Abstract

We report a radio-frequency-to-optical converter based on an electro-optomechanical transduction scheme where the electrical, optical, and mechanical interface was integrated on a chip and operated with a fiber-coupled optical setup. The device was designed for field tests in a magnetic resonance scanner where its small form-factor and simple operation is paramount. For the appurtenant magnetic resonance detection circuit at 32 MHz, we demonstrate transduction with an intrinsic magnetic field sensitivity of 8fT/Hz, noise figure 2.3 dB, noise temperature 210 K, voltage noise 99pV/Hz, and current noise 113pA/Hz, all in a 3 dB-bandwidth of 12 kHz. Such sensitivity and bandwidth make the transducer a valuable alternative to conventional electronic preamplifiers that additionally is directly compatible with fiber communication networks.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electro-mechano-optical detection of nuclear magnetic resonance

Kazuyuki Takeda, Kentaro Nagasaka, Atsushi Noguchi, Rekishu Yamazaki, Yasunobu Nakamura, Eiji Iwase, Jacob M. Taylor, and Koji Usami
Optica 5(2) 152-158 (2018)

Optical coupling to nanoscale optomechanical cavities for near quantum-limited motion transduction

Justin D. Cohen, Seán M. Meenehan, and Oskar Painter
Opt. Express 21(9) 11227-11236 (2013)

Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity

Alessandro Pitanti, Johannes M. Fink, Amir H. Safavi-Naeini, Jeff T. Hill, Chan U. Lei, Alessandro Tredicucci, and Oskar Painter
Opt. Express 23(3) 3196-3208 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Midolo, A. Schliesser, and A. Fiore, “Nano-opto-electro-mechanical systems,” Nat. Nanotechnol. 13, 11–18 (2018).
    [Crossref] [PubMed]
  2. J. M. Taylor, A. S. Sørensen, C. M. Marcus, and E. S. Polzik, “Laser cooling and optical detection of excitations in a LC electrical circuit,” Phys. Rev. Lett. 107, 273601 (2011).
    [Crossref]
  3. T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
    [Crossref] [PubMed]
  4. W. M. Dougherty, K. J. Bruland, J. L. Garbini, and J. A. Sidles, “Detection of AC magnetic signals by parametric mode coupling in a mechanical oscillator,” Meas. Sci. Technol. 7, 1733–1739 (1996).
    [Crossref]
  5. K. Takeda, K. Nagasaka, A. Noguchi, R. Yamazaki, Y. Nakamura, E. Iwase, J. M. Taylor, and K. Usami, “Electro-mechano-optical detection of nuclear magnetic resonance,” Optica 5, 152–158 (2017).
    [Crossref]
  6. Y. Tominaga, K. Nagasaka, K. Usami, and K. Takeda, “Studies on NMR-signal up-conversion from radio-frequency to optical regimes using a lightweight nanomembrane transducer,” J. Magn. Reson. 298, 6–15 (2018).
    [Crossref] [PubMed]
  7. I. M. Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, D. Vitali, I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, “Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer,” Phys. Rev. Appl. 9, 034031 (2018).
    [Crossref]
  8. F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13, 14105–14120 (2013).
    [Crossref]
  9. I. Wilson-Rae, “Intrinsic dissipation in nanomechanical resonators due to phonon tunneling,” Phys. Rev. B 77, 245418 (2008).
    [Crossref]
  10. G. Sosale, S. Prabhakar, L. G. Frechette, and S. Vengallatore, “A microcantilever platform for measuring internal friction in thin films using thermoelastic damping for calibration,” J. Microelectromech. S. 20, 764–773 (2011).
    [Crossref]
  11. P.-L. Yu, T. P. Purdy, and C. A. Regal, “Control of material damping in high-Q membrane microresonators,” Phys. Rev. Lett. 108, 083603 (2012).
    [Crossref] [PubMed]
  12. A. Jöckel, M. T. Rakher, M. Korppi, S. Camerer, D. Hunger, M. Mader, and P. Treutlein, “Spectroscopy of mechanical dissipation in micro-mechanical membranes,” Appl. Phys. Lett. 99, 143109 (2011).
    [Crossref]
  13. O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
    [Crossref]
  14. S. Hyun, W. L. Brown, and R. P. Vinci, “Thickness and temperature dependence of stress relaxation in nanoscale aluminum films,” Appl. Phys. Lett. 83, 4411–4413 (2003).
    [Crossref]
  15. M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).
  16. E. Zeuthen, A. Schliesser, J. M. Taylor, and A. S. Sørensen, “Electro-optomechanical equivalent circuits for quantum transduction,” Phys. Rev. Appl. 10, 044036 (2017).
    [Crossref]
  17. A. Barg, Y. Tsaturyan, E. Belhage, W. H. P. Nielsen, C. B. Møller, and A. Schliesser, “Measuring and imaging nanomechanical motion with laser light,” Appl. Phys. B 123, 71–85 (2018).
  18. S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
    [Crossref]
  19. G. Brooker, Modern Classical Optics (Oxford University Press, 2008), 1st ed.
  20. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  21. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
    [Crossref] [PubMed]
  22. E. R. I. Abraham and E. A. Cornell, “Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems,” Appl. Opt. 37, 1762–1763 (1998).
    [Crossref]
  23. D. M. Pozar, Microwave Engineering (John Wiley and Sons, Inc., 2012), 4th ed.
  24. D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC Hammer,” Publ. Astron. Soc. Pac. 125, 306–312 (2013).
    [Crossref]
  25. K. Cicak, M. Allman, J. Strong, K. Osborn, and R. Simmonds, “Vacuum-gap capacitors for low-loss superconducting resonant circuits,” IEEE Trans. on Appl. Supercond. 19, 948–952 (2009).
    [Crossref]
  26. H. S. Kim, J. M. Kim, Y. S. Bang, E. S. Song, C. H. Ji, and Y. K. Kim, “Fabrication of a vertical sidewall using double-sided anisotropic etching of <100> oriented silicon,” J. Micromech. Microeng. 22, 095014 (2012).
    [Crossref]
  27. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
    [Crossref] [PubMed]
  28. E. Zeuthen, “Electro-optomechanical transduction & quantum hard-sphere model for dissipative Rydberg-EIT media,” Ph.D. thesis, Copenhagen (2015).

2018 (4)

L. Midolo, A. Schliesser, and A. Fiore, “Nano-opto-electro-mechanical systems,” Nat. Nanotechnol. 13, 11–18 (2018).
[Crossref] [PubMed]

Y. Tominaga, K. Nagasaka, K. Usami, and K. Takeda, “Studies on NMR-signal up-conversion from radio-frequency to optical regimes using a lightweight nanomembrane transducer,” J. Magn. Reson. 298, 6–15 (2018).
[Crossref] [PubMed]

I. M. Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, D. Vitali, I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, “Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer,” Phys. Rev. Appl. 9, 034031 (2018).
[Crossref]

A. Barg, Y. Tsaturyan, E. Belhage, W. H. P. Nielsen, C. B. Møller, and A. Schliesser, “Measuring and imaging nanomechanical motion with laser light,” Appl. Phys. B 123, 71–85 (2018).

2017 (2)

K. Takeda, K. Nagasaka, A. Noguchi, R. Yamazaki, Y. Nakamura, E. Iwase, J. M. Taylor, and K. Usami, “Electro-mechano-optical detection of nuclear magnetic resonance,” Optica 5, 152–158 (2017).
[Crossref]

E. Zeuthen, A. Schliesser, J. M. Taylor, and A. S. Sørensen, “Electro-optomechanical equivalent circuits for quantum transduction,” Phys. Rev. Appl. 10, 044036 (2017).
[Crossref]

2015 (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

2014 (4)

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

2013 (2)

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13, 14105–14120 (2013).
[Crossref]

D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC Hammer,” Publ. Astron. Soc. Pac. 125, 306–312 (2013).
[Crossref]

2012 (2)

H. S. Kim, J. M. Kim, Y. S. Bang, E. S. Song, C. H. Ji, and Y. K. Kim, “Fabrication of a vertical sidewall using double-sided anisotropic etching of <100> oriented silicon,” J. Micromech. Microeng. 22, 095014 (2012).
[Crossref]

P.-L. Yu, T. P. Purdy, and C. A. Regal, “Control of material damping in high-Q membrane microresonators,” Phys. Rev. Lett. 108, 083603 (2012).
[Crossref] [PubMed]

2011 (3)

A. Jöckel, M. T. Rakher, M. Korppi, S. Camerer, D. Hunger, M. Mader, and P. Treutlein, “Spectroscopy of mechanical dissipation in micro-mechanical membranes,” Appl. Phys. Lett. 99, 143109 (2011).
[Crossref]

G. Sosale, S. Prabhakar, L. G. Frechette, and S. Vengallatore, “A microcantilever platform for measuring internal friction in thin films using thermoelastic damping for calibration,” J. Microelectromech. S. 20, 764–773 (2011).
[Crossref]

J. M. Taylor, A. S. Sørensen, C. M. Marcus, and E. S. Polzik, “Laser cooling and optical detection of excitations in a LC electrical circuit,” Phys. Rev. Lett. 107, 273601 (2011).
[Crossref]

2009 (1)

K. Cicak, M. Allman, J. Strong, K. Osborn, and R. Simmonds, “Vacuum-gap capacitors for low-loss superconducting resonant circuits,” IEEE Trans. on Appl. Supercond. 19, 948–952 (2009).
[Crossref]

2008 (1)

I. Wilson-Rae, “Intrinsic dissipation in nanomechanical resonators due to phonon tunneling,” Phys. Rev. B 77, 245418 (2008).
[Crossref]

2004 (1)

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[Crossref] [PubMed]

2003 (1)

S. Hyun, W. L. Brown, and R. P. Vinci, “Thickness and temperature dependence of stress relaxation in nanoscale aluminum films,” Appl. Phys. Lett. 83, 4411–4413 (2003).
[Crossref]

1999 (1)

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

1998 (1)

1996 (1)

W. M. Dougherty, K. J. Bruland, J. L. Garbini, and J. A. Sidles, “Detection of AC magnetic signals by parametric mode coupling in a mechanical oscillator,” Meas. Sci. Technol. 7, 1733–1739 (1996).
[Crossref]

Abraham, E. R. I.

Ali, S.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Allman, M.

K. Cicak, M. Allman, J. Strong, K. Osborn, and R. Simmonds, “Vacuum-gap capacitors for low-loss superconducting resonant circuits,” IEEE Trans. on Appl. Supercond. 19, 948–952 (2009).
[Crossref]

Amato, B.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

Appel, J.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Bagci, T.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

Bang, Y. S.

H. S. Kim, J. M. Kim, Y. S. Bang, E. S. Song, C. H. Ji, and Y. K. Kim, “Fabrication of a vertical sidewall using double-sided anisotropic etching of <100> oriented silicon,” J. Micromech. Microeng. 22, 095014 (2012).
[Crossref]

Barg, A.

A. Barg, Y. Tsaturyan, E. Belhage, W. H. P. Nielsen, C. B. Møller, and A. Schliesser, “Measuring and imaging nanomechanical motion with laser light,” Appl. Phys. B 123, 71–85 (2018).

Belhage, E.

A. Barg, Y. Tsaturyan, E. Belhage, W. H. P. Nielsen, C. B. Møller, and A. Schliesser, “Measuring and imaging nanomechanical motion with laser light,” Appl. Phys. B 123, 71–85 (2018).

Berdova, M.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Boisen, A.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

Brooker, G.

G. Brooker, Modern Classical Optics (Oxford University Press, 2008), 1st ed.

Brown, W. L.

S. Hyun, W. L. Brown, and R. P. Vinci, “Thickness and temperature dependence of stress relaxation in nanoscale aluminum films,” Appl. Phys. Lett. 83, 4411–4413 (2003).
[Crossref]

Bruland, K. J.

W. M. Dougherty, K. J. Bruland, J. L. Garbini, and J. A. Sidles, “Detection of AC magnetic signals by parametric mode coupling in a mechanical oscillator,” Meas. Sci. Technol. 7, 1733–1739 (1996).
[Crossref]

Camerer, S.

A. Jöckel, M. T. Rakher, M. Korppi, S. Camerer, D. Hunger, M. Mader, and P. Treutlein, “Spectroscopy of mechanical dissipation in micro-mechanical membranes,” Appl. Phys. Lett. 99, 143109 (2011).
[Crossref]

Cassidy, M. C.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

Cicak, K.

K. Cicak, M. Allman, J. Strong, K. Osborn, and R. Simmonds, “Vacuum-gap capacitors for low-loss superconducting resonant circuits,” IEEE Trans. on Appl. Supercond. 19, 948–952 (2009).
[Crossref]

Cornell, E. A.

Di Giuseppe, G.

I. M. Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, D. Vitali, I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, “Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer,” Phys. Rev. Appl. 9, 034031 (2018).
[Crossref]

I. M. Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, D. Vitali, I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, “Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer,” Phys. Rev. Appl. 9, 034031 (2018).
[Crossref]

Di Pino, G.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13, 14105–14120 (2013).
[Crossref]

Dougherty, W. M.

W. M. Dougherty, K. J. Bruland, J. L. Garbini, and J. A. Sidles, “Detection of AC magnetic signals by parametric mode coupling in a mechanical oscillator,” Meas. Sci. Technol. 7, 1733–1739 (1996).
[Crossref]

Fiore, A.

L. Midolo, A. Schliesser, and A. Fiore, “Nano-opto-electro-mechanical systems,” Nat. Nanotechnol. 13, 11–18 (2018).
[Crossref] [PubMed]

Foreman-Mackey, D.

D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC Hammer,” Publ. Astron. Soc. Pac. 125, 306–312 (2013).
[Crossref]

Formica, D.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13, 14105–14120 (2013).
[Crossref]

Frechette, L. G.

G. Sosale, S. Prabhakar, L. G. Frechette, and S. Vengallatore, “A microcantilever platform for measuring internal friction in thin films using thermoelastic damping for calibration,” J. Microelectromech. S. 20, 764–773 (2011).
[Crossref]

Garbini, J. L.

W. M. Dougherty, K. J. Bruland, J. L. Garbini, and J. A. Sidles, “Detection of AC magnetic signals by parametric mode coupling in a mechanical oscillator,” Meas. Sci. Technol. 7, 1733–1739 (1996).
[Crossref]

Goodman, J.

D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC Hammer,” Publ. Astron. Soc. Pac. 125, 306–312 (2013).
[Crossref]

Guillermo Villanueva, L.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

Hadjar, Y.

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

Haghighi, I. M.

I. M. Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, D. Vitali, I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, “Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer,” Phys. Rev. Appl. 9, 034031 (2018).
[Crossref]

Haimi, E.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Hannula, S. P.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Heidmann, A.

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

Herring, P. K.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

Hogg, D. W.

D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC Hammer,” Publ. Astron. Soc. Pac. 125, 306–312 (2013).
[Crossref]

Hunger, D.

A. Jöckel, M. T. Rakher, M. Korppi, S. Camerer, D. Hunger, M. Mader, and P. Treutlein, “Spectroscopy of mechanical dissipation in micro-mechanical membranes,” Appl. Phys. Lett. 99, 143109 (2011).
[Crossref]

Hyun, S.

S. Hyun, W. L. Brown, and R. P. Vinci, “Thickness and temperature dependence of stress relaxation in nanoscale aluminum films,” Appl. Phys. Lett. 83, 4411–4413 (2003).
[Crossref]

Iotti, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Iwase, E.

Jayanti, S. V.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Ji, C. H.

H. S. Kim, J. M. Kim, Y. S. Bang, E. S. Song, C. H. Ji, and Y. K. Kim, “Fabrication of a vertical sidewall using double-sided anisotropic etching of <100> oriented silicon,” J. Micromech. Microeng. 22, 095014 (2012).
[Crossref]

Jöckel, A.

A. Jöckel, M. T. Rakher, M. Korppi, S. Camerer, D. Hunger, M. Mader, and P. Treutlein, “Spectroscopy of mechanical dissipation in micro-mechanical membranes,” Appl. Phys. Lett. 99, 143109 (2011).
[Crossref]

Julin, J.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Karrai, K.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[Crossref] [PubMed]

Kilpi, L.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Kim, H. S.

H. S. Kim, J. M. Kim, Y. S. Bang, E. S. Song, C. H. Ji, and Y. K. Kim, “Fabrication of a vertical sidewall using double-sided anisotropic etching of <100> oriented silicon,” J. Micromech. Microeng. 22, 095014 (2012).
[Crossref]

Kim, J. M.

H. S. Kim, J. M. Kim, Y. S. Bang, E. S. Song, C. H. Ji, and Y. K. Kim, “Fabrication of a vertical sidewall using double-sided anisotropic etching of <100> oriented silicon,” J. Micromech. Microeng. 22, 095014 (2012).
[Crossref]

Kim, Y. K.

H. S. Kim, J. M. Kim, Y. S. Bang, E. S. Song, C. H. Ji, and Y. K. Kim, “Fabrication of a vertical sidewall using double-sided anisotropic etching of <100> oriented silicon,” J. Micromech. Microeng. 22, 095014 (2012).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Kong, J.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

Korppi, M.

A. Jöckel, M. T. Rakher, M. Korppi, S. Camerer, D. Hunger, M. Mader, and P. Treutlein, “Spectroscopy of mechanical dissipation in micro-mechanical membranes,” Appl. Phys. Lett. 99, 143109 (2011).
[Crossref]

Koskinen, J.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Kress, S. J. P.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Laitinen, M.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Lang, D.

D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC Hammer,” Publ. Astron. Soc. Pac. 125, 306–312 (2013).
[Crossref]

Lipsanen, H.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Liu, X.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Lyytinen, J.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Mader, M.

A. Jöckel, M. T. Rakher, M. Korppi, S. Camerer, D. Hunger, M. Mader, and P. Treutlein, “Spectroscopy of mechanical dissipation in micro-mechanical membranes,” Appl. Phys. Lett. 99, 143109 (2011).
[Crossref]

Malossi, N.

I. M. Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, D. Vitali, I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, “Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer,” Phys. Rev. Appl. 9, 034031 (2018).
[Crossref]

I. M. Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, D. Vitali, I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, “Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer,” Phys. Rev. Appl. 9, 034031 (2018).
[Crossref]

Marcus, C. M.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

J. M. Taylor, A. S. Sørensen, C. M. Marcus, and E. S. Polzik, “Laser cooling and optical detection of excitations in a LC electrical circuit,” Phys. Rev. Lett. 107, 273601 (2011).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

McPeak, K. M.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Metzger, C. H.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[Crossref] [PubMed]

Meyer, S.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Midolo, L.

L. Midolo, A. Schliesser, and A. Fiore, “Nano-opto-electro-mechanical systems,” Nat. Nanotechnol. 13, 11–18 (2018).
[Crossref] [PubMed]

Moaddel Haghighi, I.

I. M. Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, D. Vitali, I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, “Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer,” Phys. Rev. Appl. 9, 034031 (2018).
[Crossref]

Møller, C. B.

A. Barg, Y. Tsaturyan, E. Belhage, W. H. P. Nielsen, C. B. Møller, and A. Schliesser, “Measuring and imaging nanomechanical motion with laser light,” Appl. Phys. B 123, 71–85 (2018).

Nagasaka, K.

Y. Tominaga, K. Nagasaka, K. Usami, and K. Takeda, “Studies on NMR-signal up-conversion from radio-frequency to optical regimes using a lightweight nanomembrane transducer,” J. Magn. Reson. 298, 6–15 (2018).
[Crossref] [PubMed]

K. Takeda, K. Nagasaka, A. Noguchi, R. Yamazaki, Y. Nakamura, E. Iwase, J. M. Taylor, and K. Usami, “Electro-mechano-optical detection of nuclear magnetic resonance,” Optica 5, 152–158 (2017).
[Crossref]

Nakamura, Y.

Natali, R.

I. M. Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, D. Vitali, I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, “Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer,” Phys. Rev. Appl. 9, 034031 (2018).
[Crossref]

I. M. Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, D. Vitali, I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, “Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer,” Phys. Rev. Appl. 9, 034031 (2018).
[Crossref]

Nielsen, W. H. P.

A. Barg, Y. Tsaturyan, E. Belhage, W. H. P. Nielsen, C. B. Møller, and A. Schliesser, “Measuring and imaging nanomechanical motion with laser light,” Appl. Phys. B 123, 71–85 (2018).

Noguchi, A.

Norris, D. J.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Osborn, K.

K. Cicak, M. Allman, J. Strong, K. Osborn, and R. Simmonds, “Vacuum-gap capacitors for low-loss superconducting resonant circuits,” IEEE Trans. on Appl. Supercond. 19, 948–952 (2009).
[Crossref]

Pinard, M.

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

Polzik, E. S.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

J. M. Taylor, A. S. Sørensen, C. M. Marcus, and E. S. Polzik, “Laser cooling and optical detection of excitations in a LC electrical circuit,” Phys. Rev. Lett. 107, 273601 (2011).
[Crossref]

Pozar, D. M.

D. M. Pozar, Microwave Engineering (John Wiley and Sons, Inc., 2012), 4th ed.

Prabhakar, S.

G. Sosale, S. Prabhakar, L. G. Frechette, and S. Vengallatore, “A microcantilever platform for measuring internal friction in thin films using thermoelastic damping for calibration,” J. Microelectromech. S. 20, 764–773 (2011).
[Crossref]

Purdy, T. P.

P.-L. Yu, T. P. Purdy, and C. A. Regal, “Control of material damping in high-Q membrane microresonators,” Phys. Rev. Lett. 108, 083603 (2012).
[Crossref] [PubMed]

Puurunen, R. L.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Rakher, M. T.

A. Jöckel, M. T. Rakher, M. Korppi, S. Camerer, D. Hunger, M. Mader, and P. Treutlein, “Spectroscopy of mechanical dissipation in micro-mechanical membranes,” Appl. Phys. Lett. 99, 143109 (2011).
[Crossref]

Regal, C. A.

P.-L. Yu, T. P. Purdy, and C. A. Regal, “Control of material damping in high-Q membrane microresonators,” Phys. Rev. Lett. 108, 083603 (2012).
[Crossref] [PubMed]

Ronkainen, H.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Rossinelli, A.

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Saccomandi, P.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13, 14105–14120 (2013).
[Crossref]

Sajavaara, T.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Schena, E.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13, 14105–14120 (2013).
[Crossref]

Schliesser, A.

A. Barg, Y. Tsaturyan, E. Belhage, W. H. P. Nielsen, C. B. Møller, and A. Schliesser, “Measuring and imaging nanomechanical motion with laser light,” Appl. Phys. B 123, 71–85 (2018).

L. Midolo, A. Schliesser, and A. Fiore, “Nano-opto-electro-mechanical systems,” Nat. Nanotechnol. 13, 11–18 (2018).
[Crossref] [PubMed]

E. Zeuthen, A. Schliesser, J. M. Taylor, and A. S. Sørensen, “Electro-optomechanical equivalent circuits for quantum transduction,” Phys. Rev. Appl. 10, 044036 (2017).
[Crossref]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Schmid, S.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

Schneider, D.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Shin, Y. C.

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

Sidles, J. A.

W. M. Dougherty, K. J. Bruland, J. L. Garbini, and J. A. Sidles, “Detection of AC magnetic signals by parametric mode coupling in a mechanical oscillator,” Meas. Sci. Technol. 7, 1733–1739 (1996).
[Crossref]

Simmonds, R.

K. Cicak, M. Allman, J. Strong, K. Osborn, and R. Simmonds, “Vacuum-gap capacitors for low-loss superconducting resonant circuits,” IEEE Trans. on Appl. Supercond. 19, 948–952 (2009).
[Crossref]

Simonsen, A.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Sintonen, S.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Song, E. S.

H. S. Kim, J. M. Kim, Y. S. Bang, E. S. Song, C. H. Ji, and Y. K. Kim, “Fabrication of a vertical sidewall using double-sided anisotropic etching of <100> oriented silicon,” J. Micromech. Microeng. 22, 095014 (2012).
[Crossref]

Sørensen, A.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Sørensen, A. S.

E. Zeuthen, A. Schliesser, J. M. Taylor, and A. S. Sørensen, “Electro-optomechanical equivalent circuits for quantum transduction,” Phys. Rev. Appl. 10, 044036 (2017).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

J. M. Taylor, A. S. Sørensen, C. M. Marcus, and E. S. Polzik, “Laser cooling and optical detection of excitations in a LC electrical circuit,” Phys. Rev. Lett. 107, 273601 (2011).
[Crossref]

Sosale, G.

G. Sosale, S. Prabhakar, L. G. Frechette, and S. Vengallatore, “A microcantilever platform for measuring internal friction in thin films using thermoelastic damping for calibration,” J. Microelectromech. S. 20, 764–773 (2011).
[Crossref]

Strong, J.

K. Cicak, M. Allman, J. Strong, K. Osborn, and R. Simmonds, “Vacuum-gap capacitors for low-loss superconducting resonant circuits,” IEEE Trans. on Appl. Supercond. 19, 948–952 (2009).
[Crossref]

Taffoni, F.

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13, 14105–14120 (2013).
[Crossref]

Takeda, K.

Y. Tominaga, K. Nagasaka, K. Usami, and K. Takeda, “Studies on NMR-signal up-conversion from radio-frequency to optical regimes using a lightweight nanomembrane transducer,” J. Magn. Reson. 298, 6–15 (2018).
[Crossref] [PubMed]

K. Takeda, K. Nagasaka, A. Noguchi, R. Yamazaki, Y. Nakamura, E. Iwase, J. M. Taylor, and K. Usami, “Electro-mechano-optical detection of nuclear magnetic resonance,” Optica 5, 152–158 (2017).
[Crossref]

Taylor, J. M.

K. Takeda, K. Nagasaka, A. Noguchi, R. Yamazaki, Y. Nakamura, E. Iwase, J. M. Taylor, and K. Usami, “Electro-mechano-optical detection of nuclear magnetic resonance,” Optica 5, 152–158 (2017).
[Crossref]

E. Zeuthen, A. Schliesser, J. M. Taylor, and A. S. Sørensen, “Electro-optomechanical equivalent circuits for quantum transduction,” Phys. Rev. Appl. 10, 044036 (2017).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

J. M. Taylor, A. S. Sørensen, C. M. Marcus, and E. S. Polzik, “Laser cooling and optical detection of excitations in a LC electrical circuit,” Phys. Rev. Lett. 107, 273601 (2011).
[Crossref]

Tominaga, Y.

Y. Tominaga, K. Nagasaka, K. Usami, and K. Takeda, “Studies on NMR-signal up-conversion from radio-frequency to optical regimes using a lightweight nanomembrane transducer,” J. Magn. Reson. 298, 6–15 (2018).
[Crossref] [PubMed]

Treutlein, P.

A. Jöckel, M. T. Rakher, M. Korppi, S. Camerer, D. Hunger, M. Mader, and P. Treutlein, “Spectroscopy of mechanical dissipation in micro-mechanical membranes,” Appl. Phys. Lett. 99, 143109 (2011).
[Crossref]

Tsaturyan, Y.

A. Barg, Y. Tsaturyan, E. Belhage, W. H. P. Nielsen, C. B. Møller, and A. Schliesser, “Measuring and imaging nanomechanical motion with laser light,” Appl. Phys. B 123, 71–85 (2018).

Usami, K.

Y. Tominaga, K. Nagasaka, K. Usami, and K. Takeda, “Studies on NMR-signal up-conversion from radio-frequency to optical regimes using a lightweight nanomembrane transducer,” J. Magn. Reson. 298, 6–15 (2018).
[Crossref] [PubMed]

K. Takeda, K. Nagasaka, A. Noguchi, R. Yamazaki, Y. Nakamura, E. Iwase, J. M. Taylor, and K. Usami, “Electro-mechano-optical detection of nuclear magnetic resonance,” Optica 5, 152–158 (2017).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Vengallatore, S.

G. Sosale, S. Prabhakar, L. G. Frechette, and S. Vengallatore, “A microcantilever platform for measuring internal friction in thin films using thermoelastic damping for calibration,” J. Microelectromech. S. 20, 764–773 (2011).
[Crossref]

Villanueva, L. G.

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

Vinci, R. P.

S. Hyun, W. L. Brown, and R. P. Vinci, “Thickness and temperature dependence of stress relaxation in nanoscale aluminum films,” Appl. Phys. Lett. 83, 4411–4413 (2003).
[Crossref]

Vitali, D.

I. M. Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, D. Vitali, I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, “Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer,” Phys. Rev. Appl. 9, 034031 (2018).
[Crossref]

I. M. Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, D. Vitali, I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, “Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer,” Phys. Rev. Appl. 9, 034031 (2018).
[Crossref]

Wilson-Rae, I.

I. Wilson-Rae, “Intrinsic dissipation in nanomechanical resonators due to phonon tunneling,” Phys. Rev. B 77, 245418 (2008).
[Crossref]

Yamazaki, R.

Ylivaara, O. M. E.

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Yu, P.-L.

P.-L. Yu, T. P. Purdy, and C. A. Regal, “Control of material damping in high-Q membrane microresonators,” Phys. Rev. Lett. 108, 083603 (2012).
[Crossref] [PubMed]

Zeuthen, E.

E. Zeuthen, A. Schliesser, J. M. Taylor, and A. S. Sørensen, “Electro-optomechanical equivalent circuits for quantum transduction,” Phys. Rev. Appl. 10, 044036 (2017).
[Crossref]

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

E. Zeuthen, “Electro-optomechanical transduction & quantum hard-sphere model for dissipative Rydberg-EIT media,” Ph.D. thesis, Copenhagen (2015).

ACS Photonics (1)

K. M. McPeak, S. V. Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, “Plasmonic films can easily be better: Rules and recipes,” ACS Photonics 2, 326–333 (2015).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Barg, Y. Tsaturyan, E. Belhage, W. H. P. Nielsen, C. B. Møller, and A. Schliesser, “Measuring and imaging nanomechanical motion with laser light,” Appl. Phys. B 123, 71–85 (2018).

Appl. Phys. Lett. (2)

S. Hyun, W. L. Brown, and R. P. Vinci, “Thickness and temperature dependence of stress relaxation in nanoscale aluminum films,” Appl. Phys. Lett. 83, 4411–4413 (2003).
[Crossref]

A. Jöckel, M. T. Rakher, M. Korppi, S. Camerer, D. Hunger, M. Mader, and P. Treutlein, “Spectroscopy of mechanical dissipation in micro-mechanical membranes,” Appl. Phys. Lett. 99, 143109 (2011).
[Crossref]

Eur. Phys. J. D (1)

M. Pinard, Y. Hadjar, and A. Heidmann, “Effective mass in quantum effects of radiation pressure,” Eur. Phys. J. D 7, 107–116 (1999).

IEEE Trans. on Appl. Supercond. (1)

K. Cicak, M. Allman, J. Strong, K. Osborn, and R. Simmonds, “Vacuum-gap capacitors for low-loss superconducting resonant circuits,” IEEE Trans. on Appl. Supercond. 19, 948–952 (2009).
[Crossref]

J. Appl. Phys. (1)

S. Schmid, T. Bagci, E. Zeuthen, J. M. Taylor, P. K. Herring, M. C. Cassidy, C. M. Marcus, L. Guillermo Villanueva, B. Amato, A. Boisen, Y. C. Shin, J. Kong, A. S. Sørensen, K. Usami, and E. S. Polzik, “Single-layer graphene on silicon nitride micromembrane resonators,” J. Appl. Phys. 115, 054513 (2014).
[Crossref]

J. Magn. Reson. (1)

Y. Tominaga, K. Nagasaka, K. Usami, and K. Takeda, “Studies on NMR-signal up-conversion from radio-frequency to optical regimes using a lightweight nanomembrane transducer,” J. Magn. Reson. 298, 6–15 (2018).
[Crossref] [PubMed]

J. Microelectromech. S. (1)

G. Sosale, S. Prabhakar, L. G. Frechette, and S. Vengallatore, “A microcantilever platform for measuring internal friction in thin films using thermoelastic damping for calibration,” J. Microelectromech. S. 20, 764–773 (2011).
[Crossref]

J. Micromech. Microeng. (1)

H. S. Kim, J. M. Kim, Y. S. Bang, E. S. Song, C. H. Ji, and Y. K. Kim, “Fabrication of a vertical sidewall using double-sided anisotropic etching of <100> oriented silicon,” J. Micromech. Microeng. 22, 095014 (2012).
[Crossref]

Meas. Sci. Technol. (1)

W. M. Dougherty, K. J. Bruland, J. L. Garbini, and J. A. Sidles, “Detection of AC magnetic signals by parametric mode coupling in a mechanical oscillator,” Meas. Sci. Technol. 7, 1733–1739 (1996).
[Crossref]

Nat. Nanotechnol. (1)

L. Midolo, A. Schliesser, and A. Fiore, “Nano-opto-electro-mechanical systems,” Nat. Nanotechnol. 13, 11–18 (2018).
[Crossref] [PubMed]

Nature (2)

T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel, J. M. Taylor, A. Sørensen, K. Usami, A. Schliesser, and E. S. Polzik, “Optical detection of radio waves through a nanomechanical transducer,” Nature 507, 81–85 (2014).
[Crossref] [PubMed]

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. Appl. (2)

I. M. Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, D. Vitali, I. Moaddel Haghighi, N. Malossi, R. Natali, G. Di Giuseppe, and D. Vitali, “Sensitivity-bandwidth limit in a multimode optoelectromechanical transducer,” Phys. Rev. Appl. 9, 034031 (2018).
[Crossref]

E. Zeuthen, A. Schliesser, J. M. Taylor, and A. S. Sørensen, “Electro-optomechanical equivalent circuits for quantum transduction,” Phys. Rev. Appl. 10, 044036 (2017).
[Crossref]

Phys. Rev. B (1)

I. Wilson-Rae, “Intrinsic dissipation in nanomechanical resonators due to phonon tunneling,” Phys. Rev. B 77, 245418 (2008).
[Crossref]

Phys. Rev. Lett. (2)

J. M. Taylor, A. S. Sørensen, C. M. Marcus, and E. S. Polzik, “Laser cooling and optical detection of excitations in a LC electrical circuit,” Phys. Rev. Lett. 107, 273601 (2011).
[Crossref]

P.-L. Yu, T. P. Purdy, and C. A. Regal, “Control of material damping in high-Q membrane microresonators,” Phys. Rev. Lett. 108, 083603 (2012).
[Crossref] [PubMed]

Publ. Astron. Soc. Pac. (1)

D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, “emcee: The MCMC Hammer,” Publ. Astron. Soc. Pac. 125, 306–312 (2013).
[Crossref]

Rev. Mod. Phys. (1)

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

Sensors (Basel) (1)

F. Taffoni, D. Formica, P. Saccomandi, G. Di Pino, and E. Schena, “Optical fiber-based MR-compatible sensors for medical applications: an overview,” Sensors (Basel) 13, 14105–14120 (2013).
[Crossref]

Thin Solid Films (1)

O. M. E. Ylivaara, X. Liu, L. Kilpi, J. Lyytinen, D. Schneider, M. Laitinen, J. Julin, S. Ali, S. Sintonen, M. Berdova, E. Haimi, T. Sajavaara, H. Ronkainen, H. Lipsanen, J. Koskinen, S. P. Hannula, and R. L. Puurunen, “Aluminum oxide from trimethylaluminum and water by atomic layer deposition: The temperature dependence of residual stress, elastic modulus, hardness and adhesion,” Thin Solid Films 552, 124–135 (2014).
[Crossref]

Other (3)

G. Brooker, Modern Classical Optics (Oxford University Press, 2008), 1st ed.

D. M. Pozar, Microwave Engineering (John Wiley and Sons, Inc., 2012), 4th ed.

E. Zeuthen, “Electro-optomechanical transduction & quantum hard-sphere model for dissipative Rydberg-EIT media,” Ph.D. thesis, Copenhagen (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic showing the transduction principle. (b) Frequencies involved in the transduction for each subsystem.
Fig. 2
Fig. 2 (a) Cross-section showing the transducer chip after fabrication and membrane release. (b) Photo of the device after packaging and fiber-coupling. (c) The optical fiber network used for transduction.
Fig. 3
Fig. 3 (a) Setup schematic showing the DC bias circuit and how the laser probed the non-fiber-coupled samples. (b) Optically measured spectrum of the thermal-driven mechanical motion. The resolution bandwidth was below 7 Hz and the spectra were averaged twenty to thirty times. The fit is a Lorentzian function plus an offset. (c) Mechanical resonance frequency versus DC bias with a parabola fitted to the data.
Fig. 4
Fig. 4 Measured and modeled cavity reflection R (top) and cavity reflection derivative ΔR (bottom) as a function of the membranes static deflection induced by a DC bias (inset). ΔR was measured at several optical powers, and the errorbar is one standard deviation derived from the variance after the power has been normalized out. ΔR is normalized such that both the data and adjusted model is one at zero bias.
Fig. 5
Fig. 5 Linear fit (line) to linewidth (circles) versus optical power going into a fiber-coupled sample. Errorbars show one standard deviation.
Fig. 6
Fig. 6 (a) Diagram of the detection circuit setup. (b) Circuit model between port 1 and 2. (c) Measured (circles) and fitted model (lines) of the scattering parameters between port 1 and 2. Only every twentieth data-point is shown for clarity.
Fig. 7
Fig. 7 Noise-driven mechanical motion and the fitted response (left) and how the measured noise extrapolates to no voltage noise input (right). The grey area is the membrane and optical noise contribution. In the left column, the bottom solid line consists of the intrinsic noise contributions from mechanics (dashed), optics (lowest dotted), and electronics (dot-dashed). In the right panel, the data (circles) are the fitted curves converted into total noise temperature for different voltage noise drives. The noise drive are normalized to the circuit Johnson noise. Errorbars show one standard deviation.
Fig. 8
Fig. 8 Cross-sectional view of the membrane-capacitor at key steps in the fabrication flow. The microscope top view was taken prior to release of the membrane, and the photograph after wirebonding and mounting onto an IC socket.
Fig. 9
Fig. 9 (a) Fiber-coupling setup for the integrated device. (b) Photograph of a fiber-coupled chip without IC socket.

Tables (1)

Tables Icon

Table 1 Thickness and Refractive Index of Layers in the Optical Path

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

T mech = T m 𝒞 Ω L Ω m , Γ EM = Γ m ( 𝒞 + 1 ) ,
𝒞 = G em 2 m Ω m Γ m L Ω L Γ L .
C m 3.2 m Ω m d eff Δ Ω m V 2 ,
𝒞 ( C em ) 2 m Ω m Γ m 10 m Ω m d eff 2 Γ m Δ Ω m 2 V 4 α .
x ¯ / d eff 1.6 Δ Ω m / Ω m ,
𝒞 opt = S x x pk S x x light + 1 = 4 k B T m m Ω m 2 Γ m 1 S x x light + 1
G em = q ¯ x 1 C ( x ) = q ¯ C 2 x C m q ¯ C 2 C m .
2 m Ω m Δ Ω m = q rms 2 2 2 x 2 1 C ( x ) V rms 2 2 C m .
k C m x k = ( 1 ) k k ! S d S 0 d ( r ) k + 1 u ( r ) k .
C m = 0 A d eff 2 2 J 1 ( j 0 , 1 ) j 0 , 1 = C m d eff J 1 ( j 0 , 1 ) j 0 , 1 .
C m = 4 m Ω m d eff J 1 ( j 0 , 1 ) j 0 , 1 Δ Ω m V 2 3.2 m Ω m d eff Δ Ω m V 2
m Ω m 2 x ¯ = q ¯ 2 2 C V ¯ 2 2 C m .
x ¯ d eff = 2 J 1 ( j 0 , 1 ) j 0 , 1 Δ Ω m Ω m 1.6 Δ Ω m Ω m .

Metrics