Abstract

We present a free-space, continuous-wave laser interferometric system capable of multi-target dynamic phase measurement at acoustic frequencies up to a Nyquist bandwidth of 10.2 kHz. The system uses Digitally-enhanced Heterodyne Interferometry to range gate acoustic signals simultaneously from multiple in-line reflections while isolating coherent cross-talk between them. We demonstrate sub-nanometer displacement sensitivity across the audio band for each individual reflection surface and 1.2 m resolution between successive surfaces. Signals outside the 1.2 m range-gate of the system were suppressed by greater than 30 dB in amplitude, enabling high fidelity independent acoustic measurements.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Homodyne digital interferometry for a sensitive fiber frequency reference

Silvie Ngo, Terry G. McRae, Malcolm B. Gray, and Daniel A. Shaddock
Opt. Express 22(15) 18168-18176 (2014)

Highspeed multiplexed heterodyne interferometry

Katharina-S. Isleif, Oliver Gerberding, Sina Köhlenbeck, Andrew Sutton, Benjamin Sheard, Stefan Goßler, Daniel Shaddock, Gerhard Heinzel, and Karsten Danzmann
Opt. Express 22(20) 24689-24696 (2014)

Picometer level displacement metrology with digitally enhanced heterodyne interferometry

Glenn de Vine, David S. Rabeling, Bram J. J. Slagmolen, Timothy T-Y. Lam, Sheon Chua, Danielle M. Wuchenich, David E. McClelland, and Daniel A. Shaddock
Opt. Express 17(2) 828-837 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Wideband optical sensing using pulse interferometry,” Opt. Express 20, 19016–19029 (2012).
    [Crossref] [PubMed]
  2. J. Zheng, “Triple-sensor multiplexed frequency-modulated continuous-wave interferometric fiber-optic displacement sensor,” Appl. Opt. 46, 2189–2196 (2007).
    [Crossref] [PubMed]
  3. H. Gabai, I. Steinberg, and A. Eyal, “Multiplexing of fiber-optic ultrasound sensors via swept frequency interferometry,” Opt. Express 23, 18915–18924 (2015).
    [Crossref] [PubMed]
  4. J. Chen, Q. Liu, and Z. He, “Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber fabry-perot interferometers,” Opt. Express 25, 21914–21925 (2017).
    [Crossref] [PubMed]
  5. T. Liao, M. Hameed, and R. Hui, “Bandwidth efficient coherent lidar based on phase-diversity detection,” Appl. Opt. 54, 3157–3161 (2015).
    [Crossref] [PubMed]
  6. S. Goodman, S. Foster, J. V. Velzen, and H. Mendis, “Field demonstration of a dfb fibre laser hydrophone seabed array in jervis bay, australia,” in Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, vol. 7503 (2009).
  7. S. Foster, A. Tikhomirov, J. Harrison, and J. van Velzen, “Demonstration of an advanced fibre laser hydrophone array in gulf st vincent,” in Proc. SPIE 9634, 24th International Conference on Optical Fibre Sensors, vol. 9634 (2015).
  8. I. C. M. Littler, M. B. Gray, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies,” Opt. Express 17, 11077–11087 (2009).
    [Crossref] [PubMed]
  9. I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic acoustic sensors in a 120 km loop using rf modulation,” in Proc. SPIE 6770, Fiber Optic Sensors and Applications V, vol. 6770 (2007).
    [Crossref]
  10. I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic sensor array for geophysical survey,” in Proc. SPIE 7004, 19th International Conference on Optical Fibre Sensors, vol. 7004 (2008).
  11. I. C. M. Littler, M. B. Gray, T. T. Lam, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Optical-fiber accelerometer array: Nano-g infrasonic operation in a passive 100 km loop,” IEEE Sensors J. 10, 1117–1124 (2010).
    [Crossref]
  12. D. A. Shaddock, “Digitally enhanced heterodyne interferometry,” Opt. Lett. 32, 3355–3357 (2007).
    [Crossref] [PubMed]
  13. J. L. Machol, “Comparison of the pseudorandom noise code and pulsed direct-detection lidars for atmospheric probing,” Appl. Opt. 36, 6021–6023 (1997).
    [Crossref] [PubMed]
  14. N. Takeuchi, H. Baba, K. Sakurai, and T. Ueno, “Diode-laser random-modulation cw lidar,” Appl. Opt. 25, 63–67 (1986).
    [Crossref] [PubMed]
  15. G. de Vine, D. S. Rabeling, B. J. J. Slagmolen, T. T.-Y. Lam, S. Chua, D. M. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Picometer level displacement metrology with digitally enhanced heterodyne interferometry,” Opt. Express 17, 828–837 (2009).
    [Crossref] [PubMed]
  16. L. E. Roberts, R. L. Ward, A. J. Sutton, R. Fleddermann, G. de Vine, E. A. Malikides, D. M. R. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Coherent beam combining using a 2d internally sensed optical phased array,” Appl. Opt. 53, 4881–4885 (2014).
    [Crossref] [PubMed]
  17. D. M. R. Wuchenich, T. T.-Y. Lam, J. H. Chow, D. E. McClelland, and D. A. Shaddock, “Laser frequency noise immunity in multiplexed displacement sensing,” Opt. Lett. 36, 672–674 (2011).
    [Crossref] [PubMed]
  18. A. Sutton, D. M. R. Wuchenich, T. T. Lam, and D. A. Shaddock, “Digital enhanced homodyne interferometry for high precision metrology,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, (Optical Society of America, 2011), p. C770.
  19. K.-S. Isleif, O. Gerberding, S. Köhlenbeck, A. Sutton, B. Sheard, S. Goßler, D. Shaddock, G. Heinzel, and K. Danzmann, “Highspeed multiplexed heterodyne interferometry,” Opt. Express 22, 24689–24696 (2014).
    [Crossref] [PubMed]
  20. T. G. McRae, S. Ngo, D. A. Shaddock, M. T. L. Hsu, and M. B. Gray, “Digitally enhanced optical fiber frequency reference,” Opt. Lett. 39, 1752–1755 (2014).
    [Crossref] [PubMed]
  21. S. P. Francis, D. A. Shaddock, A. J. Sutton, G. de Vine, B. Ware, R. E. Spero, W. M. Klipstein, and K. McKenzie, “Tone-assisted time delay interferometry on grace follow-on,” Phys. Rev. D 92, 012005 (2015).
    [Crossref]
  22. S. Ngo, D. A. Shaddock, T. G. McRae, T. T.-Y. Lam, J. H. Chow, and M. B. Gray, “Suppressing rayleigh backscatter and code noise from all-fiber digital interferometers,” Opt. Lett. 41, 84–87 (2016).
    [Crossref]

2017 (1)

2016 (1)

2015 (3)

2014 (3)

2012 (1)

2011 (1)

2010 (1)

I. C. M. Littler, M. B. Gray, T. T. Lam, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Optical-fiber accelerometer array: Nano-g infrasonic operation in a passive 100 km loop,” IEEE Sensors J. 10, 1117–1124 (2010).
[Crossref]

2009 (2)

2007 (2)

1997 (1)

1986 (1)

Baba, H.

Chen, J.

Chow, J. H.

S. Ngo, D. A. Shaddock, T. G. McRae, T. T.-Y. Lam, J. H. Chow, and M. B. Gray, “Suppressing rayleigh backscatter and code noise from all-fiber digital interferometers,” Opt. Lett. 41, 84–87 (2016).
[Crossref]

D. M. R. Wuchenich, T. T.-Y. Lam, J. H. Chow, D. E. McClelland, and D. A. Shaddock, “Laser frequency noise immunity in multiplexed displacement sensing,” Opt. Lett. 36, 672–674 (2011).
[Crossref] [PubMed]

I. C. M. Littler, M. B. Gray, T. T. Lam, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Optical-fiber accelerometer array: Nano-g infrasonic operation in a passive 100 km loop,” IEEE Sensors J. 10, 1117–1124 (2010).
[Crossref]

I. C. M. Littler, M. B. Gray, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies,” Opt. Express 17, 11077–11087 (2009).
[Crossref] [PubMed]

I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic acoustic sensors in a 120 km loop using rf modulation,” in Proc. SPIE 6770, Fiber Optic Sensors and Applications V, vol. 6770 (2007).
[Crossref]

I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic sensor array for geophysical survey,” in Proc. SPIE 7004, 19th International Conference on Optical Fibre Sensors, vol. 7004 (2008).

Chua, S.

Danzmann, K.

de Vine, G.

Eyal, A.

Fleddermann, R.

Foster, S.

S. Goodman, S. Foster, J. V. Velzen, and H. Mendis, “Field demonstration of a dfb fibre laser hydrophone seabed array in jervis bay, australia,” in Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, vol. 7503 (2009).

S. Foster, A. Tikhomirov, J. Harrison, and J. van Velzen, “Demonstration of an advanced fibre laser hydrophone array in gulf st vincent,” in Proc. SPIE 9634, 24th International Conference on Optical Fibre Sensors, vol. 9634 (2015).

Francis, S. P.

S. P. Francis, D. A. Shaddock, A. J. Sutton, G. de Vine, B. Ware, R. E. Spero, W. M. Klipstein, and K. McKenzie, “Tone-assisted time delay interferometry on grace follow-on,” Phys. Rev. D 92, 012005 (2015).
[Crossref]

Gabai, H.

Gerberding, O.

Goodman, S.

S. Goodman, S. Foster, J. V. Velzen, and H. Mendis, “Field demonstration of a dfb fibre laser hydrophone seabed array in jervis bay, australia,” in Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, vol. 7503 (2009).

Goßler, S.

Gray, M. B.

S. Ngo, D. A. Shaddock, T. G. McRae, T. T.-Y. Lam, J. H. Chow, and M. B. Gray, “Suppressing rayleigh backscatter and code noise from all-fiber digital interferometers,” Opt. Lett. 41, 84–87 (2016).
[Crossref]

T. G. McRae, S. Ngo, D. A. Shaddock, M. T. L. Hsu, and M. B. Gray, “Digitally enhanced optical fiber frequency reference,” Opt. Lett. 39, 1752–1755 (2014).
[Crossref] [PubMed]

I. C. M. Littler, M. B. Gray, T. T. Lam, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Optical-fiber accelerometer array: Nano-g infrasonic operation in a passive 100 km loop,” IEEE Sensors J. 10, 1117–1124 (2010).
[Crossref]

I. C. M. Littler, M. B. Gray, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies,” Opt. Express 17, 11077–11087 (2009).
[Crossref] [PubMed]

I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic sensor array for geophysical survey,” in Proc. SPIE 7004, 19th International Conference on Optical Fibre Sensors, vol. 7004 (2008).

I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic acoustic sensors in a 120 km loop using rf modulation,” in Proc. SPIE 6770, Fiber Optic Sensors and Applications V, vol. 6770 (2007).
[Crossref]

Hameed, M.

Harrison, J.

S. Foster, A. Tikhomirov, J. Harrison, and J. van Velzen, “Demonstration of an advanced fibre laser hydrophone array in gulf st vincent,” in Proc. SPIE 9634, 24th International Conference on Optical Fibre Sensors, vol. 9634 (2015).

He, Z.

Heinzel, G.

Hsu, M. T. L.

Hui, R.

Isleif, K.-S.

Klipstein, W. M.

S. P. Francis, D. A. Shaddock, A. J. Sutton, G. de Vine, B. Ware, R. E. Spero, W. M. Klipstein, and K. McKenzie, “Tone-assisted time delay interferometry on grace follow-on,” Phys. Rev. D 92, 012005 (2015).
[Crossref]

Köhlenbeck, S.

Lam, T. T.

I. C. M. Littler, M. B. Gray, T. T. Lam, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Optical-fiber accelerometer array: Nano-g infrasonic operation in a passive 100 km loop,” IEEE Sensors J. 10, 1117–1124 (2010).
[Crossref]

A. Sutton, D. M. R. Wuchenich, T. T. Lam, and D. A. Shaddock, “Digital enhanced homodyne interferometry for high precision metrology,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, (Optical Society of America, 2011), p. C770.

Lam, T. T.-Y.

Liao, T.

Littler, I. C. M.

I. C. M. Littler, M. B. Gray, T. T. Lam, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Optical-fiber accelerometer array: Nano-g infrasonic operation in a passive 100 km loop,” IEEE Sensors J. 10, 1117–1124 (2010).
[Crossref]

I. C. M. Littler, M. B. Gray, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies,” Opt. Express 17, 11077–11087 (2009).
[Crossref] [PubMed]

I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic sensor array for geophysical survey,” in Proc. SPIE 7004, 19th International Conference on Optical Fibre Sensors, vol. 7004 (2008).

I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic acoustic sensors in a 120 km loop using rf modulation,” in Proc. SPIE 6770, Fiber Optic Sensors and Applications V, vol. 6770 (2007).
[Crossref]

Liu, Q.

Machol, J. L.

Malikides, E. A.

McClelland, D. E.

L. E. Roberts, R. L. Ward, A. J. Sutton, R. Fleddermann, G. de Vine, E. A. Malikides, D. M. R. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Coherent beam combining using a 2d internally sensed optical phased array,” Appl. Opt. 53, 4881–4885 (2014).
[Crossref] [PubMed]

D. M. R. Wuchenich, T. T.-Y. Lam, J. H. Chow, D. E. McClelland, and D. A. Shaddock, “Laser frequency noise immunity in multiplexed displacement sensing,” Opt. Lett. 36, 672–674 (2011).
[Crossref] [PubMed]

I. C. M. Littler, M. B. Gray, T. T. Lam, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Optical-fiber accelerometer array: Nano-g infrasonic operation in a passive 100 km loop,” IEEE Sensors J. 10, 1117–1124 (2010).
[Crossref]

I. C. M. Littler, M. B. Gray, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies,” Opt. Express 17, 11077–11087 (2009).
[Crossref] [PubMed]

G. de Vine, D. S. Rabeling, B. J. J. Slagmolen, T. T.-Y. Lam, S. Chua, D. M. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Picometer level displacement metrology with digitally enhanced heterodyne interferometry,” Opt. Express 17, 828–837 (2009).
[Crossref] [PubMed]

I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic sensor array for geophysical survey,” in Proc. SPIE 7004, 19th International Conference on Optical Fibre Sensors, vol. 7004 (2008).

I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic acoustic sensors in a 120 km loop using rf modulation,” in Proc. SPIE 6770, Fiber Optic Sensors and Applications V, vol. 6770 (2007).
[Crossref]

McKenzie, K.

S. P. Francis, D. A. Shaddock, A. J. Sutton, G. de Vine, B. Ware, R. E. Spero, W. M. Klipstein, and K. McKenzie, “Tone-assisted time delay interferometry on grace follow-on,” Phys. Rev. D 92, 012005 (2015).
[Crossref]

McRae, T. G.

Mendis, H.

S. Goodman, S. Foster, J. V. Velzen, and H. Mendis, “Field demonstration of a dfb fibre laser hydrophone seabed array in jervis bay, australia,” in Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, vol. 7503 (2009).

Ngo, S.

Ntziachristos, V.

Rabeling, D. S.

Razansky, D.

Roberts, L. E.

Rosenthal, A.

Sakurai, K.

Shaddock, D.

Shaddock, D. A.

S. Ngo, D. A. Shaddock, T. G. McRae, T. T.-Y. Lam, J. H. Chow, and M. B. Gray, “Suppressing rayleigh backscatter and code noise from all-fiber digital interferometers,” Opt. Lett. 41, 84–87 (2016).
[Crossref]

S. P. Francis, D. A. Shaddock, A. J. Sutton, G. de Vine, B. Ware, R. E. Spero, W. M. Klipstein, and K. McKenzie, “Tone-assisted time delay interferometry on grace follow-on,” Phys. Rev. D 92, 012005 (2015).
[Crossref]

T. G. McRae, S. Ngo, D. A. Shaddock, M. T. L. Hsu, and M. B. Gray, “Digitally enhanced optical fiber frequency reference,” Opt. Lett. 39, 1752–1755 (2014).
[Crossref] [PubMed]

L. E. Roberts, R. L. Ward, A. J. Sutton, R. Fleddermann, G. de Vine, E. A. Malikides, D. M. R. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Coherent beam combining using a 2d internally sensed optical phased array,” Appl. Opt. 53, 4881–4885 (2014).
[Crossref] [PubMed]

D. M. R. Wuchenich, T. T.-Y. Lam, J. H. Chow, D. E. McClelland, and D. A. Shaddock, “Laser frequency noise immunity in multiplexed displacement sensing,” Opt. Lett. 36, 672–674 (2011).
[Crossref] [PubMed]

I. C. M. Littler, M. B. Gray, T. T. Lam, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Optical-fiber accelerometer array: Nano-g infrasonic operation in a passive 100 km loop,” IEEE Sensors J. 10, 1117–1124 (2010).
[Crossref]

I. C. M. Littler, M. B. Gray, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies,” Opt. Express 17, 11077–11087 (2009).
[Crossref] [PubMed]

G. de Vine, D. S. Rabeling, B. J. J. Slagmolen, T. T.-Y. Lam, S. Chua, D. M. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Picometer level displacement metrology with digitally enhanced heterodyne interferometry,” Opt. Express 17, 828–837 (2009).
[Crossref] [PubMed]

D. A. Shaddock, “Digitally enhanced heterodyne interferometry,” Opt. Lett. 32, 3355–3357 (2007).
[Crossref] [PubMed]

A. Sutton, D. M. R. Wuchenich, T. T. Lam, and D. A. Shaddock, “Digital enhanced homodyne interferometry for high precision metrology,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, (Optical Society of America, 2011), p. C770.

I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic acoustic sensors in a 120 km loop using rf modulation,” in Proc. SPIE 6770, Fiber Optic Sensors and Applications V, vol. 6770 (2007).
[Crossref]

I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic sensor array for geophysical survey,” in Proc. SPIE 7004, 19th International Conference on Optical Fibre Sensors, vol. 7004 (2008).

Sheard, B.

Slagmolen, B. J. J.

Spero, R. E.

S. P. Francis, D. A. Shaddock, A. J. Sutton, G. de Vine, B. Ware, R. E. Spero, W. M. Klipstein, and K. McKenzie, “Tone-assisted time delay interferometry on grace follow-on,” Phys. Rev. D 92, 012005 (2015).
[Crossref]

Steinberg, I.

Sutton, A.

K.-S. Isleif, O. Gerberding, S. Köhlenbeck, A. Sutton, B. Sheard, S. Goßler, D. Shaddock, G. Heinzel, and K. Danzmann, “Highspeed multiplexed heterodyne interferometry,” Opt. Express 22, 24689–24696 (2014).
[Crossref] [PubMed]

A. Sutton, D. M. R. Wuchenich, T. T. Lam, and D. A. Shaddock, “Digital enhanced homodyne interferometry for high precision metrology,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, (Optical Society of America, 2011), p. C770.

Sutton, A. J.

S. P. Francis, D. A. Shaddock, A. J. Sutton, G. de Vine, B. Ware, R. E. Spero, W. M. Klipstein, and K. McKenzie, “Tone-assisted time delay interferometry on grace follow-on,” Phys. Rev. D 92, 012005 (2015).
[Crossref]

L. E. Roberts, R. L. Ward, A. J. Sutton, R. Fleddermann, G. de Vine, E. A. Malikides, D. M. R. Wuchenich, D. E. McClelland, and D. A. Shaddock, “Coherent beam combining using a 2d internally sensed optical phased array,” Appl. Opt. 53, 4881–4885 (2014).
[Crossref] [PubMed]

Takeuchi, N.

Tikhomirov, A.

S. Foster, A. Tikhomirov, J. Harrison, and J. van Velzen, “Demonstration of an advanced fibre laser hydrophone array in gulf st vincent,” in Proc. SPIE 9634, 24th International Conference on Optical Fibre Sensors, vol. 9634 (2015).

Ueno, T.

van Velzen, J.

S. Foster, A. Tikhomirov, J. Harrison, and J. van Velzen, “Demonstration of an advanced fibre laser hydrophone array in gulf st vincent,” in Proc. SPIE 9634, 24th International Conference on Optical Fibre Sensors, vol. 9634 (2015).

Velzen, J. V.

S. Goodman, S. Foster, J. V. Velzen, and H. Mendis, “Field demonstration of a dfb fibre laser hydrophone seabed array in jervis bay, australia,” in Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, vol. 7503 (2009).

Ward, R. L.

Ware, B.

S. P. Francis, D. A. Shaddock, A. J. Sutton, G. de Vine, B. Ware, R. E. Spero, W. M. Klipstein, and K. McKenzie, “Tone-assisted time delay interferometry on grace follow-on,” Phys. Rev. D 92, 012005 (2015).
[Crossref]

Wuchenich, D. M.

Wuchenich, D. M. R.

Zheng, J.

Appl. Opt. (5)

IEEE Sensors J. (1)

I. C. M. Littler, M. B. Gray, T. T. Lam, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Optical-fiber accelerometer array: Nano-g infrasonic operation in a passive 100 km loop,” IEEE Sensors J. 10, 1117–1124 (2010).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. D (1)

S. P. Francis, D. A. Shaddock, A. J. Sutton, G. de Vine, B. Ware, R. E. Spero, W. M. Klipstein, and K. McKenzie, “Tone-assisted time delay interferometry on grace follow-on,” Phys. Rev. D 92, 012005 (2015).
[Crossref]

Other (5)

A. Sutton, D. M. R. Wuchenich, T. T. Lam, and D. A. Shaddock, “Digital enhanced homodyne interferometry for high precision metrology,” in Proceedings of the International Quantum Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011, (Optical Society of America, 2011), p. C770.

I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic acoustic sensors in a 120 km loop using rf modulation,” in Proc. SPIE 6770, Fiber Optic Sensors and Applications V, vol. 6770 (2007).
[Crossref]

I. C. M. Littler, J. H. Chow, D. A. Shaddock, D. E. McClelland, and M. B. Gray, “Multiplexed fiber optic sensor array for geophysical survey,” in Proc. SPIE 7004, 19th International Conference on Optical Fibre Sensors, vol. 7004 (2008).

S. Goodman, S. Foster, J. V. Velzen, and H. Mendis, “Field demonstration of a dfb fibre laser hydrophone seabed array in jervis bay, australia,” in Proc. SPIE 7503, 20th International Conference on Optical Fibre Sensors, vol. 7503 (2009).

S. Foster, A. Tikhomirov, J. Harrison, and J. van Velzen, “Demonstration of an advanced fibre laser hydrophone array in gulf st vincent,” in Proc. SPIE 9634, 24th International Conference on Optical Fibre Sensors, vol. 9634 (2015).

Supplementary Material (1)

NameDescription
» Visualization 1       An audio demonstration of simultaneous multi-target continuous wave interferometric acoustic measurements. This is compared with a traditional heterodyne interferometric measurement to highlight signal isolation afforded through the Digital Interfero

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The experimental layout can be split into the input optics, free-space optics and digital components. The input optics, including both EOM for PRN phase modulation and AOM for LO frequency shifting, are fiber coupled. The collimator sends the PRN encoded interrogation beam through three free-space piezo actuated reflectors with Delays 2, 3 and 4, with the first reflection provided by retro-reflection from the collimator itself. The return signal is separated using a circulator and recombined with the LO before detection. After digitization, the heterodyne signals A, B and C for each reflection are recovered by mixing with appropriately delayed PRN codes. The recovered heterodyne beat notes are passed to separate IQ demodulation processes. This is done in parallel for all four reflections, all in real-time on a FPGA. The IQ demodulation output is passed to a networked host computer and recorded to disk, and in post-processing the phase is recovered.
Fig. 2
Fig. 2 The amplitude spectral density of three injected sinusoidal tones into the system, at 5800 Hz, 1257 Hz and 2115 Hz respectively. The three subplots, Fig. 2(a) shows the coupling from Channel 2, 2(b) from Channel 3 and 2(c) from Channel 4 into the other channels. By comparing the signal amplitude between the injection channel and background channels, the crosstalk was quantified. The measured crosstalk agrees with the expected cross-talk suppression from digital interferometry.
Fig. 3
Fig. 3 Measured transfer functions of (a) the phase readout shows a flat response over the entire measurement band. This was then used to measure the transfer functions of the three PZT actuated mirrors (b)-(d). Therefore in applications, the transfer function of the system is limited by the amplitude response of the acoustic transducer.
Fig. 4
Fig. 4 Amplitude spectral density measurement of the noise floor for each individual channel. Trace (a) shows the lead fiber noise measured on Channel 1. Traces (b), (c) and (d) correspond with the free-space reflectors, with (d) having higher inertial mass, and therefore lower coupling of environmental noise. We see the ambient audio band pickup on all channels between 10 Hz and 1 kHz. The low frequency roll up below 10 Hz was measured to be laser frequency noise. The high frequency noise floor reachesa displacement sensitivity on the order of 10 pm/√Hz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Φ R = 20 log 10 ( 2 π N ) dB

Metrics