015).
[Crossref]

Kanamoto, K.

K. Fujiwara, K. Kanamoto, Y. N. Ohta, Y. Tokuda, and T. Nakayama, “Classification and origins of GaAs oval defects grown by molecular beam epitaxy,” J. Cryst. Growth 80(1), 104–112 (1987).
[Crossref]

Kessler, T.

Kuo, L.-C.

V. P. Mitrofanov, S. Chao, H.-W. Pan, L.-C. Kuo, G. Cole, J. Degallaix, and B. Willke, “Technology for the next gravitational wave detectors,” Sci. China: Phys., Mech. Astron. 58(12), 120404 (2015).
[Crossref]

Legero, T.

Li, B.

Li, T.

Li, Y.

Lifeng, G.

Lin, B.

Lin, Y.

Long, X.

Loock, H.-P.

Marchiò, M.

Markosian, A.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” in Solid State Lasers XVIII: Technology and Devices (International Society for Optics and Photonics, 2009), Vol. 7193, p. 71930D.

Martin, I. W.

J. Steinlechner, I. W. Martin, A. Bell, G. Cole, J. Hough, S. Penn, S. Rowan, and S. Steinlechner, “Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 µm,” Classical Quantum Gravity 32(10), 105008 (2015).
[Crossref]

Martin, M. J.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Matei, D. G.

Meng, F.

Milner, W. R.

Mitrofanov, V. P.

V. P. Mitrofanov, S. Chao, H.-W. Pan, L.-C. Kuo, G. Cole, J. Degallaix, and B. Willke, “Technology for the next gravitational wave detectors,” Sci. China: Phys., Mech. Astron. 58(12), 120404 (2015).
[Crossref]

Nakayama, T.

K. Fujiwara, K. Kanamoto, Y. N. Ohta, Y. Tokuda, and T. Nakayama, “Classification and origins of GaAs oval defects grown by molecular beam epitaxy,” J. Cryst. Growth 80(1), 104–112 (1987).
[Crossref]

Notcutt, M.

Oelker, E.

Ohta, Y. N.

K. Fujiwara, K. Kanamoto, Y. N. Ohta, Y. Tokuda, and T. Nakayama, “Classification and origins of GaAs oval defects grown by molecular beam epitaxy,” J. Cryst. Growth 80(1), 104–112 (1987).
[Crossref]

Pan, H.-W.

V. P. Mitrofanov, S. Chao, H.-W. Pan, L.-C. Kuo, G. Cole, J. Degallaix, and B. Willke, “Technology for the next gravitational wave detectors,” Sci. China: Phys., Mech. Astron. 58(12), 120404 (2015).
[Crossref]

Penn, S.

J. Steinlechner, I. W. Martin, A. Bell, G. Cole, J. Hough, S. Penn, S. Rowan, and S. Steinlechner, “Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 µm,” Classical Quantum Gravity 32(10), 105008 (2015).
[Crossref]

Pinard, L.

Riehle, F.

Robinson, J.

Robinson, J. M.

Route, R.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” in Solid State Lasers XVIII: Technology and Devices (International Society for Optics and Photonics, 2009), Vol. 7193, p. 71930D.

Rowan, S.

J. Steinlechner, I. W. Martin, A. Bell, G. Cole, J. Hough, S. Penn, S. Rowan, and S. Steinlechner, “Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 µm,” Classical Quantum Gravity 32(10), 105008 (2015).
[Crossref]

Schreiber, K. U.

Sonderhouse, L.

Steinlechner, J.

J. Steinlechner, I. W. Martin, A. Bell, G. Cole, J. Hough, S. Penn, S. Rowan, and S. Steinlechner, “Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 µm,” Classical Quantum Gravity 32(10), 105008 (2015).
[Crossref]

Steinlechner, S.

J. Steinlechner, I. W. Martin, A. Bell, G. Cole, J. Hough, S. Penn, S. Rowan, and S. Steinlechner, “Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 µm,” Classical Quantum Gravity 32(10), 105008 (2015).
[Crossref]

Sterr, U.

Tan, Z.

Thirkettle, R. J.

Tokuda, Y.

K. Fujiwara, K. Kanamoto, Y. N. Ohta, Y. Tokuda, and T. Nakayama, “Classification and origins of GaAs oval defects grown by molecular beam epitaxy,” J. Cryst. Growth 80(1), 104–112 (1987).
[Crossref]

Truong, G.-W.

G.-W. Truong, “Digital delay generator/gate based on the Teensy microcontroller,” https://github.com/geedubs/teensytrigger.

Wang, J.

Wang, Q.

Wang, S.

Wang, Y.

Wells, J.-P. R.

Willke, B.

V. P. Mitrofanov, S. Chao, H.-W. Pan, L.-C. Kuo, G. Cole, J. Degallaix, and B. Willke, “Technology for the next gravitational wave detectors,” Sci. China: Phys., Mech. Astron. 58(12), 120404 (2015).
[Crossref]

Xiao, S.

Xiong, S.

Yang, K.

Ye, J.

Zang, E.

Zhang, W.

Zhang, Y.

Zhao, Y.

Zou, D.

Appl. Opt. (3)

Classical Quantum Gravity (1)

J. Steinlechner, I. W. Martin, A. Bell, G. Cole, J. Hough, S. Penn, S. Rowan, and S. Steinlechner, “Mapping the optical absorption of a substrate-transferred crystalline AlGaAs coating at 1.5 µm,” Classical Quantum Gravity 32(10), 105008 (2015).
[Crossref]

J. Cryst. Growth (1)

K. Fujiwara, K. Kanamoto, Y. N. Ohta, Y. Tokuda, and T. Nakayama, “Classification and origins of GaAs oval defects grown by molecular beam epitaxy,” J. Cryst. Growth 80(1), 104–112 (1987).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (2)

Phys. Rev. Lett. (1)

The LIGO Scientific Collaboration and The Virgo Collaboration, “GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral,” Phys. Rev. Lett. 119(16), 161101 (2017).
[Crossref]

Rev. Sci. Instrum. (1)

K. U. Schreiber and J.-P. R. Wells, “Invited Review Article: Large ring lasers for rotation sensing,” Rev. Sci. Instrum. 84(4), 041101 (2013).
[Crossref]

Sci. China: Phys., Mech. Astron. (1)

V. P. Mitrofanov, S. Chao, H.-W. Pan, L.-C. Kuo, G. Cole, J. Degallaix, and B. Willke, “Technology for the next gravitational wave detectors,” Sci. China: Phys., Mech. Astron. 58(12), 120404 (2015).
[Crossref]

Other (3)

G. Harry, T. P. Bodiya, and R. DeSalvo, eds., Optical Coatings and Thermal Noise in Precision Measurement (Cambridge University, 2012).

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” in Solid State Lasers XVIII: Technology and Devices (International Society for Optics and Photonics, 2009), Vol. 7193, p. 71930D.

G.-W. Truong, “Digital delay generator/gate based on the Teensy microcontroller,” https://github.com/geedubs/teensytrigger.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the scanning ringdown apparatus. The inset shows the shift of the center wavelength of the diode under bare-lasing and passive feedback conditions. HR1, HR2: High-reflectivity mirrors under test; 4DOF: Four degree-of-freedom stages allowing transverse translation and tip/tilt adjustment; BS: beamsplitter; PD: photodetector; OSA: optical spectrum analyzer; DDG: digital delay generator. (b) Photograph showing the 4DOF stages and motorized actuators inside the vacuum chamber. (c-d) Examples of frames captured by the InGaAs camera showing the fundamental mode with $C = 0.895$ and $P = 0.91$, and the TEM01 mode with $C = 0.669$ and $P = 0.00$. (e) Time domain data showing a single ringdown instance and the fit residuals (grey). The reduced chi-squared statistic is $\chi _\upsilon ^2 = 1.00$. The average of 50 ringdowns and residuals are also shown (black). The inset shows the ringdown signal on a log-linear scale.
Fig. 2.
Fig. 2. (a) Histograms showing that the repeatability of the loss measurement in a static experiment is somewhat dependent on the laser diode source. The sample size in each case is 100. The sample mode (i.e., the most frequently-appearing value of the distribution) is subtracted from each distribution to show the difference in spread for the loss measurement in each case. The values of the mode and assumed transmission are shown in ppm above each plot. (b) Repeated scans (indicated by the grey dashed boxes) covering a defective spot showed excellent spatial reproducibility. One dataset has been intentionally offset in the horizontal and vertical axes by 0.02 mm for clarity. T = 9 ppm.
Fig. 3.
Fig. 3. (a) Overlay of 8 mm diameter cavity ringdown measurements of optical loss taken with 0.1 mm point spacing (colored squares) on top of locations of defects inferred from DIC images (black). Locations where no ringdown data was available are transparent. The edge of the coating is treated as a “defect.” T = 9 ppm. (b) Zoom of ringdown measurements near the center of the coating on top of stitched DIC images. (c) DIC image of a region near the left edge of the coating with a series of small defects indicated by the arrows. (d) Scatter plot and histogram of all measured values of loss.
Fig. 4.
Fig. 4. Overlay of optical loss taken with 0.1 mm point spacing (colored squares) on top of locations of defects inferred from DIC images (black) for a crystalline coating transferred to a substrate with a 1-m ROC. T = 9 ppm
Fig. 5.
Fig. 5. Production grade crystalline mirror at a wavelength of 1064 nm. The sample mode (i.e., the most frequently-appearing value of the distribution) is subtracted to show the variation of losses. (a) Example of a highly uniform coating with a clear aperture diameter of 2 mm. (b) Histogram of losses in the clear aperture, showing < 1 ppm (FWHM) variation across the surface.

Metrics