Abstract

We investigated data denoising in hyperspectral terahertz pulse time-domain holography. Using the block-matching algorithms adapted for spatio-temporal and spatio-spectral volumetric data we studied and optimized parameters of these algorithms to improve phase image reconstruction quality. We propose a sequential application of the two algorithms oriented on work in temporal and spectral domains. Experimental data demonstrate the improvement in the quality of the resultant time-domain images as well as phase images and object’s relief. The simulation results are proved by comparison with the experimental ones.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz pulse time-domain holography with balance detection: complex-domain sparse imaging

Maksim Kulya, Nikolay V. Petrov, Vladimir Katkovnik, and Karen Egiazarian
Appl. Opt. 58(34) G61-G70 (2019)

Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams

Maksim Kulya, Varvara Semenova, Andrei Gorodetsky, Victor G. Bespalov, and Nikolay V. Petrov
Appl. Opt. 58(5) A90-A100 (2019)

Image reconstruction using spectroscopic and hyperspectral information for compressive terahertz imaging

Zhimin Xu and Edmund Y. Lam
J. Opt. Soc. Am. A 27(7) 1638-1646 (2010)

References

  • View by:
  • |
  • |
  • |

  1. I. Azuri, A. Hirsch, A. M Reilly, A. Tkatchenko, S. Kendler, O. Hod, and L. Kronik, “THz Spectroscopy of 2, 4, 6-trinitrotoluene Molecular Solids from First Principles,” Bull. Am. Phys. Soc. (2018).
  2. K. Kaltenecker, B. Zhou, K.-H. Tybussek, S. Engelbrecht, R. Lehmann, S. Walker, P. U. Jepsen, and B. Fischer, “Ultra-broadband THz spectroscopy for sensing and identification for security applications,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.
  3. O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express9 (2018).
    [Crossref] [PubMed]
  4. O. Smolyanskaya, E. Odlyanitskiy, K. Zaytsev, and M. Kulya, “Propagation Dynamics of the THz Radiation Through a Dehydrated Tissue by the Pulse Time Domain Holography Method,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.
  5. O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences, vol. 195 (EDP Sciences, 2018), p. 10012.
    [Crossref]
  6. V. Bespalov, A. Gorodetskii, I. Y. Denisyuk, S. Kozlov, V. Krylov, G. Lukomskii, N. Petrov, and S. Putilin, “Methods of generating superbroadband terahertz pulses with femtosecond lasers,” J. Opt. Technol. 75, 636–642 (2008).
    [Crossref]
  7. K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567–3570 (2008).
    [Crossref]
  8. K. Ahi, “Review of GaN-based devices for terahertz operation,” Opt. Eng. 56, 090901 (2017).
    [Crossref]
  9. A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by twofemtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
    [Crossref]
  10. V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
    [Crossref] [PubMed]
  11. S. Smirnov, Y. V. Grachev, A. Tsypkin, M. Kulya, S. Putilin, and V. Bespalov, “Spatial-temporal dynamics of the terahertz field generated by femtosecond filament,” in Journal of Physics: Conference Series, vol. 735 (IOP Publishing, 2016), p. 012065.
  12. S. Smirnov, M. Kulya, A. Tcypkin, S. Putilin, and V. Bespalov, “Detection of the polarization spatial distribution of THz radiation generated by two-color laser filamentation,” Nanosystems: physics, chemistry, mathematics8 (2017).
  13. A. Tcypkin, E. Ponomareva, S. Putilin, S. Smirnov, S. Shtumpf, M. Melnik, S. Kozlov, X.-C. Zhang, and et al., “Concentration dependence of terahertz generation in jets of water and ethanol mixtures,” in Infrared, Millimeter-Wave, and Terahertz Technologies V, vol. 10826 (International Society for Optics and Photonics, 2018), p. 1082603.
  14. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” JOSA B 16, 1204–1212 (1999).
    [Crossref]
  15. Q. Wu, T. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
    [Crossref]
  16. S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
    [Crossref]
  17. Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
    [Crossref]
  18. J. Van Rudd, J. L. Johnson, and D. M. Mittleman, “Cross-polarized angular emission patterns from lens-coupled terahertz antennas,” JOSA B 18, 1524–1533 (2001).
    [Crossref]
  19. N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293 (2005).
    [Crossref]
  20. J. L. Johnson, T. D. Dorney, and D. M. Mittleman, “Interferometric imaging with terahertz pulses,” IEEE Journal of selected topics in quantum electronics 7, 592–599 (2001).
    [Crossref]
  21. K. Xue, Q. Li, Y.-D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. letters 37, 3228–3230 (2012).
    [Crossref]
  22. L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. express 22, 17236–17245 (2014).
    [Crossref] [PubMed]
  23. E. Hack and P. Zolliker, “Terahertz holography for imaging amplitude and phase objects,” Opt. express 22, 16079–16086 (2014).
    [Crossref] [PubMed]
  24. M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. reports 5, 13566 (2015).
    [Crossref]
  25. P. Zolliker and E. Hack, “THz holography in reflection using a high resolution microbolometer array,” Opt. express 23, 10957–10967 (2015).
    [Crossref] [PubMed]
  26. A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
    [Crossref]
  27. N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Transactions on Terahertz Sci. Technol. 6, 464–472 (2016).
    [Crossref]
  28. M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
    [Crossref]
  29. M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. reports 8, 1390 (2018).
    [Crossref]
  30. Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).
    [Crossref]
  31. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Tech. 20, S266–S280 (2005).
    [Crossref]
  32. L. Zhang, Y. Zhang, C. Zhang, Y. Zhao, and X. Liu, “Terahertz multiwavelength phase imaging without 2π ambiguity,” Opt. Lett. 31, 3668–3670 (2006).
    [Crossref] [PubMed]
  33. L. Zhang, H. Zhong, Y. Zhang, N. Karpowicz, C. Zhang, Y. Zhao, and X.-C. Zhang, “Terahertz wave focal-plane multiwavelength phase imaging,” JOSA A 26, 1187–1190 (2009).
    [Crossref] [PubMed]
  34. A. A. Ezerskaya, D. V. Ivanov, S. A. Kozlov, and Y. S. Kivshar, “Spectral approach in the analysis of pulsed terahertz radiation,” J. Infrared, Millimeter, Terahertz Waves 33, 926–942 (2012).
    [Crossref]
  35. S. Kozlov and D. Ivanov, “Diffraction of a terahertz single-period train of the field at a slit,” J. Opt. Technol. 77, 734–736 (2010).
    [Crossref]
  36. A. Ezerskaya, D. Ivanov, V. Bespalov, and S. Kozlov, “Diffraction of single-period terahertz electromagnetic waves,” J. Opt. Technol. 78, 551–557 (2011).
    [Crossref]
  37. R. N. Bracewell and R. N. Bracewell, The Fourier transform and its applications, vol. 31999 (McGraw-HillNew York, 1986).
  38. M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
    [Crossref] [PubMed]
  39. K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3D transform-domain collaborative filtering,” in 2007 15th European Signal Processing Conference, (IEEE, 2007), pp. 145–149.
  40. V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Egiazarian, “Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments,” Optica (2017).
  41. V. Katkovnik, M. Ponomarenko, and K. Egiazarian, “Sparse approximations in complex domain based on BM3D modeling,” Signal Process. 141, 96–108 (2017).
    [Crossref]
  42. V. Katkovnik and K. Egiazarian, “Sparse phase imaging based on complex domain nonlocal BM3D techniques,” Digit. Signal Process. 63, 72–85 (2017).
    [Crossref]
  43. M. Kulya, N. Petrov, K. Egiazarian, and V. Katkovnik, “Hyperspectral terahertz pulse time-domain holography: noise filtering,” in Digital Holography and Three-Dimensional Imaging, (Optical Society of America, 2019), p. accepted.
  44. L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92, 091117 (2008).
    [Crossref]
  45. N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. reports 9, 180 (2019).
    [Crossref]
  46. “Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach–Zehnder radial-shearing interferometer,” Opt. Lett.39, 1857 (2014).
    [Crossref]
  47. D. Claus, G. Pedrini, D. Buchta, and W. Osten, “Accuracy enhanced and synthetic wavelength adjustable optical metrology via spectrally resolved digital holography,” J. Opt. Soc. Am. A 35, 546 (2018).
    [Crossref]
  48. K. Itoh, T. Inoue, T. Yoshida, and Y. Ichioka, “Interferometric supermultispectral imaging,” Appl. Opt. 29, 1625 (1990).
    [Crossref] [PubMed]
  49. M. Massaouti, C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, and S. Tzortzakis, “Detection of harmful residues in honey using terahertz time-domain spectroscopy,” Appl. spectroscopy 67, 1264–1269 (2013).
    [Crossref]
  50. M. M. Nazarov, A. P. Shkurinov, E. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
    [Crossref]
  51. K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O. Yurchenko, “In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia,” Appl. Phys. Lett. 106,053702 (2015).
    [Crossref]
  52. K. I. Zaytsev, K. G. Kudrin, S. A. Koroleva, I. N. Fokina, S. I. Volodarskaya, E. V. Novitskaya, A. N. Perov, V. E. Karasik, and S. O. Yurchenko, “Medical diagnostics using terahertz pulsed spectroscopy,” in Journal of Physics: Conference Series, vol. 486 (IOP Publishing, 2014), p. 012014.
  53. N. V. Petrov, V. G. Bespalov, and M. S. Kulya, “Terahertz pulse time-domain holography for studying of broadband beams propagation dynamics,” in Digital Holography and Three-Dimensional Imaging, (Optical Society of America, 2018), pp. DTu2F-7.
    [Crossref]
  54. M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Physics: Conf. Ser. 536, 012010 (2014).
  55. V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016 41st International Conference on, (IEEE, 2016), pp. 1–2.
  56. W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
    [Crossref]
  57. S. Withington, C. Tham, and G. Yassin, “Theoretical analysis of planar bolometric arrays for THz imaging systems,” in Millimeter and Submillimeter Detectors for Astronomy, vol. 4855 (International Society for Optics and Photonics, 2003), pp. 49–63.
    [Crossref]
  58. A. Koulouklidis, V. Y. Fedorov, and S. Tzortzakis, “Spectral bandwidth scaling laws and reconstruction of THz wave packets generated from two-color laser plasma filaments,” Phys. Rev. A 93, 033844 (2016).
    [Crossref]
  59. Y. A. Kapoyko, A. A. Drozdov, S. A. Kozlov, and X.-C. Zhang, “Evolution of few-cycle pulses in nonlinear dispersive media: Velocity of the center of mass and root-mean-square duration,” Phys. Rev. A 94, 033803 (2016).
    [Crossref]
  60. Y.-S. Lee, Principles of terahertz science and technology, vol. 170 (Springer Science & Business Media, 2009).
  61. Y. Shen, T. Watanabe, D. Arena, C.-C. Kao, J. Murphy, T. Tsang, X. Wang, and G. Carr, “Nonlinear cross-phase modulation with intense single-cycle terahertz pulses,” Phys. Rev. Lett. 99, 043901 (2007).
    [Crossref] [PubMed]
  62. A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” JOSA A 17, 74–83 (2000).
    [Crossref] [PubMed]
  63. Y. A. Shpolyanskiy, “Envelope, phase, and frequency of ultrabroadband signal in a transparent medium,” J. Exp. Theor. Phys. 111, 557–566 (2010).
    [Crossref]
  64. A. Belashov, A. Gorodetsky, M. Kulya, and N. V. Petrov, “Stepwise approach to numerical simulation of broadband femtosecond pulses propagation through amplitude and phase objects,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), (Optical Society of America, 2019), p. W1A.6.
  65. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Transactions on Image Process. 16, 2080–2095 (2007).
    [Crossref]
  66. W. Wolfe, “Introduction to imaging spectrometers, tutorial text vol,” TT25 SPIEOpt. Eng. Press. Bellingham, Washington, USA (1997).
  67. A. F. Goetz, “Three decades of hyperspectral remote sensing of the earth: A personal view,” Remote. Sens. Environ. 113, S5–S16 (2009).
    [Crossref]
  68. M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water Sa33 (2007).
  69. Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Critical reviews in food science and nutrition 52, 1039–1058 (2012).
    [Crossref] [PubMed]
  70. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. biomedical optics 19, 010901 (2014).
    [Crossref]
  71. S. Kalenkov, G. Kalenkov, and A. Shtanko, “Hyperspectral holography: an alternative application of the Fourier transform spectrometer,” JOSA B 34, B49–B55 (2017).
    [Crossref]
  72. G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modied Linnik interferometer,” Laser Phys. 29, 016201 (2018).
    [Crossref]
  73. V. Katkovnik, M. Ponomarenko, and K. O. Egiazarian, “Complex-valued image denosing based on group-wise complex-domain sparsity,” CoRR abs/1711.00362 (2017).
  74. K. Lee and J. Ahn, “Single-pixel coherent diffraction imaging,” Appl. Phys. Lett. 97, 241101 (2010).
    [Crossref]
  75. J. X. X.-C. Zhang, Introduction to Thz Wave Photonics (Springer, New York, 2010).
    [Crossref]
  76. J. M. Bioucas-Dias and G. Valadao, “Phase unwrapping via graph cuts,” IEEE Transactions on Image process. 16, 698–709 (2007).
    [Crossref]
  77. V. A. Semenova, M. S. Kulya, N. V. Petrov, Y. V. Grachev, A. N. Tsypkin, S. E. Putilin, and V. G. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), (2016), pp. 1–2.
  78. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336, 165–190 (1974).
    [Crossref]
  79. K. Falaggis, T. Kozacki, and M. Kujawinska, “Hybrid single-beam reconstruction technique for slow and fast varying wave fields,” Opt. Lett. 40, 2509 (2015).
    [Crossref] [PubMed]
  80. A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. express 26, 26444–26461 (2018).
    [Crossref] [PubMed]
  81. G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547 (2016).
    [Crossref]

2019 (2)

M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
[Crossref] [PubMed]

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. reports 9, 180 (2019).
[Crossref]

2018 (4)

D. Claus, G. Pedrini, D. Buchta, and W. Osten, “Accuracy enhanced and synthetic wavelength adjustable optical metrology via spectrally resolved digital holography,” J. Opt. Soc. Am. A 35, 546 (2018).
[Crossref]

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. reports 8, 1390 (2018).
[Crossref]

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modied Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. express 26, 26444–26461 (2018).
[Crossref] [PubMed]

2017 (5)

S. Kalenkov, G. Kalenkov, and A. Shtanko, “Hyperspectral holography: an alternative application of the Fourier transform spectrometer,” JOSA B 34, B49–B55 (2017).
[Crossref]

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

V. Katkovnik, M. Ponomarenko, and K. Egiazarian, “Sparse approximations in complex domain based on BM3D modeling,” Signal Process. 141, 96–108 (2017).
[Crossref]

V. Katkovnik and K. Egiazarian, “Sparse phase imaging based on complex domain nonlocal BM3D techniques,” Digit. Signal Process. 63, 72–85 (2017).
[Crossref]

K. Ahi, “Review of GaN-based devices for terahertz operation,” Opt. Eng. 56, 090901 (2017).
[Crossref]

2016 (5)

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Transactions on Terahertz Sci. Technol. 6, 464–472 (2016).
[Crossref]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547 (2016).
[Crossref]

A. Koulouklidis, V. Y. Fedorov, and S. Tzortzakis, “Spectral bandwidth scaling laws and reconstruction of THz wave packets generated from two-color laser plasma filaments,” Phys. Rev. A 93, 033844 (2016).
[Crossref]

Y. A. Kapoyko, A. A. Drozdov, S. A. Kozlov, and X.-C. Zhang, “Evolution of few-cycle pulses in nonlinear dispersive media: Velocity of the center of mass and root-mean-square duration,” Phys. Rev. A 94, 033803 (2016).
[Crossref]

2015 (4)

K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O. Yurchenko, “In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia,” Appl. Phys. Lett. 106,053702 (2015).
[Crossref]

K. Falaggis, T. Kozacki, and M. Kujawinska, “Hybrid single-beam reconstruction technique for slow and fast varying wave fields,” Opt. Lett. 40, 2509 (2015).
[Crossref] [PubMed]

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. reports 5, 13566 (2015).
[Crossref]

P. Zolliker and E. Hack, “THz holography in reflection using a high resolution microbolometer array,” Opt. express 23, 10957–10967 (2015).
[Crossref] [PubMed]

2014 (4)

L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. express 22, 17236–17245 (2014).
[Crossref] [PubMed]

E. Hack and P. Zolliker, “Terahertz holography for imaging amplitude and phase objects,” Opt. express 22, 16079–16086 (2014).
[Crossref] [PubMed]

M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Physics: Conf. Ser. 536, 012010 (2014).

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. biomedical optics 19, 010901 (2014).
[Crossref]

2013 (1)

M. Massaouti, C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, and S. Tzortzakis, “Detection of harmful residues in honey using terahertz time-domain spectroscopy,” Appl. spectroscopy 67, 1264–1269 (2013).
[Crossref]

2012 (3)

A. A. Ezerskaya, D. V. Ivanov, S. A. Kozlov, and Y. S. Kivshar, “Spectral approach in the analysis of pulsed terahertz radiation,” J. Infrared, Millimeter, Terahertz Waves 33, 926–942 (2012).
[Crossref]

K. Xue, Q. Li, Y.-D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. letters 37, 3228–3230 (2012).
[Crossref]

Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Critical reviews in food science and nutrition 52, 1039–1058 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (4)

K. Lee and J. Ahn, “Single-pixel coherent diffraction imaging,” Appl. Phys. Lett. 97, 241101 (2010).
[Crossref]

Y. A. Shpolyanskiy, “Envelope, phase, and frequency of ultrabroadband signal in a transparent medium,” J. Exp. Theor. Phys. 111, 557–566 (2010).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

S. Kozlov and D. Ivanov, “Diffraction of a terahertz single-period train of the field at a slit,” J. Opt. Technol. 77, 734–736 (2010).
[Crossref]

2009 (4)

L. Zhang, H. Zhong, Y. Zhang, N. Karpowicz, C. Zhang, Y. Zhao, and X.-C. Zhang, “Terahertz wave focal-plane multiwavelength phase imaging,” JOSA A 26, 1187–1190 (2009).
[Crossref] [PubMed]

A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by twofemtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

A. F. Goetz, “Three decades of hyperspectral remote sensing of the earth: A personal view,” Remote. Sens. Environ. 113, S5–S16 (2009).
[Crossref]

2008 (5)

V. Bespalov, A. Gorodetskii, I. Y. Denisyuk, S. Kozlov, V. Krylov, G. Lukomskii, N. Petrov, and S. Putilin, “Methods of generating superbroadband terahertz pulses with femtosecond lasers,” J. Opt. Technol. 75, 636–642 (2008).
[Crossref]

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567–3570 (2008).
[Crossref]

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).
[Crossref]

M. M. Nazarov, A. P. Shkurinov, E. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92, 091117 (2008).
[Crossref]

2007 (3)

J. M. Bioucas-Dias and G. Valadao, “Phase unwrapping via graph cuts,” IEEE Transactions on Image process. 16, 698–709 (2007).
[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Transactions on Image Process. 16, 2080–2095 (2007).
[Crossref]

Y. Shen, T. Watanabe, D. Arena, C.-C. Kao, J. Murphy, T. Tsang, X. Wang, and G. Carr, “Nonlinear cross-phase modulation with intense single-cycle terahertz pulses,” Phys. Rev. Lett. 99, 043901 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Tech. 20, S266–S280 (2005).
[Crossref]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293 (2005).
[Crossref]

2001 (2)

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, “Interferometric imaging with terahertz pulses,” IEEE Journal of selected topics in quantum electronics 7, 592–599 (2001).
[Crossref]

J. Van Rudd, J. L. Johnson, and D. M. Mittleman, “Cross-polarized angular emission patterns from lens-coupled terahertz antennas,” JOSA B 18, 1524–1533 (2001).
[Crossref]

2000 (2)

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” JOSA A 17, 74–83 (2000).
[Crossref] [PubMed]

1999 (1)

G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” JOSA B 16, 1204–1212 (1999).
[Crossref]

1997 (1)

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[Crossref]

1996 (1)

Q. Wu, T. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

1990 (1)

1974 (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336, 165–190 (1974).
[Crossref]

Ahi, K.

K. Ahi, “Review of GaN-based devices for terahertz operation,” Opt. Eng. 56, 090901 (2017).
[Crossref]

Ahn, J.

K. Lee and J. Ahn, “Single-pixel coherent diffraction imaging,” Appl. Phys. Lett. 97, 241101 (2010).
[Crossref]

Andreev, A. A.

A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by twofemtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Andreeva, V. A.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Arena, D.

Y. Shen, T. Watanabe, D. Arena, C.-C. Kao, J. Murphy, T. Tsang, X. Wang, and G. Carr, “Nonlinear cross-phase modulation with intense single-cycle terahertz pulses,” Phys. Rev. Lett. 99, 043901 (2007).
[Crossref] [PubMed]

Azuri, I.

I. Azuri, A. Hirsch, A. M Reilly, A. Tkatchenko, S. Kendler, O. Hod, and L. Kronik, “THz Spectroscopy of 2, 4, 6-trinitrotoluene Molecular Solids from First Principles,” Bull. Am. Phys. Soc. (2018).

Balbekin, N.

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

Balbekin, N. S.

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. reports 9, 180 (2019).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Tech. 20, S266–S280 (2005).
[Crossref]

Bartalini, S.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. reports 5, 13566 (2015).
[Crossref]

Belashov, A.

A. Belashov, A. Gorodetsky, M. Kulya, and N. V. Petrov, “Stepwise approach to numerical simulation of broadband femtosecond pulses propagation through amplitude and phase objects,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), (Optical Society of America, 2019), p. W1A.6.

Belashov, A. V.

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. reports 9, 180 (2019).
[Crossref]

Bergé, L.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Berry, M. V.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336, 165–190 (1974).
[Crossref]

Bespalov, V.

A. Ezerskaya, D. Ivanov, V. Bespalov, and S. Kozlov, “Diffraction of single-period terahertz electromagnetic waves,” J. Opt. Technol. 78, 551–557 (2011).
[Crossref]

V. Bespalov, A. Gorodetskii, I. Y. Denisyuk, S. Kozlov, V. Krylov, G. Lukomskii, N. Petrov, and S. Putilin, “Methods of generating superbroadband terahertz pulses with femtosecond lasers,” J. Opt. Technol. 75, 636–642 (2008).
[Crossref]

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016 41st International Conference on, (IEEE, 2016), pp. 1–2.

S. Smirnov, Y. V. Grachev, A. Tsypkin, M. Kulya, S. Putilin, and V. Bespalov, “Spatial-temporal dynamics of the terahertz field generated by femtosecond filament,” in Journal of Physics: Conference Series, vol. 735 (IOP Publishing, 2016), p. 012065.

S. Smirnov, M. Kulya, A. Tcypkin, S. Putilin, and V. Bespalov, “Detection of the polarization spatial distribution of THz radiation generated by two-color laser filamentation,” Nanosystems: physics, chemistry, mathematics8 (2017).

Bespalov, V. G.

M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
[Crossref] [PubMed]

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. reports 8, 1390 (2018).
[Crossref]

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Transactions on Terahertz Sci. Technol. 6, 464–472 (2016).
[Crossref]

M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Physics: Conf. Ser. 536, 012010 (2014).

A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by twofemtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

N. V. Petrov, V. G. Bespalov, and M. S. Kulya, “Terahertz pulse time-domain holography for studying of broadband beams propagation dynamics,” in Digital Holography and Three-Dimensional Imaging, (Optical Society of America, 2018), pp. DTu2F-7.
[Crossref]

V. A. Semenova, M. S. Kulya, N. V. Petrov, Y. V. Grachev, A. N. Tsypkin, S. E. Putilin, and V. G. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), (2016), pp. 1–2.

Bioucas-Dias, J. M.

J. M. Bioucas-Dias and G. Valadao, “Phase unwrapping via graph cuts,” IEEE Transactions on Image process. 16, 698–709 (2007).
[Crossref]

Borot, A.

A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. express 26, 26444–26461 (2018).
[Crossref] [PubMed]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547 (2016).
[Crossref]

Bracewell, R. N.

R. N. Bracewell and R. N. Bracewell, The Fourier transform and its applications, vol. 31999 (McGraw-HillNew York, 1986).

R. N. Bracewell and R. N. Bracewell, The Fourier transform and its applications, vol. 31999 (McGraw-HillNew York, 1986).

Brener, I.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Buchta, D.

Bulcock, H.

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water Sa33 (2007).

Carr, G.

Y. Shen, T. Watanabe, D. Arena, C.-C. Kao, J. Murphy, T. Tsang, X. Wang, and G. Carr, “Nonlinear cross-phase modulation with intense single-cycle terahertz pulses,” Phys. Rev. Lett. 99, 043901 (2007).
[Crossref] [PubMed]

Cassar, Q.

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences, vol. 195 (EDP Sciences, 2018), p. 10012.
[Crossref]

Chan, W. L.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Chen, H.-T.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Chetty, K.

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water Sa33 (2007).

Chin, S. L.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Cicchi, R.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. reports 5, 13566 (2015).
[Crossref]

Cich, M. J.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Claus, D.

Consolino, L.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. reports 5, 13566 (2015).
[Crossref]

Cui, Y.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).
[Crossref]

Dabov, K.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Transactions on Image Process. 16, 2080–2095 (2007).
[Crossref]

K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3D transform-domain collaborative filtering,” in 2007 15th European Signal Processing Conference, (IEEE, 2007), pp. 145–149.

Daskalaki, C.

M. Massaouti, C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, and S. Tzortzakis, “Detection of harmful residues in honey using terahertz time-domain spectroscopy,” Appl. spectroscopy 67, 1264–1269 (2013).
[Crossref]

de Martínez, Alaiza

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

De Natale, P.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. reports 5, 13566 (2015).
[Crossref]

Deng, C.

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92, 091117 (2008).
[Crossref]

Deninger, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Denisyuk, I. Y.

Dorney, T. D.

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, “Interferometric imaging with terahertz pulses,” IEEE Journal of selected topics in quantum electronics 7, 592–599 (2001).
[Crossref]

Drozdov, A. A.

Y. A. Kapoyko, A. A. Drozdov, S. A. Kozlov, and X.-C. Zhang, “Evolution of few-cycle pulses in nonlinear dispersive media: Velocity of the center of mass and root-mean-square duration,” Phys. Rev. A 94, 033803 (2016).
[Crossref]

Egiazarian, K.

V. Katkovnik and K. Egiazarian, “Sparse phase imaging based on complex domain nonlocal BM3D techniques,” Digit. Signal Process. 63, 72–85 (2017).
[Crossref]

V. Katkovnik, M. Ponomarenko, and K. Egiazarian, “Sparse approximations in complex domain based on BM3D modeling,” Signal Process. 141, 96–108 (2017).
[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Transactions on Image Process. 16, 2080–2095 (2007).
[Crossref]

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Egiazarian, “Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments,” Optica (2017).

M. Kulya, N. Petrov, K. Egiazarian, and V. Katkovnik, “Hyperspectral terahertz pulse time-domain holography: noise filtering,” in Digital Holography and Three-Dimensional Imaging, (Optical Society of America, 2019), p. accepted.

K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3D transform-domain collaborative filtering,” in 2007 15th European Signal Processing Conference, (IEEE, 2007), pp. 145–149.

Egiazarian, K. O.

V. Katkovnik, M. Ponomarenko, and K. O. Egiazarian, “Complex-valued image denosing based on group-wise complex-domain sparsity,” CoRR abs/1711.00362 (2017).

Engelbrecht, S.

K. Kaltenecker, B. Zhou, K.-H. Tybussek, S. Engelbrecht, R. Lehmann, S. Walker, P. U. Jepsen, and B. Fischer, “Ultra-broadband THz spectroscopy for sensing and identification for security applications,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

Esaulkov, M. N.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Ezerskaya, A.

Ezerskaya, A. A.

A. A. Ezerskaya, D. V. Ivanov, S. A. Kozlov, and Y. S. Kivshar, “Spectral approach in the analysis of pulsed terahertz radiation,” J. Infrared, Millimeter, Terahertz Waves 33, 926–942 (2012).
[Crossref]

Falaggis, K.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Tech. 20, S266–S280 (2005).
[Crossref]

Fedorov, V. Y.

A. Koulouklidis, V. Y. Fedorov, and S. Tzortzakis, “Spectral bandwidth scaling laws and reconstruction of THz wave packets generated from two-color laser plasma filaments,” Phys. Rev. A 93, 033844 (2016).
[Crossref]

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. biomedical optics 19, 010901 (2014).
[Crossref]

Feng, Y.-Z.

Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Critical reviews in food science and nutrition 52, 1039–1058 (2012).
[Crossref] [PubMed]

Fischer, B.

K. Kaltenecker, B. Zhou, K.-H. Tybussek, S. Engelbrecht, R. Lehmann, S. Walker, P. U. Jepsen, and B. Fischer, “Ultra-broadband THz spectroscopy for sensing and identification for security applications,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

Foi, A.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Transactions on Image Process. 16, 2080–2095 (2007).
[Crossref]

K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3D transform-domain collaborative filtering,” in 2007 15th European Signal Processing Conference, (IEEE, 2007), pp. 145–149.

Fokina, I. N.

K. I. Zaytsev, K. G. Kudrin, S. A. Koroleva, I. N. Fokina, S. I. Volodarskaya, E. V. Novitskaya, A. N. Perov, V. E. Karasik, and S. O. Yurchenko, “Medical diagnostics using terahertz pulsed spectroscopy,” in Journal of Physics: Conference Series, vol. 486 (IOP Publishing, 2014), p. 012014.

Gallet, V.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547 (2016).
[Crossref]

Gallot, G.

G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” JOSA B 16, 1204–1212 (1999).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Tech. 20, S266–S280 (2005).
[Crossref]

Gobert, O.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547 (2016).
[Crossref]

Goetz, A. F.

A. F. Goetz, “Three decades of hyperspectral remote sensing of the earth: A personal view,” Remote. Sens. Environ. 113, S5–S16 (2009).
[Crossref]

González, P.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Gorodetskii, A.

Gorodetskii, A. A.

A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by twofemtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Gorodetsky, A.

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. reports 9, 180 (2019).
[Crossref]

M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
[Crossref] [PubMed]

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Transactions on Terahertz Sci. Technol. 6, 464–472 (2016).
[Crossref]

M. Massaouti, C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, and S. Tzortzakis, “Detection of harmful residues in honey using terahertz time-domain spectroscopy,” Appl. spectroscopy 67, 1264–1269 (2013).
[Crossref]

A. Belashov, A. Gorodetsky, M. Kulya, and N. V. Petrov, “Stepwise approach to numerical simulation of broadband femtosecond pulses propagation through amplitude and phase objects,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), (Optical Society of America, 2019), p. W1A.6.

Goryachev, I.

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express9 (2018).
[Crossref] [PubMed]

Govender, M.

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water Sa33 (2007).

Grachev, Y.

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express9 (2018).
[Crossref] [PubMed]

Grachev, Y. V.

S. Smirnov, Y. V. Grachev, A. Tsypkin, M. Kulya, S. Putilin, and V. Bespalov, “Spatial-temporal dynamics of the terahertz field generated by femtosecond filament,” in Journal of Physics: Conference Series, vol. 735 (IOP Publishing, 2016), p. 012065.

V. A. Semenova, M. S. Kulya, N. V. Petrov, Y. V. Grachev, A. N. Tsypkin, S. E. Putilin, and V. G. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), (2016), pp. 1–2.

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016 41st International Conference on, (IEEE, 2016), pp. 1–2.

Gredyuhina, I.

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

Grischkowsky, D.

G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” JOSA B 16, 1204–1212 (1999).
[Crossref]

Grüninger, M.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Guillet, J.-P.

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences, vol. 195 (EDP Sciences, 2018), p. 10012.
[Crossref]

Gürtler, A.

A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” JOSA A 17, 74–83 (2000).
[Crossref] [PubMed]

Güsten, R.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Hack, E.

Hebling, J.

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567–3570 (2008).
[Crossref]

Helm, H.

A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” JOSA A 17, 74–83 (2000).
[Crossref] [PubMed]

Hemberger, J.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Hewitt, T.

Q. Wu, T. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

Hirsch, A.

I. Azuri, A. Hirsch, A. M Reilly, A. Tkatchenko, S. Kendler, O. Hod, and L. Kronik, “THz Spectroscopy of 2, 4, 6-trinitrotoluene Molecular Solids from First Principles,” Bull. Am. Phys. Soc. (2018).

Hod, O.

I. Azuri, A. Hirsch, A. M Reilly, A. Tkatchenko, S. Kendler, O. Hod, and L. Kronik, “THz Spectroscopy of 2, 4, 6-trinitrotoluene Molecular Solids from First Principles,” Bull. Am. Phys. Soc. (2018).

Hoffmann, M. C.

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567–3570 (2008).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Tech. 20, S266–S280 (2005).
[Crossref]

Huang, H.

Hwang, J.-S.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293 (2005).
[Crossref]

Ichioka, Y.

Inoue, T.

Itoh, K.

Ivanov, D.

Ivanov, D. V.

A. A. Ezerskaya, D. V. Ivanov, S. A. Kozlov, and Y. S. Kivshar, “Spectral approach in the analysis of pulsed terahertz radiation,” J. Infrared, Millimeter, Terahertz Waves 33, 926–942 (2012).
[Crossref]

Jepsen, P. U.

A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” JOSA A 17, 74–83 (2000).
[Crossref] [PubMed]

K. Kaltenecker, B. Zhou, K.-H. Tybussek, S. Engelbrecht, R. Lehmann, S. Walker, P. U. Jepsen, and B. Fischer, “Ultra-broadband THz spectroscopy for sensing and identification for security applications,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

Johnson, J. L.

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, “Interferometric imaging with terahertz pulses,” IEEE Journal of selected topics in quantum electronics 7, 592–599 (2001).
[Crossref]

J. Van Rudd, J. L. Johnson, and D. M. Mittleman, “Cross-polarized angular emission patterns from lens-coupled terahertz antennas,” JOSA B 18, 1524–1533 (2001).
[Crossref]

Kalenkov, G.

S. Kalenkov, G. Kalenkov, and A. Shtanko, “Hyperspectral holography: an alternative application of the Fourier transform spectrometer,” JOSA B 34, B49–B55 (2017).
[Crossref]

Kalenkov, G. S.

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modied Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

Kalenkov, S.

S. Kalenkov, G. Kalenkov, and A. Shtanko, “Hyperspectral holography: an alternative application of the Fourier transform spectrometer,” JOSA B 34, B49–B55 (2017).
[Crossref]

Kalenkov, S. G.

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modied Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

Kaltenecker, K.

K. Kaltenecker, B. Zhou, K.-H. Tybussek, S. Engelbrecht, R. Lehmann, S. Walker, P. U. Jepsen, and B. Fischer, “Ultra-broadband THz spectroscopy for sensing and identification for security applications,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

Kao, C.-C.

Y. Shen, T. Watanabe, D. Arena, C.-C. Kao, J. Murphy, T. Tsang, X. Wang, and G. Carr, “Nonlinear cross-phase modulation with intense single-cycle terahertz pulses,” Phys. Rev. Lett. 99, 043901 (2007).
[Crossref] [PubMed]

Kapoyko, Y. A.

Y. A. Kapoyko, A. A. Drozdov, S. A. Kozlov, and X.-C. Zhang, “Evolution of few-cycle pulses in nonlinear dispersive media: Velocity of the center of mass and root-mean-square duration,” Phys. Rev. A 94, 033803 (2016).
[Crossref]

Karasik, V. E.

K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O. Yurchenko, “In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia,” Appl. Phys. Lett. 106,053702 (2015).
[Crossref]

K. I. Zaytsev, K. G. Kudrin, S. A. Koroleva, I. N. Fokina, S. I. Volodarskaya, E. V. Novitskaya, A. N. Perov, V. E. Karasik, and S. O. Yurchenko, “Medical diagnostics using terahertz pulsed spectroscopy,” in Journal of Physics: Conference Series, vol. 486 (IOP Publishing, 2014), p. 012014.

Karpowicz, N.

L. Zhang, H. Zhong, Y. Zhang, N. Karpowicz, C. Zhang, Y. Zhao, and X.-C. Zhang, “Terahertz wave focal-plane multiwavelength phase imaging,” JOSA A 26, 1187–1190 (2009).
[Crossref] [PubMed]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293 (2005).
[Crossref]

Katkovnik, V.

V. Katkovnik, M. Ponomarenko, and K. Egiazarian, “Sparse approximations in complex domain based on BM3D modeling,” Signal Process. 141, 96–108 (2017).
[Crossref]

V. Katkovnik and K. Egiazarian, “Sparse phase imaging based on complex domain nonlocal BM3D techniques,” Digit. Signal Process. 63, 72–85 (2017).
[Crossref]

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Transactions on Image Process. 16, 2080–2095 (2007).
[Crossref]

V. Katkovnik, M. Ponomarenko, and K. O. Egiazarian, “Complex-valued image denosing based on group-wise complex-domain sparsity,” CoRR abs/1711.00362 (2017).

M. Kulya, N. Petrov, K. Egiazarian, and V. Katkovnik, “Hyperspectral terahertz pulse time-domain holography: noise filtering,” in Digital Holography and Three-Dimensional Imaging, (Optical Society of America, 2019), p. accepted.

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Egiazarian, “Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments,” Optica (2017).

Kendler, S.

I. Azuri, A. Hirsch, A. M Reilly, A. Tkatchenko, S. Kendler, O. Hod, and L. Kronik, “THz Spectroscopy of 2, 4, 6-trinitrotoluene Molecular Solids from First Principles,” Bull. Am. Phys. Soc. (2018).

Kivshar, Y. S.

A. A. Ezerskaya, D. V. Ivanov, S. A. Kozlov, and Y. S. Kivshar, “Spectral approach in the analysis of pulsed terahertz radiation,” J. Infrared, Millimeter, Terahertz Waves 33, 926–942 (2012).
[Crossref]

Koroleva, S. A.

K. I. Zaytsev, K. G. Kudrin, S. A. Koroleva, I. N. Fokina, S. I. Volodarskaya, E. V. Novitskaya, A. N. Perov, V. E. Karasik, and S. O. Yurchenko, “Medical diagnostics using terahertz pulsed spectroscopy,” in Journal of Physics: Conference Series, vol. 486 (IOP Publishing, 2014), p. 012014.

Kosareva, O. G.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Koulouklidis, A.

A. Koulouklidis, V. Y. Fedorov, and S. Tzortzakis, “Spectral bandwidth scaling laws and reconstruction of THz wave packets generated from two-color laser plasma filaments,” Phys. Rev. A 93, 033844 (2016).
[Crossref]

Koulouklidis, A. D.

M. Massaouti, C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, and S. Tzortzakis, “Detection of harmful residues in honey using terahertz time-domain spectroscopy,” Appl. spectroscopy 67, 1264–1269 (2013).
[Crossref]

Kozacki, T.

Kozlov, S.

Kozlov, S. A.

Y. A. Kapoyko, A. A. Drozdov, S. A. Kozlov, and X.-C. Zhang, “Evolution of few-cycle pulses in nonlinear dispersive media: Velocity of the center of mass and root-mean-square duration,” Phys. Rev. A 94, 033803 (2016).
[Crossref]

A. A. Ezerskaya, D. V. Ivanov, S. A. Kozlov, and Y. S. Kivshar, “Spectral approach in the analysis of pulsed terahertz radiation,” J. Infrared, Millimeter, Terahertz Waves 33, 926–942 (2012).
[Crossref]

A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by twofemtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Kronik, L.

I. Azuri, A. Hirsch, A. M Reilly, A. Tkatchenko, S. Kendler, O. Hod, and L. Kronik, “THz Spectroscopy of 2, 4, 6-trinitrotoluene Molecular Solids from First Principles,” Bull. Am. Phys. Soc. (2018).

Krylov, V.

Krylov, V. N.

A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by twofemtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Kudrin, K. G.

K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O. Yurchenko, “In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia,” Appl. Phys. Lett. 106,053702 (2015).
[Crossref]

K. I. Zaytsev, K. G. Kudrin, S. A. Koroleva, I. N. Fokina, S. I. Volodarskaya, E. V. Novitskaya, A. N. Perov, V. E. Karasik, and S. O. Yurchenko, “Medical diagnostics using terahertz pulsed spectroscopy,” in Journal of Physics: Conference Series, vol. 486 (IOP Publishing, 2014), p. 012014.

Kujawinska, M.

Kuleshov, E.

M. M. Nazarov, A. P. Shkurinov, E. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Kulya, M.

M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
[Crossref] [PubMed]

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express9 (2018).
[Crossref] [PubMed]

O. Smolyanskaya, E. Odlyanitskiy, K. Zaytsev, and M. Kulya, “Propagation Dynamics of the THz Radiation Through a Dehydrated Tissue by the Pulse Time Domain Holography Method,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences, vol. 195 (EDP Sciences, 2018), p. 10012.
[Crossref]

S. Smirnov, M. Kulya, A. Tcypkin, S. Putilin, and V. Bespalov, “Detection of the polarization spatial distribution of THz radiation generated by two-color laser filamentation,” Nanosystems: physics, chemistry, mathematics8 (2017).

S. Smirnov, Y. V. Grachev, A. Tsypkin, M. Kulya, S. Putilin, and V. Bespalov, “Spatial-temporal dynamics of the terahertz field generated by femtosecond filament,” in Journal of Physics: Conference Series, vol. 735 (IOP Publishing, 2016), p. 012065.

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016 41st International Conference on, (IEEE, 2016), pp. 1–2.

A. Belashov, A. Gorodetsky, M. Kulya, and N. V. Petrov, “Stepwise approach to numerical simulation of broadband femtosecond pulses propagation through amplitude and phase objects,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), (Optical Society of America, 2019), p. W1A.6.

M. Kulya, N. Petrov, K. Egiazarian, and V. Katkovnik, “Hyperspectral terahertz pulse time-domain holography: noise filtering,” in Digital Holography and Three-Dimensional Imaging, (Optical Society of America, 2019), p. accepted.

Kulya, M. S.

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. reports 9, 180 (2019).
[Crossref]

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. reports 8, 1390 (2018).
[Crossref]

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Transactions on Terahertz Sci. Technol. 6, 464–472 (2016).
[Crossref]

M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Physics: Conf. Ser. 536, 012010 (2014).

N. V. Petrov, V. G. Bespalov, and M. S. Kulya, “Terahertz pulse time-domain holography for studying of broadband beams propagation dynamics,” in Digital Holography and Three-Dimensional Imaging, (Optical Society of America, 2018), pp. DTu2F-7.
[Crossref]

V. A. Semenova, M. S. Kulya, N. V. Petrov, Y. V. Grachev, A. N. Tsypkin, S. E. Putilin, and V. G. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), (2016), pp. 1–2.

Latychevskaia, T.

Lee, K.

K. Lee and J. Ahn, “Single-pixel coherent diffraction imaging,” Appl. Phys. Lett. 97, 241101 (2010).
[Crossref]

Lee, Y.-S.

Y.-S. Lee, Principles of terahertz science and technology, vol. 170 (Springer Science & Business Media, 2009).

Lehmann, R.

K. Kaltenecker, B. Zhou, K.-H. Tybussek, S. Engelbrecht, R. Lehmann, S. Walker, P. U. Jepsen, and B. Fischer, “Ultra-broadband THz spectroscopy for sensing and identification for security applications,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

Lepeshkin, A.

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences, vol. 195 (EDP Sciences, 2018), p. 10012.
[Crossref]

Li, Q.

K. Xue, Q. Li, Y.-D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. letters 37, 3228–3230 (2012).
[Crossref]

Li, Y.-D.

K. Xue, Q. Li, Y.-D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. letters 37, 3228–3230 (2012).
[Crossref]

Li, Z.

Lin, K.-I.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293 (2005).
[Crossref]

Liu, X.

Locatelli, M.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. reports 5, 13566 (2015).
[Crossref]

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. biomedical optics 19, 010901 (2014).
[Crossref]

Lukomskii, G.

Lukomskii, G. V.

A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by twofemtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Makarov, V. A.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Massaouti, M.

M. Massaouti, C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, and S. Tzortzakis, “Detection of harmful residues in honey using terahertz time-domain spectroscopy,” Appl. spectroscopy 67, 1264–1269 (2013).
[Crossref]

Matsuura, S.

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[Crossref]

Mayorga, I. C.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Meerovich, I. G.

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modied Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

Melnik, M.

A. Tcypkin, E. Ponomareva, S. Putilin, S. Smirnov, S. Shtumpf, M. Melnik, S. Kozlov, X.-C. Zhang, and et al., “Concentration dependence of terahertz generation in jets of water and ethanol mixtures,” in Infrared, Millimeter-Wave, and Terahertz Technologies V, vol. 10826 (International Society for Optics and Photonics, 2018), p. 1082603.

Mittleman, D. M.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

J. Van Rudd, J. L. Johnson, and D. M. Mittleman, “Cross-polarized angular emission patterns from lens-coupled terahertz antennas,” JOSA B 18, 1524–1533 (2001).
[Crossref]

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, “Interferometric imaging with terahertz pulses,” IEEE Journal of selected topics in quantum electronics 7, 592–599 (2001).
[Crossref]

Mounaix, P.

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences, vol. 195 (EDP Sciences, 2018), p. 10012.
[Crossref]

Murphy, J.

Y. Shen, T. Watanabe, D. Arena, C.-C. Kao, J. Murphy, T. Tsang, X. Wang, and G. Carr, “Nonlinear cross-phase modulation with intense single-cycle terahertz pulses,” Phys. Rev. Lett. 99, 043901 (2007).
[Crossref] [PubMed]

Nazarov, M. M.

M. M. Nazarov, A. P. Shkurinov, E. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Nechiporenko, A.

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

Nelson, K. A.

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567–3570 (2008).
[Crossref]

Novitskaya, E. V.

K. I. Zaytsev, K. G. Kudrin, S. A. Koroleva, I. N. Fokina, S. I. Volodarskaya, E. V. Novitskaya, A. N. Perov, V. E. Karasik, and S. O. Yurchenko, “Medical diagnostics using terahertz pulsed spectroscopy,” in Journal of Physics: Conference Series, vol. 486 (IOP Publishing, 2014), p. 012014.

Novoselov, E. V.

A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by twofemtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336, 165–190 (1974).
[Crossref]

Odlyanitskiy, E.

O. Smolyanskaya, E. Odlyanitskiy, K. Zaytsev, and M. Kulya, “Propagation Dynamics of the THz Radiation Through a Dehydrated Tissue by the Pulse Time Domain Holography Method,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express9 (2018).
[Crossref] [PubMed]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Tech. 20, S266–S280 (2005).
[Crossref]

Osten, W.

Panov, N. A.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Pariente, G.

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547 (2016).
[Crossref]

Pavone, F.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. reports 5, 13566 (2015).
[Crossref]

Pedrini, G.

Perov, A. N.

K. I. Zaytsev, K. G. Kudrin, S. A. Koroleva, I. N. Fokina, S. I. Volodarskaya, E. V. Novitskaya, A. N. Perov, V. E. Karasik, and S. O. Yurchenko, “Medical diagnostics using terahertz pulsed spectroscopy,” in Journal of Physics: Conference Series, vol. 486 (IOP Publishing, 2014), p. 012014.

Petrov, N.

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

V. Bespalov, A. Gorodetskii, I. Y. Denisyuk, S. Kozlov, V. Krylov, G. Lukomskii, N. Petrov, and S. Putilin, “Methods of generating superbroadband terahertz pulses with femtosecond lasers,” J. Opt. Technol. 75, 636–642 (2008).
[Crossref]

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences, vol. 195 (EDP Sciences, 2018), p. 10012.
[Crossref]

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016 41st International Conference on, (IEEE, 2016), pp. 1–2.

M. Kulya, N. Petrov, K. Egiazarian, and V. Katkovnik, “Hyperspectral terahertz pulse time-domain holography: noise filtering,” in Digital Holography and Three-Dimensional Imaging, (Optical Society of America, 2019), p. accepted.

Petrov, N. V.

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. reports 9, 180 (2019).
[Crossref]

M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
[Crossref] [PubMed]

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. reports 8, 1390 (2018).
[Crossref]

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Transactions on Terahertz Sci. Technol. 6, 464–472 (2016).
[Crossref]

M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Physics: Conf. Ser. 536, 012010 (2014).

A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by twofemtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

A. Belashov, A. Gorodetsky, M. Kulya, and N. V. Petrov, “Stepwise approach to numerical simulation of broadband femtosecond pulses propagation through amplitude and phase objects,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), (Optical Society of America, 2019), p. W1A.6.

N. V. Petrov, V. G. Bespalov, and M. S. Kulya, “Terahertz pulse time-domain holography for studying of broadband beams propagation dynamics,” in Digital Holography and Three-Dimensional Imaging, (Optical Society of America, 2018), pp. DTu2F-7.
[Crossref]

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Egiazarian, “Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments,” Optica (2017).

V. A. Semenova, M. S. Kulya, N. V. Petrov, Y. V. Grachev, A. N. Tsypkin, S. E. Putilin, and V. G. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), (2016), pp. 1–2.

Piao, Z.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

Ponomarenko, M.

V. Katkovnik, M. Ponomarenko, and K. Egiazarian, “Sparse approximations in complex domain based on BM3D modeling,” Signal Process. 141, 96–108 (2017).
[Crossref]

V. Katkovnik, M. Ponomarenko, and K. O. Egiazarian, “Complex-valued image denosing based on group-wise complex-domain sparsity,” CoRR abs/1711.00362 (2017).

Ponomareva, E.

A. Tcypkin, E. Ponomareva, S. Putilin, S. Smirnov, S. Shtumpf, M. Melnik, S. Kozlov, X.-C. Zhang, and et al., “Concentration dependence of terahertz generation in jets of water and ethanol mixtures,” in Infrared, Millimeter-Wave, and Terahertz Technologies V, vol. 10826 (International Society for Optics and Photonics, 2018), p. 1082603.

Putilin, S.

V. Bespalov, A. Gorodetskii, I. Y. Denisyuk, S. Kozlov, V. Krylov, G. Lukomskii, N. Petrov, and S. Putilin, “Methods of generating superbroadband terahertz pulses with femtosecond lasers,” J. Opt. Technol. 75, 636–642 (2008).
[Crossref]

A. Tcypkin, E. Ponomareva, S. Putilin, S. Smirnov, S. Shtumpf, M. Melnik, S. Kozlov, X.-C. Zhang, and et al., “Concentration dependence of terahertz generation in jets of water and ethanol mixtures,” in Infrared, Millimeter-Wave, and Terahertz Technologies V, vol. 10826 (International Society for Optics and Photonics, 2018), p. 1082603.

S. Smirnov, M. Kulya, A. Tcypkin, S. Putilin, and V. Bespalov, “Detection of the polarization spatial distribution of THz radiation generated by two-color laser filamentation,” Nanosystems: physics, chemistry, mathematics8 (2017).

S. Smirnov, Y. V. Grachev, A. Tsypkin, M. Kulya, S. Putilin, and V. Bespalov, “Spatial-temporal dynamics of the terahertz field generated by femtosecond filament,” in Journal of Physics: Conference Series, vol. 735 (IOP Publishing, 2016), p. 012065.

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016 41st International Conference on, (IEEE, 2016), pp. 1–2.

Putilin, S. E.

A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by twofemtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

V. A. Semenova, M. S. Kulya, N. V. Petrov, Y. V. Grachev, A. N. Tsypkin, S. E. Putilin, and V. G. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), (2016), pp. 1–2.

Quéré, F.

A. Borot and F. Quéré, “Spatio-spectral metrology at focus of ultrashort lasers: a phase-retrieval approach,” Opt. express 26, 26444–26461 (2018).
[Crossref] [PubMed]

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547 (2016).
[Crossref]

Ravaro, M.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. reports 5, 13566 (2015).
[Crossref]

Reilly, A. M

I. Azuri, A. Hirsch, A. M Reilly, A. Tkatchenko, S. Kendler, O. Hod, and L. Kronik, “THz Spectroscopy of 2, 4, 6-trinitrotoluene Molecular Solids from First Principles,” Bull. Am. Phys. Soc. (2018).

Reshetov, I. V.

K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O. Yurchenko, “In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia,” Appl. Phys. Lett. 106,053702 (2015).
[Crossref]

Roggenbuck, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Rong, L.

Sakai, K.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[Crossref]

Schelkanova, I.

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express9 (2018).
[Crossref] [PubMed]

Schmitz, H.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Tech. 20, S266–S280 (2005).
[Crossref]

Semenova, V.

M. Kulya, V. Semenova, A. Gorodetsky, V. G. Bespalov, and N. V. Petrov, “Spatio-temporal and spatiospectral metrology of terahertz broadband uniformly topologically charged vortex beams,” Appl. Opt. 58, A90–A100 (2019).
[Crossref] [PubMed]

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016 41st International Conference on, (IEEE, 2016), pp. 1–2.

Semenova, V. A.

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. reports 8, 1390 (2018).
[Crossref]

V. A. Semenova, M. S. Kulya, N. V. Petrov, Y. V. Grachev, A. N. Tsypkin, S. E. Putilin, and V. G. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), (2016), pp. 1–2.

Shen, Y.

Y. Shen, T. Watanabe, D. Arena, C.-C. Kao, J. Murphy, T. Tsang, X. Wang, and G. Carr, “Nonlinear cross-phase modulation with intense single-cycle terahertz pulses,” Phys. Rev. Lett. 99, 043901 (2007).
[Crossref] [PubMed]

Shevkunov, I.

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Egiazarian, “Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments,” Optica (2017).

Shipilo, D. E.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Shkurinov, A. P.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

M. M. Nazarov, A. P. Shkurinov, E. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Shpolyanskiy, Y. A.

Y. A. Shpolyanskiy, “Envelope, phase, and frequency of ultrabroadband signal in a transparent medium,” J. Exp. Theor. Phys. 111, 557–566 (2010).
[Crossref]

Shtanko, A.

S. Kalenkov, G. Kalenkov, and A. Shtanko, “Hyperspectral holography: an alternative application of the Fourier transform spectrometer,” JOSA B 34, B49–B55 (2017).
[Crossref]

Shtanko, A. E.

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modied Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

Shtumpf, S.

A. Tcypkin, E. Ponomareva, S. Putilin, S. Smirnov, S. Shtumpf, M. Melnik, S. Kozlov, X.-C. Zhang, and et al., “Concentration dependence of terahertz generation in jets of water and ethanol mixtures,” in Infrared, Millimeter-Wave, and Terahertz Technologies V, vol. 10826 (International Society for Optics and Photonics, 2018), p. 1082603.

Smirnov, S.

A. Tcypkin, E. Ponomareva, S. Putilin, S. Smirnov, S. Shtumpf, M. Melnik, S. Kozlov, X.-C. Zhang, and et al., “Concentration dependence of terahertz generation in jets of water and ethanol mixtures,” in Infrared, Millimeter-Wave, and Terahertz Technologies V, vol. 10826 (International Society for Optics and Photonics, 2018), p. 1082603.

S. Smirnov, Y. V. Grachev, A. Tsypkin, M. Kulya, S. Putilin, and V. Bespalov, “Spatial-temporal dynamics of the terahertz field generated by femtosecond filament,” in Journal of Physics: Conference Series, vol. 735 (IOP Publishing, 2016), p. 012065.

S. Smirnov, M. Kulya, A. Tcypkin, S. Putilin, and V. Bespalov, “Detection of the polarization spatial distribution of THz radiation generated by two-color laser filamentation,” Nanosystems: physics, chemistry, mathematics8 (2017).

Smolyanskaya, O.

O. Smolyanskaya, E. Odlyanitskiy, K. Zaytsev, and M. Kulya, “Propagation Dynamics of the THz Radiation Through a Dehydrated Tissue by the Pulse Time Domain Holography Method,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences, vol. 195 (EDP Sciences, 2018), p. 10012.
[Crossref]

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express9 (2018).
[Crossref] [PubMed]

Solyankin, P. M.

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Stumpf, S. A.

A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by twofemtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Sun, D.-W.

Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Critical reviews in food science and nutrition 52, 1039–1058 (2012).
[Crossref] [PubMed]

Sun, W.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).
[Crossref]

Tani, M.

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[Crossref]

Taylor, A. J.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Tcypkin, A.

S. Smirnov, M. Kulya, A. Tcypkin, S. Putilin, and V. Bespalov, “Detection of the polarization spatial distribution of THz radiation generated by two-color laser filamentation,” Nanosystems: physics, chemistry, mathematics8 (2017).

A. Tcypkin, E. Ponomareva, S. Putilin, S. Smirnov, S. Shtumpf, M. Melnik, S. Kozlov, X.-C. Zhang, and et al., “Concentration dependence of terahertz generation in jets of water and ethanol mixtures,” in Infrared, Millimeter-Wave, and Terahertz Technologies V, vol. 10826 (International Society for Optics and Photonics, 2018), p. 1082603.

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express9 (2018).
[Crossref] [PubMed]

Tcypkin, A. N.

M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Physics: Conf. Ser. 536, 012010 (2014).

Tham, C.

S. Withington, C. Tham, and G. Yassin, “Theoretical analysis of planar bolometric arrays for THz imaging systems,” in Millimeter and Submillimeter Detectors for Astronomy, vol. 4855 (International Society for Optics and Photonics, 2003), pp. 49–63.
[Crossref]

Tkatchenko, A.

I. Azuri, A. Hirsch, A. M Reilly, A. Tkatchenko, S. Kendler, O. Hod, and L. Kronik, “THz Spectroscopy of 2, 4, 6-trinitrotoluene Molecular Solids from First Principles,” Bull. Am. Phys. Soc. (2018).

Toropova, Y.

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express9 (2018).
[Crossref] [PubMed]

Tsang, T.

Y. Shen, T. Watanabe, D. Arena, C.-C. Kao, J. Murphy, T. Tsang, X. Wang, and G. Carr, “Nonlinear cross-phase modulation with intense single-cycle terahertz pulses,” Phys. Rev. Lett. 99, 043901 (2007).
[Crossref] [PubMed]

Tsypkin, A.

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016 41st International Conference on, (IEEE, 2016), pp. 1–2.

S. Smirnov, Y. V. Grachev, A. Tsypkin, M. Kulya, S. Putilin, and V. Bespalov, “Spatial-temporal dynamics of the terahertz field generated by femtosecond filament,” in Journal of Physics: Conference Series, vol. 735 (IOP Publishing, 2016), p. 012065.

Tsypkin, A. N.

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Transactions on Terahertz Sci. Technol. 6, 464–472 (2016).
[Crossref]

V. A. Semenova, M. S. Kulya, N. V. Petrov, Y. V. Grachev, A. N. Tsypkin, S. E. Putilin, and V. G. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), (2016), pp. 1–2.

Tuchin, V.

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express9 (2018).
[Crossref] [PubMed]

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences, vol. 195 (EDP Sciences, 2018), p. 10012.
[Crossref]

Tuchin, V. V.

M. M. Nazarov, A. P. Shkurinov, E. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Tybussek, K.-H.

K. Kaltenecker, B. Zhou, K.-H. Tybussek, S. Engelbrecht, R. Lehmann, S. Walker, P. U. Jepsen, and B. Fischer, “Ultra-broadband THz spectroscopy for sensing and identification for security applications,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

Tzortzakis, S.

A. Koulouklidis, V. Y. Fedorov, and S. Tzortzakis, “Spectral bandwidth scaling laws and reconstruction of THz wave packets generated from two-color laser plasma filaments,” Phys. Rev. A 93, 033844 (2016).
[Crossref]

M. Massaouti, C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, and S. Tzortzakis, “Detection of harmful residues in honey using terahertz time-domain spectroscopy,” Appl. spectroscopy 67, 1264–1269 (2013).
[Crossref]

Uspenskaya, M.

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

Valadao, G.

J. M. Bioucas-Dias and G. Valadao, “Phase unwrapping via graph cuts,” IEEE Transactions on Image process. 16, 698–709 (2007).
[Crossref]

Van Rudd, J.

J. Van Rudd, J. L. Johnson, and D. M. Mittleman, “Cross-polarized angular emission patterns from lens-coupled terahertz antennas,” JOSA B 18, 1524–1533 (2001).
[Crossref]

Vitiello, M. S.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. reports 5, 13566 (2015).
[Crossref]

Volodarskaya, S. I.

K. I. Zaytsev, K. G. Kudrin, S. A. Koroleva, I. N. Fokina, S. I. Volodarskaya, E. V. Novitskaya, A. N. Perov, V. E. Karasik, and S. O. Yurchenko, “Medical diagnostics using terahertz pulsed spectroscopy,” in Journal of Physics: Conference Series, vol. 486 (IOP Publishing, 2014), p. 012014.

Walker, S.

K. Kaltenecker, B. Zhou, K.-H. Tybussek, S. Engelbrecht, R. Lehmann, S. Walker, P. U. Jepsen, and B. Fischer, “Ultra-broadband THz spectroscopy for sensing and identification for security applications,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

Wang, D.

Wang, Q.

K. Xue, Q. Li, Y.-D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. letters 37, 3228–3230 (2012).
[Crossref]

Wang, X.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).
[Crossref]

Y. Shen, T. Watanabe, D. Arena, C.-C. Kao, J. Murphy, T. Tsang, X. Wang, and G. Carr, “Nonlinear cross-phase modulation with intense single-cycle terahertz pulses,” Phys. Rev. Lett. 99, 043901 (2007).
[Crossref] [PubMed]

Wang, Y.

Watanabe, T.

Y. Shen, T. Watanabe, D. Arena, C.-C. Kao, J. Murphy, T. Tsang, X. Wang, and G. Carr, “Nonlinear cross-phase modulation with intense single-cycle terahertz pulses,” Phys. Rev. Lett. 99, 043901 (2007).
[Crossref] [PubMed]

Winnewisser, C.

A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” JOSA A 17, 74–83 (2000).
[Crossref] [PubMed]

Withington, S.

S. Withington, C. Tham, and G. Yassin, “Theoretical analysis of planar bolometric arrays for THz imaging systems,” in Millimeter and Submillimeter Detectors for Astronomy, vol. 4855 (International Society for Optics and Photonics, 2003), pp. 49–63.
[Crossref]

Wolfe, W.

W. Wolfe, “Introduction to imaging spectrometers, tutorial text vol,” TT25 SPIEOpt. Eng. Press. Bellingham, Washington, USA (1997).

Wu, Q.

Q. Wu, T. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

Xu, J.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293 (2005).
[Crossref]

Xue, K.

K. Xue, Q. Li, Y.-D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. letters 37, 3228–3230 (2012).
[Crossref]

Yassin, G.

S. Withington, C. Tham, and G. Yassin, “Theoretical analysis of planar bolometric arrays for THz imaging systems,” in Millimeter and Submillimeter Detectors for Astronomy, vol. 4855 (International Society for Optics and Photonics, 2003), pp. 49–63.
[Crossref]

Yeh, K.-L.

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567–3570 (2008).
[Crossref]

Yoshida, T.

Yurchenko, S. O.

K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O. Yurchenko, “In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia,” Appl. Phys. Lett. 106,053702 (2015).
[Crossref]

K. I. Zaytsev, K. G. Kudrin, S. A. Koroleva, I. N. Fokina, S. I. Volodarskaya, E. V. Novitskaya, A. N. Perov, V. E. Karasik, and S. O. Yurchenko, “Medical diagnostics using terahertz pulsed spectroscopy,” in Journal of Physics: Conference Series, vol. 486 (IOP Publishing, 2014), p. 012014.

Zaalishvili, N. Y.

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modied Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

Zaytsev, K.

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences, vol. 195 (EDP Sciences, 2018), p. 10012.
[Crossref]

O. Smolyanskaya, E. Odlyanitskiy, K. Zaytsev, and M. Kulya, “Propagation Dynamics of the THz Radiation Through a Dehydrated Tissue by the Pulse Time Domain Holography Method,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

Zaytsev, K. I.

K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O. Yurchenko, “In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia,” Appl. Phys. Lett. 106,053702 (2015).
[Crossref]

K. I. Zaytsev, K. G. Kudrin, S. A. Koroleva, I. N. Fokina, S. I. Volodarskaya, E. V. Novitskaya, A. N. Perov, V. E. Karasik, and S. O. Yurchenko, “Medical diagnostics using terahertz pulsed spectroscopy,” in Journal of Physics: Conference Series, vol. 486 (IOP Publishing, 2014), p. 012014.

Zhang, C.

L. Zhang, H. Zhong, Y. Zhang, N. Karpowicz, C. Zhang, Y. Zhao, and X.-C. Zhang, “Terahertz wave focal-plane multiwavelength phase imaging,” JOSA A 26, 1187–1190 (2009).
[Crossref] [PubMed]

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92, 091117 (2008).
[Crossref]

L. Zhang, Y. Zhang, C. Zhang, Y. Zhao, and X. Liu, “Terahertz multiwavelength phase imaging without 2π ambiguity,” Opt. Lett. 31, 3668–3670 (2006).
[Crossref] [PubMed]

Zhang, J. X. X.-C.

J. X. X.-C. Zhang, Introduction to Thz Wave Photonics (Springer, New York, 2010).
[Crossref]

Zhang, L.

L. Zhang, H. Zhong, Y. Zhang, N. Karpowicz, C. Zhang, Y. Zhao, and X.-C. Zhang, “Terahertz wave focal-plane multiwavelength phase imaging,” JOSA A 26, 1187–1190 (2009).
[Crossref] [PubMed]

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92, 091117 (2008).
[Crossref]

L. Zhang, Y. Zhang, C. Zhang, Y. Zhao, and X. Liu, “Terahertz multiwavelength phase imaging without 2π ambiguity,” Opt. Lett. 31, 3668–3670 (2006).
[Crossref] [PubMed]

Zhang, X.

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293 (2005).
[Crossref]

Zhang, X.-C.

Y. A. Kapoyko, A. A. Drozdov, S. A. Kozlov, and X.-C. Zhang, “Evolution of few-cycle pulses in nonlinear dispersive media: Velocity of the center of mass and root-mean-square duration,” Phys. Rev. A 94, 033803 (2016).
[Crossref]

L. Zhang, H. Zhong, Y. Zhang, N. Karpowicz, C. Zhang, Y. Zhao, and X.-C. Zhang, “Terahertz wave focal-plane multiwavelength phase imaging,” JOSA A 26, 1187–1190 (2009).
[Crossref] [PubMed]

Q. Wu, T. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

A. Tcypkin, E. Ponomareva, S. Putilin, S. Smirnov, S. Shtumpf, M. Melnik, S. Kozlov, X.-C. Zhang, and et al., “Concentration dependence of terahertz generation in jets of water and ethanol mixtures,” in Infrared, Millimeter-Wave, and Terahertz Technologies V, vol. 10826 (International Society for Optics and Photonics, 2018), p. 1082603.

Zhang, Y.

L. Zhang, H. Zhong, Y. Zhang, N. Karpowicz, C. Zhang, Y. Zhao, and X.-C. Zhang, “Terahertz wave focal-plane multiwavelength phase imaging,” JOSA A 26, 1187–1190 (2009).
[Crossref] [PubMed]

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).
[Crossref]

L. Zhang, Y. Zhang, C. Zhang, Y. Zhao, and X. Liu, “Terahertz multiwavelength phase imaging without 2π ambiguity,” Opt. Lett. 31, 3668–3670 (2006).
[Crossref] [PubMed]

Zhao, Y.

L. Zhang, H. Zhong, Y. Zhang, N. Karpowicz, C. Zhang, Y. Zhao, and X.-C. Zhang, “Terahertz wave focal-plane multiwavelength phase imaging,” JOSA A 26, 1187–1190 (2009).
[Crossref] [PubMed]

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92, 091117 (2008).
[Crossref]

L. Zhang, Y. Zhang, C. Zhang, Y. Zhao, and X. Liu, “Terahertz multiwavelength phase imaging without 2π ambiguity,” Opt. Lett. 31, 3668–3670 (2006).
[Crossref] [PubMed]

Zhong, H.

L. Zhang, H. Zhong, Y. Zhang, N. Karpowicz, C. Zhang, Y. Zhao, and X.-C. Zhang, “Terahertz wave focal-plane multiwavelength phase imaging,” JOSA A 26, 1187–1190 (2009).
[Crossref] [PubMed]

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92, 091117 (2008).
[Crossref]

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293 (2005).
[Crossref]

Zhou, B.

K. Kaltenecker, B. Zhou, K.-H. Tybussek, S. Engelbrecht, R. Lehmann, S. Walker, P. U. Jepsen, and B. Fischer, “Ultra-broadband THz spectroscopy for sensing and identification for security applications,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

Zhou, W.

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).
[Crossref]

Zhou, X.

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Tech. 20, S266–S280 (2005).
[Crossref]

Zolliker, P.

Appl. Opt. (2)

Appl. Phys. Lett. (6)

K. I. Zaytsev, K. G. Kudrin, V. E. Karasik, I. V. Reshetov, and S. O. Yurchenko, “In vivo terahertz spectroscopy of pigmentary skin nevi: Pilot study of non-invasive early diagnosis of dysplasia,” Appl. Phys. Lett. 106,053702 (2015).
[Crossref]

L. Zhang, H. Zhong, C. Deng, C. Zhang, and Y. Zhao, “Terahertz wave reference-free phase imaging for identification of explosives,” Appl. Phys. Lett. 92, 091117 (2008).
[Crossref]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).
[Crossref]

Q. Wu, T. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[Crossref]

S. Matsuura, M. Tani, and K. Sakai, “Generation of coherent terahertz radiation by photomixing in dipole photoconductive antennas,” Appl. Phys. Lett. 70, 559–561 (1997).
[Crossref]

K. Lee and J. Ahn, “Single-pixel coherent diffraction imaging,” Appl. Phys. Lett. 97, 241101 (2010).
[Crossref]

Appl. spectroscopy (1)

M. Massaouti, C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, and S. Tzortzakis, “Detection of harmful residues in honey using terahertz time-domain spectroscopy,” Appl. spectroscopy 67, 1264–1269 (2013).
[Crossref]

Critical reviews in food science and nutrition (1)

Y.-Z. Feng and D.-W. Sun, “Application of hyperspectral imaging in food safety inspection and control: a review,” Critical reviews in food science and nutrition 52, 1039–1058 (2012).
[Crossref] [PubMed]

Digit. Signal Process. (1)

V. Katkovnik and K. Egiazarian, “Sparse phase imaging based on complex domain nonlocal BM3D techniques,” Digit. Signal Process. 63, 72–85 (2017).
[Crossref]

IEEE Journal of selected topics in quantum electronics (1)

J. L. Johnson, T. D. Dorney, and D. M. Mittleman, “Interferometric imaging with terahertz pulses,” IEEE Journal of selected topics in quantum electronics 7, 592–599 (2001).
[Crossref]

IEEE Transactions on Image Process. (1)

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3-d transform-domain collaborative filtering,” IEEE Transactions on Image Process. 16, 2080–2095 (2007).
[Crossref]

J. M. Bioucas-Dias and G. Valadao, “Phase unwrapping via graph cuts,” IEEE Transactions on Image process. 16, 698–709 (2007).
[Crossref]

IEEE Transactions on Terahertz Sci. Technol. (1)

N. V. Petrov, M. S. Kulya, A. N. Tsypkin, V. G. Bespalov, and A. Gorodetsky, “Application of terahertz pulse time-domain holography for phase imaging,” IEEE Transactions on Terahertz Sci. Technol. 6, 464–472 (2016).
[Crossref]

J. biomedical optics (1)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. biomedical optics 19, 010901 (2014).
[Crossref]

J. Exp. Theor. Phys. (1)

Y. A. Shpolyanskiy, “Envelope, phase, and frequency of ultrabroadband signal in a transparent medium,” J. Exp. Theor. Phys. 111, 557–566 (2010).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

A. A. Ezerskaya, D. V. Ivanov, S. A. Kozlov, and Y. S. Kivshar, “Spectral approach in the analysis of pulsed terahertz radiation,” J. Infrared, Millimeter, Terahertz Waves 33, 926–942 (2012).
[Crossref]

J. Mod. Opt. (1)

M. Kulya, N. Balbekin, I. Gredyuhina, M. Uspenskaya, A. Nechiporenko, and N. Petrov, “Computational terahertz imaging with dispersive objects,” J. Mod. Opt. 64, 1283–1288 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Technol. (3)

J. Physics: Conf. Ser. (1)

M. S. Kulya, N. V. Petrov, A. N. Tcypkin, and V. G. Bespalov, “Influence of raster scan parameters on the image quality for the THz phase imaging in collimated beam with a wide aperture,” J. Physics: Conf. Ser. 536, 012010 (2014).

JOSA A (2)

L. Zhang, H. Zhong, Y. Zhang, N. Karpowicz, C. Zhang, Y. Zhao, and X.-C. Zhang, “Terahertz wave focal-plane multiwavelength phase imaging,” JOSA A 26, 1187–1190 (2009).
[Crossref] [PubMed]

A. Gürtler, C. Winnewisser, H. Helm, and P. U. Jepsen, “Terahertz pulse propagation in the near field and the far field,” JOSA A 17, 74–83 (2000).
[Crossref] [PubMed]

JOSA B (3)

S. Kalenkov, G. Kalenkov, and A. Shtanko, “Hyperspectral holography: an alternative application of the Fourier transform spectrometer,” JOSA B 34, B49–B55 (2017).
[Crossref]

J. Van Rudd, J. L. Johnson, and D. M. Mittleman, “Cross-polarized angular emission patterns from lens-coupled terahertz antennas,” JOSA B 18, 1524–1533 (2001).
[Crossref]

G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” JOSA B 16, 1204–1212 (1999).
[Crossref]

Jpn. J. Appl. Phys. (1)

Z. Piao, M. Tani, and K. Sakai, “Carrier dynamics and terahertz radiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96 (2000).
[Crossref]

Laser Phys. (1)

G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Y. Zaalishvili, “Hyperspectral holographic microscopy of bio-objects based on a modied Linnik interferometer,” Laser Phys. 29, 016201 (2018).
[Crossref]

Nat. Photonics (1)

G. Pariente, V. Gallet, A. Borot, O. Gobert, and F. Quéré, “Space–time characterization of ultra-intense femtosecond laser beams,” Nat. Photonics 10, 547 (2016).
[Crossref]

New J. Phys. (1)

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12, 043017 (2010).
[Crossref]

Opt. Commun. (1)

K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, “Generation of high average power 1 kHz shaped THz pulses via optical rectification,” Opt. Commun. 281, 3567–3570 (2008).
[Crossref]

Opt. Eng. (1)

K. Ahi, “Review of GaN-based devices for terahertz operation,” Opt. Eng. 56, 090901 (2017).
[Crossref]

Opt. express (4)

Opt. Lett. (2)

Opt. letters (1)

K. Xue, Q. Li, Y.-D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. letters 37, 3228–3230 (2012).
[Crossref]

Opt. Spectrosc. (1)

A. A. Andreev, V. G. Bespalov, A. A. Gorodetskii, S. A. Kozlov, V. N. Krylov, G. V. Lukomskii, E. V. Novoselov, N. V. Petrov, S. E. Putilin, and S. A. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by twofemtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Phys. Rev. A (2)

A. Koulouklidis, V. Y. Fedorov, and S. Tzortzakis, “Spectral bandwidth scaling laws and reconstruction of THz wave packets generated from two-color laser plasma filaments,” Phys. Rev. A 93, 033844 (2016).
[Crossref]

Y. A. Kapoyko, A. A. Drozdov, S. A. Kozlov, and X.-C. Zhang, “Evolution of few-cycle pulses in nonlinear dispersive media: Velocity of the center of mass and root-mean-square duration,” Phys. Rev. A 94, 033803 (2016).
[Crossref]

Phys. Rev. Lett. (2)

Y. Shen, T. Watanabe, D. Arena, C.-C. Kao, J. Murphy, T. Tsang, X. Wang, and G. Carr, “Nonlinear cross-phase modulation with intense single-cycle terahertz pulses,” Phys. Rev. Lett. 99, 043901 (2007).
[Crossref] [PubMed]

V. A. Andreeva, O. G. Kosareva, N. A. Panov, D. E. Shipilo, P. M. Solyankin, M. N. Esaulkov, P. González, Alaiza de Martínez, A. P. Shkurinov, V. A. Makarov, L. Bergé, and S. L. Chin, “Ultrabroad Terahertz Spectrum Generation from an Air-Based Filament Plasma,” Phys. Rev. Lett. 116, 063902 (2016).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A 336, 165–190 (1974).
[Crossref]

Quantum Electron. (1)

M. M. Nazarov, A. P. Shkurinov, E. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Quantum Electron. 38, 647 (2008).
[Crossref]

Remote. Sens. Environ. (1)

A. F. Goetz, “Three decades of hyperspectral remote sensing of the earth: A personal view,” Remote. Sens. Environ. 113, S5–S16 (2009).
[Crossref]

Sci. reports (3)

N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, “Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography,” Sci. reports 9, 180 (2019).
[Crossref]

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. reports 5, 13566 (2015).
[Crossref]

M. S. Kulya, V. A. Semenova, V. G. Bespalov, and N. V. Petrov, “On terahertz pulsed broadband Gauss-Bessel beam free-space propagation,” Sci. reports 8, 1390 (2018).
[Crossref]

Semicond. Sci. Tech. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications–explosives, weapons and drugs,” Semicond. Sci. Tech. 20, S266–S280 (2005).
[Crossref]

Semicond. Sci. Technol. (1)

N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X. Zhang, “Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,” Semicond. Sci. Technol. 20, S293 (2005).
[Crossref]

Signal Process. (1)

V. Katkovnik, M. Ponomarenko, and K. Egiazarian, “Sparse approximations in complex domain based on BM3D modeling,” Signal Process. 141, 96–108 (2017).
[Crossref]

Strain (1)

Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).
[Crossref]

Other (24)

R. N. Bracewell and R. N. Bracewell, The Fourier transform and its applications, vol. 31999 (McGraw-HillNew York, 1986).

I. Azuri, A. Hirsch, A. M Reilly, A. Tkatchenko, S. Kendler, O. Hod, and L. Kronik, “THz Spectroscopy of 2, 4, 6-trinitrotoluene Molecular Solids from First Principles,” Bull. Am. Phys. Soc. (2018).

K. Kaltenecker, B. Zhou, K.-H. Tybussek, S. Engelbrecht, R. Lehmann, S. Walker, P. U. Jepsen, and B. Fischer, “Ultra-broadband THz spectroscopy for sensing and identification for security applications,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

O. Smolyanskaya, I. Schelkanova, M. Kulya, E. Odlyanitskiy, I. Goryachev, A. Tcypkin, Y. Grachev, Y. Toropova, and V. Tuchin, “Glycerol dehydration of native and diabetic animal tissues studied by THz-TDS and NMR methods,” Biomed. Opt. Express9 (2018).
[Crossref] [PubMed]

O. Smolyanskaya, E. Odlyanitskiy, K. Zaytsev, and M. Kulya, “Propagation Dynamics of the THz Radiation Through a Dehydrated Tissue by the Pulse Time Domain Holography Method,” in 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (IEEE, 2018), pp. 1–2.

O. Smolyanskaya, Q. Cassar, M. Kulya, N. Petrov, K. Zaytsev, A. Lepeshkin, J.-P. Guillet, P. Mounaix, and V. Tuchin, “Interaction of terahertz radiation with tissue phantoms: numerical and experimental studies,” in EPJ Web of Conferences, vol. 195 (EDP Sciences, 2018), p. 10012.
[Crossref]

S. Smirnov, Y. V. Grachev, A. Tsypkin, M. Kulya, S. Putilin, and V. Bespalov, “Spatial-temporal dynamics of the terahertz field generated by femtosecond filament,” in Journal of Physics: Conference Series, vol. 735 (IOP Publishing, 2016), p. 012065.

S. Smirnov, M. Kulya, A. Tcypkin, S. Putilin, and V. Bespalov, “Detection of the polarization spatial distribution of THz radiation generated by two-color laser filamentation,” Nanosystems: physics, chemistry, mathematics8 (2017).

A. Tcypkin, E. Ponomareva, S. Putilin, S. Smirnov, S. Shtumpf, M. Melnik, S. Kozlov, X.-C. Zhang, and et al., “Concentration dependence of terahertz generation in jets of water and ethanol mixtures,” in Infrared, Millimeter-Wave, and Terahertz Technologies V, vol. 10826 (International Society for Optics and Photonics, 2018), p. 1082603.

V. Semenova, M. Kulya, N. Petrov, Y. V. Grachev, A. Tsypkin, S. Putilin, and V. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2016 41st International Conference on, (IEEE, 2016), pp. 1–2.

K. I. Zaytsev, K. G. Kudrin, S. A. Koroleva, I. N. Fokina, S. I. Volodarskaya, E. V. Novitskaya, A. N. Perov, V. E. Karasik, and S. O. Yurchenko, “Medical diagnostics using terahertz pulsed spectroscopy,” in Journal of Physics: Conference Series, vol. 486 (IOP Publishing, 2014), p. 012014.

N. V. Petrov, V. G. Bespalov, and M. S. Kulya, “Terahertz pulse time-domain holography for studying of broadband beams propagation dynamics,” in Digital Holography and Three-Dimensional Imaging, (Optical Society of America, 2018), pp. DTu2F-7.
[Crossref]

“Spectrally resolved incoherent holography: 3D spatial and spectral imaging using a Mach–Zehnder radial-shearing interferometer,” Opt. Lett.39, 1857 (2014).
[Crossref]

M. Kulya, N. Petrov, K. Egiazarian, and V. Katkovnik, “Hyperspectral terahertz pulse time-domain holography: noise filtering,” in Digital Holography and Three-Dimensional Imaging, (Optical Society of America, 2019), p. accepted.

K. Dabov, A. Foi, and K. Egiazarian, “Video denoising by sparse 3D transform-domain collaborative filtering,” in 2007 15th European Signal Processing Conference, (IEEE, 2007), pp. 145–149.

V. Katkovnik, I. Shevkunov, N. V. Petrov, and K. Egiazarian, “Computational super-resolution phase retrieval from multiple phase-coded diffraction patterns: simulation study and experiments,” Optica (2017).

M. Govender, K. Chetty, and H. Bulcock, “A review of hyperspectral remote sensing and its application in vegetation and water resource studies,” Water Sa33 (2007).

W. Wolfe, “Introduction to imaging spectrometers, tutorial text vol,” TT25 SPIEOpt. Eng. Press. Bellingham, Washington, USA (1997).

V. Katkovnik, M. Ponomarenko, and K. O. Egiazarian, “Complex-valued image denosing based on group-wise complex-domain sparsity,” CoRR abs/1711.00362 (2017).

A. Belashov, A. Gorodetsky, M. Kulya, and N. V. Petrov, “Stepwise approach to numerical simulation of broadband femtosecond pulses propagation through amplitude and phase objects,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (online), (Optical Society of America, 2019), p. W1A.6.

Y.-S. Lee, Principles of terahertz science and technology, vol. 170 (Springer Science & Business Media, 2009).

S. Withington, C. Tham, and G. Yassin, “Theoretical analysis of planar bolometric arrays for THz imaging systems,” in Millimeter and Submillimeter Detectors for Astronomy, vol. 4855 (International Society for Optics and Photonics, 2003), pp. 49–63.
[Crossref]

V. A. Semenova, M. S. Kulya, N. V. Petrov, Y. V. Grachev, A. N. Tsypkin, S. E. Putilin, and V. G. Bespalov, “Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate,” in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), (2016), pp. 1–2.

J. X. X.-C. Zhang, Introduction to Thz Wave Photonics (Springer, New York, 2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Principle scheme of pulsed THz wavefront propagation. This scheme is based on the concept of THz PTDH described and experimentally approved in [27]
Fig. 2
Fig. 2 The left curve is the normalized electrical field amplitude Ethz/E0 and the right curve is the amplitude spectrum of the corresponding input THz pulse.
Fig. 3
Fig. 3 Algorithm of hyperspectral data denoising in temporal and spectral domain.
Fig. 4
Fig. 4 Experimental setup: FL - Ti:Sa femtosecond laser system (20 fs, 790 nm, repetition rate 70 MHz, 300 mW), BS - beam splitter, C - mechanical chopper, M - mirror, DL - delay line, O - object, InAs - THz generator, XY - 2-D scan stage, PH - scanning pinhole, PCA - photoconductive antenna, L - lens, Lthz-lens for THz beam, LIA - lock-in-amplifier, ADC - digitizer, PC - computer.
Fig. 5
Fig. 5 (a) is the profile E ˜ ( t ) in THz beam center; (b) is a spatial distribution of estimated standard deviation σ; (c) and (d) are histograms of σ and normalized σ, respectively.
Fig. 6
Fig. 6 RMSE frequency dependencies for the stages of data filtration in spectral domain. Black dotted curve is a reconstruction from the initial noisy data without any filtering. Blue dotted curve is a ‘reference’ free-noise image reconstruction. Green and blue curves correspond to the reconstructed spectral data after VBM3D and CDBM3D. a) corresponds to tht = 0, b) tht = 0.1; c) tht = 0.2; d) tht = 0.3; e) tht = 0.4; f) tht = 0.5; g) tht = 0.8; h) tht = 1.
Fig. 7
Fig. 7 RMSE frequency dependencies for the stages of data filtration in spectral domain by BM3D applied separately for amplitude and phase. Green and blue curves corresponds to the spectral data in Fig. 3. Blue dotted line is a ‘reference’ free-noise image reconstruction. (a) corresponds to tht = 0.4, (b) tht = 1; (c) tht = 2; (d) tht = 3.
Fig. 8
Fig. 8 Dependency of RMSE versus frequency ν and time domain threshold factor tht. (a) is a result before CDBM3D and (b) is after it; (c,d) depicts the cross-sections indicated by line 1,2 from case (a,b) for ν = 0.25 THz and ν = 0.35 THz correspondingly. Green and blue curves correspond to the same cube colors.
Fig. 9
Fig. 9 Spectral domain phase images φ ^ ( x , y , ν ) for 0.25 THz (1st row) and 0.35 THz (2nd row) for simulation with fixed threshold value tht = 0.4. The columns correspond to the filtration stage, pointed by the colors of the spectral cubes.
Fig. 10
Fig. 10 Spectral domain phase images φ ^ ( x , y , ν ) for 0.25 THz (1st row) and 0.35 THz (2nd row) for experiment with fixed threshold value tht = 0.4. The columns correspond to the filtration stage, pointed by the colors of the spectral cubes.
Fig. 11
Fig. 11 Spectral domain phase images φ ^ ( x , y , ν ) for 0.25 THz (1st row) and 0.35 THz (2nd row) for experiment with fixed threshold value tht = 1.5. The columns correspond to the filtration stage, pointed by the colors of the spectral cubes.
Fig. 12
Fig. 12 Reconstructed relief for two values of temporal VBM3D filter: I) - tht = 0.4 and II) - tht = 1.5. Inset (a) corresponds to the reconstruction of initial data without any denoising; (b) is the case of only VBM3D filtering; (c) is the case of both VBM3D and CD-BM3D. (d) and (e) are the cross-sections depicted by dotted lines 1 and 2 correspondingly.
Fig. 13
Fig. 13 Time domain wavefront central cross-sections for three different modulation objects: phase object in form letter “λ”, spiral phase plate with input data from [77], and phase random mask. Columns 1,2 and 3 correspond to the different stages in time domain data processing. 1 is noisy data, 2 is denoised data with VBM3D and 3 is this denoised data propagated to the object plane. This is marked by yellow colors in cubes and corresponding captions E ˜ ( x , y , t , z r ), E ^ ( x , y , t , z r ) and E ^ ( x , y , t , z o ).

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E t h z ( t ) = E 0 t τ exp  ( t 2 τ 2 ) ,
G t h z ( ν ) = E t h z ( t ) exp  ( i 2 π ν t ) d t = i π 3 2 E 0 τ 2 ν exp  ( π 2 τ 2 ν 2 ) .
G t h z ( x , y , ν ) = G t h z ( ν ) exp  ( x 2 + y 2 ρ 2 ) .
G ( x , y , ν , z o ) = G t h z ( x , y , ν ) O ( x , y , ν ) = = G t h z ( x , y , ν ) T ( x , y , ν ) exp   ( i ( 2 π ν c ( n o b j ( x , y , ν ) 1 ) H ( x , y ) ) ) ,
C ( f x , f y , ν , z o ) = G ( x , y , ν , z o ) exp  ( 2 π i ( x f x + y f y ) ) d x d y .
k = 2 π ν n ( ν ) c ; k x = 2 π f x ; k y = 2 π f y .
g ( f x , f y , ν , z ) = C ( f x , f y , ν , z o ) exp  ( i 2 π ν n ( ν ) c Ξ z )
Ξ = { 1 c 2 ν 2 n 2 ( ν ) ( f x   2 + f y   2 ) , i f ( f x   2 + f y   2 ) ν 2 n 2 ( ν ) c 2 ; 0 , i f ( f x   2 + f y   2 ) > ν 2 n 2 ( ν ) c 2 .
G ( x , y , ν , z ) = g ( f x , f y , ν , z ) exp  ( 2 π i ( x f x + y f y ) ) d f x d f y .
E ( x , y , t , z ) = G ( x , y , ν , z ) exp  ( i 2 π ν t ) d ν .
E ˜ ( x , y , t , z ) = E ( x , y , t , z ) + ε σ , ε N ( 0 , 1 ) ,
Q T ( x , y , t , z r ) = { E ˜ ( x , y , t , z r ) , x X , y Y , 0 t T } ,
Q V ( x , y , ν , z ) = { G ( x , y , ν , z ) , x X , y Y , 0 ν V } ,
E ^ ( x , y , t , z r ) = V B M 3 D { Q T ( x , y , t , z r ) } .
G ^ ( x , y , ν , z ) = C D B M 3 D { G ( x , y , ν , z ) } ,
T h t = t h t σ t ,
T h s = t h s σ s ,
J = N e μ E ( T ) .
H ( x , y ) = 1 M m = 1 M   φ ^ o b j ( x , y , ν ) c 2 π ν m ( n o b j ( x , y , ν m ) 1 ) .

Metrics