M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]
M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]
B. I. Afinogenov, A. A. Popkova, V. O. Bessonov, B. Lukyanchuk, and A. A. Fedyanin, “Phase matching with Tamm plasmons for enhanced second- and third-harmonic generation,” Phys. Rev. B 97(11), 115438 (2018).
[Crossref]
V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 67(8), 085311 (2003).
[Crossref]
G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]
G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]
V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes,” Solid State Commun. 93(9), 733–739 (1995).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]
[PubMed]
T. Braun, V. Baumann, O. Iff, S. Höfling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]
C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref]
[PubMed]
B. I. Afinogenov, A. A. Popkova, V. O. Bessonov, B. Lukyanchuk, and A. A. Fedyanin, “Phase matching with Tamm plasmons for enhanced second- and third-harmonic generation,” Phys. Rev. B 97(11), 115438 (2018).
[Crossref]
G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]
N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7(1), 13328 (2016).
[Crossref]
[PubMed]
M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]
M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]
T. Braun, V. Baumann, O. Iff, S. Höfling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]
C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref]
[PubMed]
M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]
M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]
M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]
F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]
[PubMed]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]
[PubMed]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]
H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]
[PubMed]
N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7(1), 13328 (2016).
[Crossref]
[PubMed]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]
[PubMed]
Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]
H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]
[PubMed]
L. Jiang, J. Tang, J. Xu, Z. Zheng, J. Dong, J. Guo, S. Qian, X. Dai, and Y. Xiang, “Graphene Tamm plasmon-induced low-threshold optical bistability at terahertz frequencies,” Opt. Mater. Express 9(1), 139–150 (2019).
[Crossref]
L. Jiang, J. Tang, Q. Wang, Y. Wu, Z. Zheng, Y. Xiang, and X. Dai, “Manipulating optical Tamm state in the terahertz frequency range with graphene,” Chin. Opt. Lett. 17(2), 020008 (2019).
[Crossref]
X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]
Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]
Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]
B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref]
[PubMed]
H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]
[PubMed]
N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7(1), 13328 (2016).
[Crossref]
[PubMed]
J. Tang, J. Xu, Z. Zheng, H. Dong, J. Dong, S. Qian, J. Guo, L. Jiang, and Y. Xiang, “Graphene Tamm plasmon-induced giant Goos–Hänchen shift at terahertz frequencies,” Chin. Opt. Lett. 17(2), 020007 (2019).
[Crossref]
J. Tang, J. Xu, Z. Zheng, H. Dong, J. Dong, S. Qian, J. Guo, L. Jiang, and Y. Xiang, “Graphene Tamm plasmon-induced giant Goos–Hänchen shift at terahertz frequencies,” Chin. Opt. Lett. 17(2), 020007 (2019).
[Crossref]
L. Jiang, J. Tang, J. Xu, Z. Zheng, J. Dong, J. Guo, S. Qian, X. Dai, and Y. Xiang, “Graphene Tamm plasmon-induced low-threshold optical bistability at terahertz frequencies,” Opt. Mater. Express 9(1), 139–150 (2019).
[Crossref]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]
[PubMed]
G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]
M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]
N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref]
[PubMed]
A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]
[PubMed]
H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]
[PubMed]
B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref]
[PubMed]
B. I. Afinogenov, A. A. Popkova, V. O. Bessonov, B. Lukyanchuk, and A. A. Fedyanin, “Phase matching with Tamm plasmons for enhanced second- and third-harmonic generation,” Phys. Rev. B 97(11), 115438 (2018).
[Crossref]
X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]
[PubMed]
X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]
F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]
[PubMed]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]
[PubMed]
S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]
[PubMed]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]
[PubMed]
N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref]
[PubMed]
M. Tamagnone, J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys. 112(11), 114915 (2012).
[Crossref]
A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong Coupling between Molecular Excited States and Surface Plasmon Modes of a Slit Array in a Thin Metal Film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref]
[PubMed]
C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref]
[PubMed]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]
[PubMed]
G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]
[PubMed]
L. Jiang, J. Tang, J. Xu, Z. Zheng, J. Dong, J. Guo, S. Qian, X. Dai, and Y. Xiang, “Graphene Tamm plasmon-induced low-threshold optical bistability at terahertz frequencies,” Opt. Mater. Express 9(1), 139–150 (2019).
[Crossref]
J. Tang, J. Xu, Z. Zheng, H. Dong, J. Dong, S. Qian, J. Guo, L. Jiang, and Y. Xiang, “Graphene Tamm plasmon-induced giant Goos–Hänchen shift at terahertz frequencies,” Chin. Opt. Lett. 17(2), 020007 (2019).
[Crossref]
X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]
B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref]
[PubMed]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]
[PubMed]
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]
[PubMed]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]
[PubMed]
B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref]
[PubMed]
G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008).
[Crossref]
G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]
N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref]
[PubMed]
Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]
N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7(1), 13328 (2016).
[Crossref]
[PubMed]
T. Braun, V. Baumann, O. Iff, S. Höfling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]
J. G. Hu, X. H. Wu, H. J. Li, E. X. Yao, W. Q. Xie, W. Liu, Y. H. Lu, and C. J. Ming, “Tuning of longitudinal plasmonic coupling in graphene nanoribbon arrays/sheet hybrid structures at mid-infrared frequencies,” J. Opt. Soc. Am. B 36(3), 697–704 (2019).
[Crossref]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]
C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref]
[PubMed]
N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7(1), 13328 (2016).
[Crossref]
[PubMed]
T. Braun, V. Baumann, O. Iff, S. Höfling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]
M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]
M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]
[PubMed]
L. Jiang, J. Tang, J. Xu, Z. Zheng, J. Dong, J. Guo, S. Qian, X. Dai, and Y. Xiang, “Graphene Tamm plasmon-induced low-threshold optical bistability at terahertz frequencies,” Opt. Mater. Express 9(1), 139–150 (2019).
[Crossref]
J. Tang, J. Xu, Z. Zheng, H. Dong, J. Dong, S. Qian, J. Guo, L. Jiang, and Y. Xiang, “Graphene Tamm plasmon-induced giant Goos–Hänchen shift at terahertz frequencies,” Chin. Opt. Lett. 17(2), 020007 (2019).
[Crossref]
L. Jiang, J. Tang, Q. Wang, Y. Wu, Z. Zheng, Y. Xiang, and X. Dai, “Manipulating optical Tamm state in the terahertz frequency range with graphene,” Chin. Opt. Lett. 17(2), 020008 (2019).
[Crossref]
X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]
M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]
M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]
T. Braun, V. Baumann, O. Iff, S. Höfling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]
N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7(1), 13328 (2016).
[Crossref]
[PubMed]
M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]
M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]
A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B Condens. Matter Mater. Phys. 72(23), 233102 (2005).
[Crossref]
X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]
N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7(1), 13328 (2016).
[Crossref]
[PubMed]
N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7(1), 13328 (2016).
[Crossref]
[PubMed]
B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref]
[PubMed]
F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene Plasmonics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref]
[PubMed]
N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref]
[PubMed]
C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref]
[PubMed]
X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]
C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref]
[PubMed]
C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref]
[PubMed]
B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref]
[PubMed]
H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]
[PubMed]
J. G. Hu, X. H. Wu, H. J. Li, E. X. Yao, W. Q. Xie, W. Liu, Y. H. Lu, and C. J. Ming, “Tuning of longitudinal plasmonic coupling in graphene nanoribbon arrays/sheet hybrid structures at mid-infrared frequencies,” J. Opt. Soc. Am. B 36(3), 697–704 (2019).
[Crossref]
J. Shi, Z. Li, D. K. Sang, Y. Xiang, J. Li, S. Zhang, and H. Zhang, “THz photonics in two dimensional materials and metamaterials: properties, devices and prospects,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(6), 1291–1306 (2018).
[Crossref]
X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]
H. Lu, Y. Li, Z. Yue, D. Mao, and J. Zhao, “Topological insulator based Tamm plasmon polaritons,” APL Photonics 4(4), 040801 (2019).
[Crossref]
H. Lu, Y. Li, H. Jiao, Z. Li, D. Mao, and J. Zhao, “Induced reflection in Tamm plasmon systems,” Opt. Express 27(4), 5383–5392 (2019).
[Crossref]
[PubMed]
H. Lu, Y. Li, H. Jiao, Z. Li, D. Mao, and J. Zhao, “Induced reflection in Tamm plasmon systems,” Opt. Express 27(4), 5383–5392 (2019).
[Crossref]
[PubMed]
J. Shi, Z. Li, D. K. Sang, Y. Xiang, J. Li, S. Zhang, and H. Zhang, “THz photonics in two dimensional materials and metamaterials: properties, devices and prospects,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(6), 1291–1306 (2018).
[Crossref]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]
V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 67(8), 085311 (2003).
[Crossref]
X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]
B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref]
[PubMed]
V. M. Agranovich, M. Litinskaia, and D. G. Lidzey, “Cavity polaritons in microcavities containing disordered organic semiconductors,” Phys. Rev. B Condens. Matter Mater. Phys. 67(8), 085311 (2003).
[Crossref]
H. Liu, J. Gao, Z. Liu, X. Wang, H. Yang, and H. Chen, “Large electromagnetic field enhancement achieved through coupling localized surface plasmons to hybrid Tamm plasmons,” J. Opt. Soc. Am. B 32(10), 2061–2067 (2015).
[Crossref]
H. Liu, X. Sun, F. Yao, Y. Pei, F. Huang, H. Yuan, and Y. Jiang, “Optical magnetic field enhancement through coupling magnetic plasmons to Tamm plasmons,” Opt. Express 20(17), 19160–19167 (2012).
[Crossref]
[PubMed]
H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene,” J. Mater. Chem. 21(10), 3335–3345 (2011).
[Crossref]
S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]
[PubMed]
N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref]
[PubMed]
J. G. Hu, X. H. Wu, H. J. Li, E. X. Yao, W. Q. Xie, W. Liu, Y. H. Lu, and C. J. Ming, “Tuning of longitudinal plasmonic coupling in graphene nanoribbon arrays/sheet hybrid structures at mid-infrared frequencies,” J. Opt. Soc. Am. B 36(3), 697–704 (2019).
[Crossref]
X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]
[PubMed]
H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene,” J. Mater. Chem. 21(10), 3335–3345 (2011).
[Crossref]
H. Lu, Y. Li, H. Jiao, Z. Li, D. Mao, and J. Zhao, “Induced reflection in Tamm plasmon systems,” Opt. Express 27(4), 5383–5392 (2019).
[Crossref]
[PubMed]
H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]
[PubMed]
H. Lu, Y. Li, Z. Yue, D. Mao, and J. Zhao, “Topological insulator based Tamm plasmon polaritons,” APL Photonics 4(4), 040801 (2019).
[Crossref]
H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
[Crossref]
[PubMed]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]
J. G. Hu, X. H. Wu, H. J. Li, E. X. Yao, W. Q. Xie, W. Liu, Y. H. Lu, and C. J. Ming, “Tuning of longitudinal plasmonic coupling in graphene nanoribbon arrays/sheet hybrid structures at mid-infrared frequencies,” J. Opt. Soc. Am. B 36(3), 697–704 (2019).
[Crossref]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]
[PubMed]
B. I. Afinogenov, A. A. Popkova, V. O. Bessonov, B. Lukyanchuk, and A. A. Fedyanin, “Phase matching with Tamm plasmons for enhanced second- and third-harmonic generation,” Phys. Rev. B 97(11), 115438 (2018).
[Crossref]
N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7(1), 13328 (2016).
[Crossref]
[PubMed]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]
[PubMed]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]
[PubMed]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]
[PubMed]
A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B Condens. Matter Mater. Phys. 72(23), 233102 (2005).
[Crossref]
H. Lu, Y. Li, Z. Yue, D. Mao, and J. Zhao, “Topological insulator based Tamm plasmon polaritons,” APL Photonics 4(4), 040801 (2019).
[Crossref]
H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]
[PubMed]
H. Lu, Y. Li, H. Jiao, Z. Li, D. Mao, and J. Zhao, “Induced reflection in Tamm plasmon systems,” Opt. Express 27(4), 5383–5392 (2019).
[Crossref]
[PubMed]
H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
[Crossref]
[PubMed]
H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]
[PubMed]
X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]
N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref]
[PubMed]
M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]
J. G. Hu, X. H. Wu, H. J. Li, E. X. Yao, W. Q. Xie, W. Liu, Y. H. Lu, and C. J. Ming, “Tuning of longitudinal plasmonic coupling in graphene nanoribbon arrays/sheet hybrid structures at mid-infrared frequencies,” J. Opt. Soc. Am. B 36(3), 697–704 (2019).
[Crossref]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]
[PubMed]
M. Tamagnone, J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys. 112(11), 114915 (2012).
[Crossref]
N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7(1), 13328 (2016).
[Crossref]
[PubMed]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]
[PubMed]
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]
[PubMed]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]
[PubMed]
M. Tamagnone, J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys. 112(11), 114915 (2012).
[Crossref]
B. I. Afinogenov, A. A. Popkova, V. O. Bessonov, B. Lukyanchuk, and A. A. Fedyanin, “Phase matching with Tamm plasmons for enhanced second- and third-harmonic generation,” Phys. Rev. B 97(11), 115438 (2018).
[Crossref]
A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong Coupling between Molecular Excited States and Surface Plasmon Modes of a Slit Array in a Thin Metal Film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref]
[PubMed]
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]
[PubMed]
L. Jiang, J. Tang, J. Xu, Z. Zheng, J. Dong, J. Guo, S. Qian, X. Dai, and Y. Xiang, “Graphene Tamm plasmon-induced low-threshold optical bistability at terahertz frequencies,” Opt. Mater. Express 9(1), 139–150 (2019).
[Crossref]
J. Tang, J. Xu, Z. Zheng, H. Dong, J. Dong, S. Qian, J. Guo, L. Jiang, and Y. Xiang, “Graphene Tamm plasmon-induced giant Goos–Hänchen shift at terahertz frequencies,” Chin. Opt. Lett. 17(2), 020007 (2019).
[Crossref]
V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes,” Solid State Commun. 93(9), 733–739 (1995).
[Crossref]
E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A Hybridization Model for the Plasmon Response of Complex Nanostructures,” Science 302(5644), 419–422 (2003).
[Crossref]
[PubMed]
G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]
A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong Coupling between Molecular Excited States and Surface Plasmon Modes of a Slit Array in a Thin Metal Film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref]
[PubMed]
J. Shi, Z. Li, D. K. Sang, Y. Xiang, J. Li, S. Zhang, and H. Zhang, “THz photonics in two dimensional materials and metamaterials: properties, devices and prospects,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(6), 1291–1306 (2018).
[Crossref]
M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]
V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes,” Solid State Commun. 93(9), 733–739 (1995).
[Crossref]
N. Lundt, S. Klembt, E. Cherotchenko, S. Betzold, O. Iff, A. V. Nalitov, M. Klaas, C. P. Dietrich, A. V. Kavokin, S. Höfling, and C. Schneider, “Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer,” Nat. Commun. 7(1), 13328 (2016).
[Crossref]
[PubMed]
T. Braun, V. Baumann, O. Iff, S. Höfling, C. Schneider, and M. Kamp, “Enhanced single photon emission from positioned InP/GaInP quantum dots coupled to a confined Tamm-plasmon mode,” Appl. Phys. Lett. 106(4), 041113 (2015).
[Crossref]
V. Savona, L. C. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes,” Solid State Commun. 93(9), 733–739 (1995).
[Crossref]
A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong Coupling between Molecular Excited States and Surface Plasmon Modes of a Slit Array in a Thin Metal Film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref]
[PubMed]
M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]
C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref]
[PubMed]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]
G. C. Dyer, G. R. Aizin, S. J. Allen, A. D. Grine, D. Bethke, J. L. Reno, and E. A. Shaner, “Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals,” Nat. Photonics 7(11), 925–930 (2013).
[Crossref]
M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B Condens. Matter Mater. Phys. 76(16), 165415 (2007).
[Crossref]
A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B Condens. Matter Mater. Phys. 72(23), 233102 (2005).
[Crossref]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]
J. Shi, Z. Li, D. K. Sang, Y. Xiang, J. Li, S. Zhang, and H. Zhang, “THz photonics in two dimensional materials and metamaterials: properties, devices and prospects,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(6), 1291–1306 (2018).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]
[PubMed]
M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B Condens. Matter Mater. Phys. 80(24), 245435 (2009).
[Crossref]
X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]
N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref]
[PubMed]
A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong Coupling between Molecular Excited States and Surface Plasmon Modes of a Slit Array in a Thin Metal Film,” Phys. Rev. Lett. 109(7), 073002 (2012).
[Crossref]
[PubMed]
X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]
X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]
C. Symonds, G. Lheureux, J. P. Hugonin, J. J. Greffet, J. Laverdant, G. Brucoli, A. Lemaitre, P. Senellart, and J. Bellessa, “Confined Tamm plasmon lasers,” Nano Lett. 13(7), 3179–3184 (2013).
[Crossref]
[PubMed]
M. Tamagnone, J. S. Gómez-Díaz, J. R. Mosig, and J. Perruisseau-Carrier, “Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets,” J. Appl. Phys. 112(11), 114915 (2012).
[Crossref]
I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. 76(11-12), 849–850 (1932).
[Crossref]
J. Tang, J. Xu, Z. Zheng, H. Dong, J. Dong, S. Qian, J. Guo, L. Jiang, and Y. Xiang, “Graphene Tamm plasmon-induced giant Goos–Hänchen shift at terahertz frequencies,” Chin. Opt. Lett. 17(2), 020007 (2019).
[Crossref]
L. Jiang, J. Tang, Q. Wang, Y. Wu, Z. Zheng, Y. Xiang, and X. Dai, “Manipulating optical Tamm state in the terahertz frequency range with graphene,” Chin. Opt. Lett. 17(2), 020008 (2019).
[Crossref]
L. Jiang, J. Tang, J. Xu, Z. Zheng, J. Dong, J. Guo, S. Qian, X. Dai, and Y. Xiang, “Graphene Tamm plasmon-induced low-threshold optical bistability at terahertz frequencies,” Opt. Mater. Express 9(1), 139–150 (2019).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]
[PubMed]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]
[PubMed]
A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref]
[PubMed]
M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92(25), 251112 (2008).
[Crossref]
Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]
B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref]
[PubMed]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]
X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]
H. Liu, J. Gao, Z. Liu, X. Wang, H. Yang, and H. Chen, “Large electromagnetic field enhancement achieved through coupling localized surface plasmons to hybrid Tamm plasmons,” J. Opt. Soc. Am. B 32(10), 2061–2067 (2015).
[Crossref]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]
S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]
[PubMed]
Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband Thermal Emission Realized through the Coupling of Cavity and Tamm Plasmon Resonances,” ACS Photonics 5(6), 2446–2452 (2018).
[Crossref]
N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref]
[PubMed]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]
J. G. Hu, X. H. Wu, H. J. Li, E. X. Yao, W. Q. Xie, W. Liu, Y. H. Lu, and C. J. Ming, “Tuning of longitudinal plasmonic coupling in graphene nanoribbon arrays/sheet hybrid structures at mid-infrared frequencies,” J. Opt. Soc. Am. B 36(3), 697–704 (2019).
[Crossref]
B. Deng, Q. Guo, C. Li, H. Wang, X. Ling, D. B. Farmer, S. J. Han, J. Kong, and F. Xia, “Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures,” ACS Nano 10(12), 11172–11178 (2016).
[Crossref]
[PubMed]
X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y.-H. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]
L. Jiang, J. Tang, Q. Wang, Y. Wu, Z. Zheng, Y. Xiang, and X. Dai, “Manipulating optical Tamm state in the terahertz frequency range with graphene,” Chin. Opt. Lett. 17(2), 020008 (2019).
[Crossref]
J. Tang, J. Xu, Z. Zheng, H. Dong, J. Dong, S. Qian, J. Guo, L. Jiang, and Y. Xiang, “Graphene Tamm plasmon-induced giant Goos–Hänchen shift at terahertz frequencies,” Chin. Opt. Lett. 17(2), 020007 (2019).
[Crossref]
L. Jiang, J. Tang, J. Xu, Z. Zheng, J. Dong, J. Guo, S. Qian, X. Dai, and Y. Xiang, “Graphene Tamm plasmon-induced low-threshold optical bistability at terahertz frequencies,” Opt. Mater. Express 9(1), 139–150 (2019).
[Crossref]
J. Shi, Z. Li, D. K. Sang, Y. Xiang, J. Li, S. Zhang, and H. Zhang, “THz photonics in two dimensional materials and metamaterials: properties, devices and prospects,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(6), 1291–1306 (2018).
[Crossref]
X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]
J. G. Hu, X. H. Wu, H. J. Li, E. X. Yao, W. Q. Xie, W. Liu, Y. H. Lu, and C. J. Ming, “Tuning of longitudinal plasmonic coupling in graphene nanoribbon arrays/sheet hybrid structures at mid-infrared frequencies,” J. Opt. Soc. Am. B 36(3), 697–704 (2019).
[Crossref]
J. Tang, J. Xu, Z. Zheng, H. Dong, J. Dong, S. Qian, J. Guo, L. Jiang, and Y. Xiang, “Graphene Tamm plasmon-induced giant Goos–Hänchen shift at terahertz frequencies,” Chin. Opt. Lett. 17(2), 020007 (2019).
[Crossref]
L. Jiang, J. Tang, J. Xu, Z. Zheng, J. Dong, J. Guo, S. Qian, X. Dai, and Y. Xiang, “Graphene Tamm plasmon-induced low-threshold optical bistability at terahertz frequencies,” Opt. Mater. Express 9(1), 139–150 (2019).
[Crossref]
J. G. Hu, X. H. Wu, H. J. Li, E. X. Yao, W. Q. Xie, W. Liu, Y. H. Lu, and C. J. Ming, “Tuning of longitudinal plasmonic coupling in graphene nanoribbon arrays/sheet hybrid structures at mid-infrared frequencies,” J. Opt. Soc. Am. B 36(3), 697–704 (2019).
[Crossref]
X. Wang, X. Jiang, Q. You, J. Guo, X. Dai, and Y. Xiang, “Tunable and multichannel terahertz perfect absorber due to Tamm surface plasmons with graphene,” Photonics Res. 5(6), 536–542 (2017).
[Crossref]
H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]
[PubMed]
H. Lu, Y. Li, Z. Yue, D. Mao, and J. Zhao, “Topological insulator based Tamm plasmon polaritons,” APL Photonics 4(4), 040801 (2019).
[Crossref]
J. Shi, Z. Li, D. K. Sang, Y. Xiang, J. Li, S. Zhang, and H. Zhang, “THz photonics in two dimensional materials and metamaterials: properties, devices and prospects,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(6), 1291–1306 (2018).
[Crossref]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]
J. Shi, Z. Li, D. K. Sang, Y. Xiang, J. Li, S. Zhang, and H. Zhang, “THz photonics in two dimensional materials and metamaterials: properties, devices and prospects,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(6), 1291–1306 (2018).
[Crossref]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]
[PubMed]
S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]
[PubMed]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]
[PubMed]
J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]
[PubMed]
X. Zhang, J. Song, X. Li, J. Feng, and H. Sun, “Optical Tamm states enhanced broad-band absorption of organic solar cells,” Appl. Phys. Lett. 101(24), 243901 (2012).
[Crossref]
S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]
[PubMed]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref]
[PubMed]
T. Hu, Y. Wang, L. Wu, L. Zhang, Y. Shan, J. Lu, J. Wang, S. Luo, Z. Zhang, L. Liao, S. Wu, X. Shen, and Z. Chen, “Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons,” Appl. Phys. Lett. 110(5), 051101 (2017).
[Crossref]
B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]
B. Zhao and Z. M. Zhang, “Strong plasmonic coupling between graphene ribbon array and metal gratings,” ACS Photonics 2(11), 1611–1618 (2015).
[Crossref]
H. Lu, Y. Li, Z. Yue, D. Mao, and J. Zhao, “Topological insulator based Tamm plasmon polaritons,” APL Photonics 4(4), 040801 (2019).
[Crossref]
H. Lu, S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, “Sb2Te3 topological insulator: surface plasmon resonance and application in refractive index monitoring,” Nanoscale 11(11), 4759–4766 (2019).
[Crossref]
[PubMed]
H. Lu, Y. Li, H. Jiao, Z. Li, D. Mao, and J. Zhao, “Induced reflection in Tamm plasmon systems,” Opt. Express 27(4), 5383–5392 (2019).
[Crossref]
[PubMed]
H. Lu, X. Gan, B. Jia, D. Mao, and J. Zhao, “Tunable high-efficiency light absorption of monolayer graphene via Tamm plasmon polaritons,” Opt. Lett. 41(20), 4743–4746 (2016).
[Crossref]
[PubMed]
B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref]
[PubMed]
L. Jiang, J. Tang, J. Xu, Z. Zheng, J. Dong, J. Guo, S. Qian, X. Dai, and Y. Xiang, “Graphene Tamm plasmon-induced low-threshold optical bistability at terahertz frequencies,” Opt. Mater. Express 9(1), 139–150 (2019).
[Crossref]
J. Tang, J. Xu, Z. Zheng, H. Dong, J. Dong, S. Qian, J. Guo, L. Jiang, and Y. Xiang, “Graphene Tamm plasmon-induced giant Goos–Hänchen shift at terahertz frequencies,” Chin. Opt. Lett. 17(2), 020007 (2019).
[Crossref]
L. Jiang, J. Tang, Q. Wang, Y. Wu, Z. Zheng, Y. Xiang, and X. Dai, “Manipulating optical Tamm state in the terahertz frequency range with graphene,” Chin. Opt. Lett. 17(2), 020008 (2019).
[Crossref]
H. Liu, Y. Liu, and D. Zhu, “Chemical doping of graphene,” J. Mater. Chem. 21(10), 3335–3345 (2011).
[Crossref]