Abstract

We propose and experimentally demonstrate annular arrayed-Airy beams (AAABs) carrying vortex arrays by combining multiple beams. The propagation dynamics and abrupt autofocusing property are studied. The focal intensity can be greatly increased by two orders of magnitude by increasing vortex array number. Furthermore, the autofocusing property is also enhanced significantly. This tightly autofocusing property would be advantageous for the generation of high intensity laser, optical manipulation, medical treatments, and nonlinear effects.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Abruptly autofocusing property of circular Airy vortex beams with different initial launch angles

Yunfeng Jiang, Shuofeng Zhao, Wenlei Yu, and Xiuwei Zhu
J. Opt. Soc. Am. A 35(6) 890-894 (2018)

Spiral autofocusing Airy beams carrying power-exponent-phase vortices

Peng Li, Sheng Liu, Tao Peng, Gaofeng Xie, Xuetao Gan, and Jianlin Zhao
Opt. Express 22(7) 7598-7606 (2014)

Propagation dynamics of abruptly autofocusing Airy beams with optical vortices

Yunfeng Jiang, Kaikai Huang, and Xuanhui Lu
Opt. Express 20(17) 18579-18584 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
    [Crossref]
  2. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [Crossref] [PubMed]
  3. N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35(23), 4045–4047 (2010).
    [Crossref] [PubMed]
  4. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
    [Crossref] [PubMed]
  5. Y. Jiang, W. Yu, X. Zhu, and P. Jiang, “Propagation characteristics of partially coherent circular Airy beams,” Opt. Express 26(18), 23084–23092 (2018).
    [Crossref] [PubMed]
  6. Y. Jiang, S. Zhao, W. Yu, and X. Zhu, “Abruptly autofocusing property of circular Airy vortex beams with different initial launch angles,” J. Opt. Soc. Am. A 35(6), 890–894 (2018).
    [Crossref] [PubMed]
  7. I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett. 36(10), 1890–1892 (2011).
    [Crossref] [PubMed]
  8. I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett. 36(18), 3675–3677 (2011).
    [Crossref] [PubMed]
  9. I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A 85(2), 023828 (2012).
    [Crossref]
  10. R. S. Penciu, K. G. Makris, and N. K. Efremidis, “Nonparaxial abruptly autofocusing beams,” Opt. Lett. 41(5), 1042–1045 (2016).
    [Crossref] [PubMed]
  11. H. Deng, Y. Yuan, and L. Yuan, “Annular arrayed-waveguide fiber for autofocusing Airy-like beams,” Opt. Lett. 41(4), 824–827 (2016).
    [Crossref] [PubMed]
  12. Y. Jiang, K. Huang, and X. Lu, “Propagation dynamics of abruptly autofocusing Airy beams with optical vortices,” Opt. Express 20(17), 18579–18584 (2012).
    [Crossref] [PubMed]
  13. B. Chen, C. Chen, X. Peng, Y. Peng, M. Zhou, and D. Deng, “Propagation of sharply autofocused ring Airy Gaussian vortex beams,” Opt. Express 23(15), 19288–19298 (2015).
    [Crossref] [PubMed]
  14. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
    [Crossref]
  15. Y. Jiang, K. Huang, and X. Lu, “Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle,” Opt. Express 21(20), 24413–24421 (2013).
    [Crossref] [PubMed]
  16. A. D. Koulouklidis, D. G. Papazoglou, V. Y. Fedorov, and S. Tzortzakis, “Phase Memory Preserving Harmonics from Abruptly Autofocusing Beams,” Phys. Rev. Lett. 119(22), 223901 (2017).
    [Crossref] [PubMed]
  17. M. Karpov, T. Congy, Y. Sivan, V. Fleurov, N. Pavloff, and S. Bar-ad, “Spontaneously formed autofocusing caustics in a confined self-defocusing medium,” Optica 2(12), 1053–1057 (2015).
    [Crossref]
  18. J. A. Davis, D. M. Cottrell, and D. Sand, “Abruptly autofocusing vortex beams,” Opt. Express 20(12), 13302–13310 (2012).
    [Crossref] [PubMed]
  19. P. Li, S. Liu, T. Peng, G. Xie, X. Gan, and J. Zhao, “Spiral autofocusing Airy beams carrying power-exponent-phase vortices,” Opt. Express 22(7), 7598–7606 (2014).
    [Crossref] [PubMed]
  20. S. Liu, M. Wang, P. Li, P. Zhang, and J. Zhao, “Abrupt polarization transition of vector autofocusing Airy beams,” Opt. Lett. 38(14), 2416–2418 (2013).
    [Crossref] [PubMed]
  21. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011).
    [Crossref] [PubMed]
  22. P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
    [Crossref] [PubMed]
  23. X. Yan, L. Guo, M. Cheng, and J. Li, “Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication,” Opt. Express 26(10), 12605–12619 (2018).
    [Crossref] [PubMed]
  24. T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
    [Crossref]
  25. M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Abruptly autofocusing beams enable advanced multiscale photo-polymerization,” Optica 3(5), 525–530 (2016).
    [Crossref]
  26. S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
    [Crossref] [PubMed]
  27. Y. Zhuang, Y. Zhang, B. Ding, and T. Suyama, “Trapping Rayleigh particles using highly focused higher-order radially polarized beams,” Opt. Commun. 284(7), 1734–1739 (2011).
    [Crossref]
  28. N. Li, Y. Jiang, K. Huang, and X. Lu, “Abruptly autofocusing property of blocked circular Airy beams,” Opt. Express 22(19), 22847–22853 (2014).
    [Crossref] [PubMed]
  29. Y. Jiang, X. Zhu, W. Yu, H. Shao, W. Zheng, and X. Lu, “Propagation characteristics of the modified circular Airy beam,” Opt. Express 23(23), 29834–29841 (2015).
    [Crossref] [PubMed]
  30. P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. Martinez Matos, “Symmetric Airy beams,” Opt. Lett. 39(8), 2370–2373 (2014).
    [Crossref] [PubMed]
  31. C. Y. Hwang, D. Choi, K. Y. Kim, and B. Lee, “Dual Airy beam,” Opt. Express 18(22), 23504–23516 (2010).
    [Crossref] [PubMed]
  32. Z. Z. P. Z. M. Mills, Z. G. Chen, D. N. Christodoulides, and J. J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11(3), 84–86 (2013).
  33. H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
    [Crossref]
  34. L. Li, C. Chang, X. Yuan, C. Yuan, S. Feng, S. Nie, and J. Ding, “Generation of optical vortex array along arbitrary curvilinear arrangement,” Opt. Express 26(8), 9798–9812 (2018).
    [Crossref] [PubMed]
  35. H. T. Dai, Y. J. Liu, D. Luo, and X. W. Sun, “Propagation dynamics of an optical vortex imposed on an Airy beam,” Opt. Lett. 35(23), 4075–4077 (2010).
    [Crossref] [PubMed]
  36. R. S. Penciu, Y. Qiu, M. Goutsoulas, X. Sun, Y. Hu, J. Xu, Z. Chen, and N. K. Efremidis, “Observation of microscale nonparaxial optical bottle beams,” Opt. Lett. 43(16), 3878–3881 (2018).
    [Crossref] [PubMed]
  37. Y. J. Qiu, X. Mu, C. M. Zhang, X. P. Sun, Y. Hu, Z. G. Chen, and J. J. Xu, “Generation of non-paraxial accelerating beams by active aberration compensation,” Opt. Commun. 437, 11–16 (2019).
    [Crossref]

2019 (1)

Y. J. Qiu, X. Mu, C. M. Zhang, X. P. Sun, Y. Hu, Z. G. Chen, and J. J. Xu, “Generation of non-paraxial accelerating beams by active aberration compensation,” Opt. Commun. 437, 11–16 (2019).
[Crossref]

2018 (5)

2017 (2)

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

A. D. Koulouklidis, D. G. Papazoglou, V. Y. Fedorov, and S. Tzortzakis, “Phase Memory Preserving Harmonics from Abruptly Autofocusing Beams,” Phys. Rev. Lett. 119(22), 223901 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (3)

2014 (3)

2013 (4)

S. Liu, M. Wang, P. Li, P. Zhang, and J. Zhao, “Abrupt polarization transition of vector autofocusing Airy beams,” Opt. Lett. 38(14), 2416–2418 (2013).
[Crossref] [PubMed]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
[Crossref] [PubMed]

Z. Z. P. Z. M. Mills, Z. G. Chen, D. N. Christodoulides, and J. J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11(3), 84–86 (2013).

Y. Jiang, K. Huang, and X. Lu, “Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle,” Opt. Express 21(20), 24413–24421 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (5)

2010 (3)

2007 (2)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

2001 (1)

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

1999 (1)

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

1979 (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Bar-ad, S.

Bergé, L.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

Berry, M. V.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Bille, J. F.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Chang, C.

Chen, B.

Chen, C.

Chen, Z.

Chen, Z. G.

Y. J. Qiu, X. Mu, C. M. Zhang, X. P. Sun, Y. Hu, Z. G. Chen, and J. J. Xu, “Generation of non-paraxial accelerating beams by active aberration compensation,” Opt. Commun. 437, 11–16 (2019).
[Crossref]

Z. Z. P. Z. M. Mills, Z. G. Chen, D. N. Christodoulides, and J. J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11(3), 84–86 (2013).

Cheng, M.

Choi, D.

Chremmos, I.

Chremmos, I. D.

I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A 85(2), 023828 (2012).
[Crossref]

Christodoulides, D. N.

Z. Z. P. Z. M. Mills, Z. G. Chen, D. N. Christodoulides, and J. J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11(3), 84–86 (2013).

I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A 85(2), 023828 (2012).
[Crossref]

I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett. 36(18), 3675–3677 (2011).
[Crossref] [PubMed]

I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett. 36(10), 1890–1892 (2011).
[Crossref] [PubMed]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
[Crossref] [PubMed]

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011).
[Crossref] [PubMed]

N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35(23), 4045–4047 (2010).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Congy, T.

Cottrell, D. M.

Couairon, A.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
[Crossref] [PubMed]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

Dai, H. T.

Davis, J. A.

Deng, D.

Deng, H.

Ding, B.

Y. Zhuang, Y. Zhang, B. Ding, and T. Suyama, “Trapping Rayleigh particles using highly focused higher-order radially polarized beams,” Opt. Commun. 284(7), 1734–1739 (2011).
[Crossref]

Ding, J.

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Efremidis, N. K.

R. S. Penciu, Y. Qiu, M. Goutsoulas, X. Sun, Y. Hu, J. Xu, Z. Chen, and N. K. Efremidis, “Observation of microscale nonparaxial optical bottle beams,” Opt. Lett. 43(16), 3878–3881 (2018).
[Crossref] [PubMed]

R. S. Penciu, K. G. Makris, and N. K. Efremidis, “Nonparaxial abruptly autofocusing beams,” Opt. Lett. 41(5), 1042–1045 (2016).
[Crossref] [PubMed]

I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A 85(2), 023828 (2012).
[Crossref]

I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett. 36(18), 3675–3677 (2011).
[Crossref] [PubMed]

I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett. 36(10), 1890–1892 (2011).
[Crossref] [PubMed]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
[Crossref] [PubMed]

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011).
[Crossref] [PubMed]

N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35(23), 4045–4047 (2010).
[Crossref] [PubMed]

Farsari, M.

Fedorov, V. Y.

A. D. Koulouklidis, D. G. Papazoglou, V. Y. Fedorov, and S. Tzortzakis, “Phase Memory Preserving Harmonics from Abruptly Autofocusing Beams,” Phys. Rev. Lett. 119(22), 223901 (2017).
[Crossref] [PubMed]

Feng, S.

Fleurov, V.

Franco, M.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

Gan, X.

Goutsoulas, M.

Guo, L.

Horvath, C.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Hu, Y.

Y. J. Qiu, X. Mu, C. M. Zhang, X. P. Sun, Y. Hu, Z. G. Chen, and J. J. Xu, “Generation of non-paraxial accelerating beams by active aberration compensation,” Opt. Commun. 437, 11–16 (2019).
[Crossref]

R. S. Penciu, Y. Qiu, M. Goutsoulas, X. Sun, Y. Hu, J. Xu, Z. Chen, and N. K. Efremidis, “Observation of microscale nonparaxial optical bottle beams,” Opt. Lett. 43(16), 3878–3881 (2018).
[Crossref] [PubMed]

Huang, K.

Hwang, C. Y.

Jiang, P.

Jiang, Y.

Juhasz, T.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Karpov, M.

Kim, K. Y.

Koulouklidis, A. D.

A. D. Koulouklidis, D. G. Papazoglou, V. Y. Fedorov, and S. Tzortzakis, “Phase Memory Preserving Harmonics from Abruptly Autofocusing Beams,” Phys. Rev. Lett. 119(22), 223901 (2017).
[Crossref] [PubMed]

Kurtz, R. M.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Lee, B.

Lencina, A.

Li, H.

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Li, J.

Li, L.

Li, N.

Li, P.

Li, X.

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Liu, J. J.

Z. Z. P. Z. M. Mills, Z. G. Chen, D. N. Christodoulides, and J. J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11(3), 84–86 (2013).

Liu, S.

Liu, Y. J.

Loesel, F. H.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Lu, X.

Luo, D.

Ma, H.

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Makris, K. G.

Manousidaki, M.

Martinez Matos, O.

Mills, M. S.

Mills, Z. Z. P. Z. M.

Z. Z. P. Z. M. Mills, Z. G. Chen, D. N. Christodoulides, and J. J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11(3), 84–86 (2013).

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Mourou, G.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

Mu, X.

Y. J. Qiu, X. Mu, C. M. Zhang, X. P. Sun, Y. Hu, Z. G. Chen, and J. J. Xu, “Generation of non-paraxial accelerating beams by active aberration compensation,” Opt. Commun. 437, 11–16 (2019).
[Crossref]

Mysyrowicz, A.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

Nie, S.

Nie, Z.

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Panagiotopoulos, P.

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
[Crossref] [PubMed]

Papazoglou, D. G.

A. D. Koulouklidis, D. G. Papazoglou, V. Y. Fedorov, and S. Tzortzakis, “Phase Memory Preserving Harmonics from Abruptly Autofocusing Beams,” Phys. Rev. Lett. 119(22), 223901 (2017).
[Crossref] [PubMed]

M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Abruptly autofocusing beams enable advanced multiscale photo-polymerization,” Optica 3(5), 525–530 (2016).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
[Crossref] [PubMed]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
[Crossref] [PubMed]

Pavloff, N.

Penciu, R. S.

Peng, T.

Peng, X.

Peng, Y.

Prade, B.

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

Prakash, J.

Qiu, Y.

Qiu, Y. J.

Y. J. Qiu, X. Mu, C. M. Zhang, X. P. Sun, Y. Hu, Z. G. Chen, and J. J. Xu, “Generation of non-paraxial accelerating beams by active aberration compensation,” Opt. Commun. 437, 11–16 (2019).
[Crossref]

Rodrigo, J. A.

Sand, D.

Shao, H.

Sivan, Y.

Siviloglou, G. A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Sun, X.

Sun, X. P.

Y. J. Qiu, X. Mu, C. M. Zhang, X. P. Sun, Y. Hu, Z. G. Chen, and J. J. Xu, “Generation of non-paraxial accelerating beams by active aberration compensation,” Opt. Commun. 437, 11–16 (2019).
[Crossref]

Sun, X. W.

Suyama, T.

Y. Zhuang, Y. Zhang, B. Ding, and T. Suyama, “Trapping Rayleigh particles using highly focused higher-order radially polarized beams,” Opt. Commun. 284(7), 1734–1739 (2011).
[Crossref]

Tai, Y.

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Tang, J.

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Tang, M.

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Tzortzakis, S.

A. D. Koulouklidis, D. G. Papazoglou, V. Y. Fedorov, and S. Tzortzakis, “Phase Memory Preserving Harmonics from Abruptly Autofocusing Beams,” Phys. Rev. Lett. 119(22), 223901 (2017).
[Crossref] [PubMed]

M. Manousidaki, D. G. Papazoglou, M. Farsari, and S. Tzortzakis, “Abruptly autofocusing beams enable advanced multiscale photo-polymerization,” Optica 3(5), 525–530 (2016).
[Crossref]

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
[Crossref] [PubMed]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
[Crossref] [PubMed]

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

Vaveliuk, P.

Wang, J.

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Wang, M.

Wang, Y.

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Xie, G.

Xu, J.

Xu, J. J.

Y. J. Qiu, X. Mu, C. M. Zhang, X. P. Sun, Y. Hu, Z. G. Chen, and J. J. Xu, “Generation of non-paraxial accelerating beams by active aberration compensation,” Opt. Commun. 437, 11–16 (2019).
[Crossref]

Yan, X.

Yu, W.

Yuan, C.

Yuan, L.

Yuan, X.

Yuan, Y.

Zhang, C. M.

Y. J. Qiu, X. Mu, C. M. Zhang, X. P. Sun, Y. Hu, Z. G. Chen, and J. J. Xu, “Generation of non-paraxial accelerating beams by active aberration compensation,” Opt. Commun. 437, 11–16 (2019).
[Crossref]

Zhang, P.

Zhang, Y.

Y. Zhuang, Y. Zhang, B. Ding, and T. Suyama, “Trapping Rayleigh particles using highly focused higher-order radially polarized beams,” Opt. Commun. 284(7), 1734–1739 (2011).
[Crossref]

Zhang, Z.

Zhao, J.

Zhao, S.

Zheng, W.

Zhou, M.

Zhu, X.

Zhuang, Y.

Y. Zhuang, Y. Zhang, B. Ding, and T. Suyama, “Trapping Rayleigh particles using highly focused higher-order radially polarized beams,” Opt. Commun. 284(7), 1734–1739 (2011).
[Crossref]

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264–267 (1979).
[Crossref]

Ann. Phys. (1)

H. Ma, X. Li, Y. Tai, H. Li, J. Wang, M. Tang, J. Tang, Y. Wang, and Z. Nie, “Generation of Circular Optical Vortex Array,” Ann. Phys. 529(12), 1700285 (2017).
[Crossref]

Chin. Opt. Lett. (1)

Z. Z. P. Z. M. Mills, Z. G. Chen, D. N. Christodoulides, and J. J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11(3), 84–86 (2013).

IEEE J. Sel. Top. Quantum Electron. (1)

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Sel. Top. Quantum Electron. 5(4), 902–910 (1999).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Commun. (1)

P. Panagiotopoulos, D. G. Papazoglou, A. Couairon, and S. Tzortzakis, “Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets,” Nat. Commun. 4(1), 2622 (2013).
[Crossref] [PubMed]

Nat. Phys. (1)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Opt. Commun. (2)

Y. Zhuang, Y. Zhang, B. Ding, and T. Suyama, “Trapping Rayleigh particles using highly focused higher-order radially polarized beams,” Opt. Commun. 284(7), 1734–1739 (2011).
[Crossref]

Y. J. Qiu, X. Mu, C. M. Zhang, X. P. Sun, Y. Hu, Z. G. Chen, and J. J. Xu, “Generation of non-paraxial accelerating beams by active aberration compensation,” Opt. Commun. 437, 11–16 (2019).
[Crossref]

Opt. Express (11)

Y. Jiang, X. Zhu, W. Yu, H. Shao, W. Zheng, and X. Lu, “Propagation characteristics of the modified circular Airy beam,” Opt. Express 23(23), 29834–29841 (2015).
[Crossref] [PubMed]

C. Y. Hwang, D. Choi, K. Y. Kim, and B. Lee, “Dual Airy beam,” Opt. Express 18(22), 23504–23516 (2010).
[Crossref] [PubMed]

N. Li, Y. Jiang, K. Huang, and X. Lu, “Abruptly autofocusing property of blocked circular Airy beams,” Opt. Express 22(19), 22847–22853 (2014).
[Crossref] [PubMed]

Y. Jiang, W. Yu, X. Zhu, and P. Jiang, “Propagation characteristics of partially coherent circular Airy beams,” Opt. Express 26(18), 23084–23092 (2018).
[Crossref] [PubMed]

B. Chen, C. Chen, X. Peng, Y. Peng, M. Zhou, and D. Deng, “Propagation of sharply autofocused ring Airy Gaussian vortex beams,” Opt. Express 23(15), 19288–19298 (2015).
[Crossref] [PubMed]

P. Li, S. Liu, T. Peng, G. Xie, X. Gan, and J. Zhao, “Spiral autofocusing Airy beams carrying power-exponent-phase vortices,” Opt. Express 22(7), 7598–7606 (2014).
[Crossref] [PubMed]

L. Li, C. Chang, X. Yuan, C. Yuan, S. Feng, S. Nie, and J. Ding, “Generation of optical vortex array along arbitrary curvilinear arrangement,” Opt. Express 26(8), 9798–9812 (2018).
[Crossref] [PubMed]

Y. Jiang, K. Huang, and X. Lu, “Propagation dynamics of abruptly autofocusing Airy beams with optical vortices,” Opt. Express 20(17), 18579–18584 (2012).
[Crossref] [PubMed]

Y. Jiang, K. Huang, and X. Lu, “Radiation force of abruptly autofocusing Airy beams on a Rayleigh particle,” Opt. Express 21(20), 24413–24421 (2013).
[Crossref] [PubMed]

X. Yan, L. Guo, M. Cheng, and J. Li, “Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication,” Opt. Express 26(10), 12605–12619 (2018).
[Crossref] [PubMed]

J. A. Davis, D. M. Cottrell, and D. Sand, “Abruptly autofocusing vortex beams,” Opt. Express 20(12), 13302–13310 (2012).
[Crossref] [PubMed]

Opt. Lett. (11)

N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett. 35(23), 4045–4047 (2010).
[Crossref] [PubMed]

R. S. Penciu, Y. Qiu, M. Goutsoulas, X. Sun, Y. Hu, J. Xu, Z. Chen, and N. K. Efremidis, “Observation of microscale nonparaxial optical bottle beams,” Opt. Lett. 43(16), 3878–3881 (2018).
[Crossref] [PubMed]

D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett. 36(10), 1842–1844 (2011).
[Crossref] [PubMed]

P. Vaveliuk, A. Lencina, J. A. Rodrigo, and O. Martinez Matos, “Symmetric Airy beams,” Opt. Lett. 39(8), 2370–2373 (2014).
[Crossref] [PubMed]

I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, “Pre-engineered abruptly autofocusing beams,” Opt. Lett. 36(10), 1890–1892 (2011).
[Crossref] [PubMed]

H. Deng, Y. Yuan, and L. Yuan, “Annular arrayed-waveguide fiber for autofocusing Airy-like beams,” Opt. Lett. 41(4), 824–827 (2016).
[Crossref] [PubMed]

S. Liu, M. Wang, P. Li, P. Zhang, and J. Zhao, “Abrupt polarization transition of vector autofocusing Airy beams,” Opt. Lett. 38(14), 2416–2418 (2013).
[Crossref] [PubMed]

H. T. Dai, Y. J. Liu, D. Luo, and X. W. Sun, “Propagation dynamics of an optical vortex imposed on an Airy beam,” Opt. Lett. 35(23), 4075–4077 (2010).
[Crossref] [PubMed]

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36(15), 2883–2885 (2011).
[Crossref] [PubMed]

I. Chremmos, P. Zhang, J. Prakash, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, “Fourier-space generation of abruptly autofocusing beams and optical bottle beams,” Opt. Lett. 36(18), 3675–3677 (2011).
[Crossref] [PubMed]

R. S. Penciu, K. G. Makris, and N. K. Efremidis, “Nonparaxial abruptly autofocusing beams,” Opt. Lett. 41(5), 1042–1045 (2016).
[Crossref] [PubMed]

Optica (2)

Phys. Rev. A (1)

I. D. Chremmos, Z. Chen, D. N. Christodoulides, and N. K. Efremidis, “Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics,” Phys. Rev. A 85(2), 023828 (2012).
[Crossref]

Phys. Rev. Lett. (3)

S. Tzortzakis, L. Bergé, A. Couairon, M. Franco, B. Prade, and A. Mysyrowicz, “Breakup and fusion of self-guided femtosecond light pulses in air,” Phys. Rev. Lett. 86(24), 5470–5473 (2001).
[Crossref] [PubMed]

A. D. Koulouklidis, D. G. Papazoglou, V. Y. Fedorov, and S. Tzortzakis, “Phase Memory Preserving Harmonics from Abruptly Autofocusing Beams,” Phys. Rev. Lett. 119(22), 223901 (2017).
[Crossref] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The generation model. (b) The experimental configuration.
Fig. 2
Fig. 2 The propagation of an AAAB with an OV. (a) Numerical side-view. (b) Hologram. (c1)-(c3) Intensity distributions at ξ = 0, 150, and 208 planes, respectively. (d1)-(d3) Corresponding phase structures. (e1)-(e3) Experimental results at z = 0, 149, and 206 mm planes, respectively.
Fig. 3
Fig. 3 The comparison of intensity profiles and autofocusing property for l = 0,1, 2. (a) Initial plane. (b) Focal plane. (c) Corresponding K-curves.
Fig. 4
Fig. 4 The comparison of intensity profiles for n = 50 and 100. (a) Initial plane. (b) Focal plane. (c) Corresponding K-curves.
Fig. 5
Fig. 5 The propagation of an AAAB with off-axis VAs. (a) Numerical side-view for m = 8. (b) Hologram. (c1)-(c3) Intensity distributions at ξ = 0, 150, and 208 planes, respectively. (d1)-(d3) Corresponding phase patterns. (e1)-(e3) Corresponding experimental results. Where a = 0.35.
Fig. 6
Fig. 6 Autofocusing property with VAs in the case of identical vorticity.
Fig. 7
Fig. 7 The propagation of an AAAB for off-axis VAs with opposite vorticity. (a1)-(a3) Phase patterns distributions at ξ = 0, 150, and 208 planes, respectively. (b1)-(b3) Corresponding intensity distributions. (c1)-(c3) Experimental results at z = 0,150,208 mm planes, respectively.
Fig. 8
Fig. 8 Autofocusing property with VAs in the case of opposite vorticity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ n ( s x , s y ,0)= ϕ AAAB ( s x , s y ,0)× [( s x S x )+isign(l)( s y S y )] | l | .
[ X j Y j ]=[ s x cos( j1 n 2π)+ s y sin( j1 n 2π)+d s x sin( j1 n 2π)+ s y cos( j1 n 2π)+d ].
ϕ n ( s x , s y ,0)= ϕ AAAB ( s x , s y ,0)× t m [( s x S x t )+isign(l)( s y S y t )] | l | .

Metrics