Abstract

By using four O-band directly modulated lasers (DMLs), for the first time a 384 Gb/s (4 × 96 Gbit/s) 8-level pulse amplitude modulation (PAM8) signal is successfully transmitted over a 15 km standard single mode fiber (SSMF) with no optical amplifier. The nonlinear Volterra equalizer is usually used to cope with the distortions induced by the nonlinearity of DML and the bandwidth-limited components. However, the Volterra equalizer would also enhance the noise at high frequency, which is harmful, especially to PAM8 signal because it is more sensitive to noise. Thus, the Volterra equalizer is modified in our scheme by adding a decision feedback process behind. With the help of the modified Volterra equalizer, the enhanced noise at high frequency is effectively eliminated, and a power gain of 0.5 dB and 3.3 dB for 4 × 64 Gbit/s PAM4 signal transmission over 30 km SSMF and 4 × 96 Gbit/s PAM8 signal transmission over 15 km SSMF at the HD-FEC limit can be obtained, respectively. Moreover, the computation complexity of the modified Volterra equalizer could be reduced by 38% compared with the conventional Volterra equalizer.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
2 × 64 Gb/s PAM-4 transmission over 70 km SSMF using O-band 18G-class directly modulated lasers (DMLs)

Fan Gao, Shiwei Zhou, Xiang Li, Songnian Fu, Lei Deng, Ming Tang, Deming Liu, and Qi Yang
Opt. Express 25(7) 7230-7237 (2017)

Transmitter and receiver DSP for 112 Gbit/s PAM-4 amplifier-less transmissions using 25G-class EML and APD

Jiahao Huo, Xian Zhou, Kang Ping Zhong, Jiajing Tu, Jinhui Yuan, Changjian Guo, Keping Long, Changyuan Yu, Alan Pak Tao Lau, and Chao Lu
Opt. Express 26(18) 22673-22686 (2018)

112 Gb/s transmission over 80 km SSMF using PDM-PAM4 and coherent detection without optical amplifier

Xian Zhou, Kangping Zhong, Jiahao Huo, Lei Gao, Yiguang Wang, Liang Wang, Yanfu Yang, Jinhui Yuan, Keping Long, Li Zeng, Alan Pak Tao Lau, and Chao Lu
Opt. Express 24(15) 17359-17371 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. C. I. Cisco, Forecast and methodology, 2016–2021, white paper, 2018.
  2. K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. Tao Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightwave Technol. 36(2), 377–400 (2018).
    [Crossref]
  3. T. Zou, S. Zhang, L. Liu, W. Cheng, and X. Xu, “Single-Lane 100Gb/s 4-PAM transmission over 80km SSMF based on K-K scheme and integrated 10G TOSA,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2D.6.
  4. A. Li, W. R. Peng, Y. Cui, and Y. Bai, “Single-λ 112Gbit/s 80-km transmission of PAM4 signal with optical signal-to-signal beat noise cancellation,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2C.5.
    [Crossref]
  5. S. Fu, C. Chen, F. Gao, X. Li, L. Deng, M. Tang, and D. Liu, “Digital chromatic dispersion pre-management enabled single-lane 112 Gb/s PAM-4 signal transmission over 80 km SSMF,” Opt. Lett. 43(7), 1495–1498 (2018).
    [Crossref] [PubMed]
  6. B. P. Prashant, M. Li, H. Zhang, Y. Wang, Y. Liang, H.-H. Liao, I. L. Ho, and J. Zheng, “10 km CWDM transmission using 56 Gb/s PAM-4 directly modulated lasers for 200G/400G transceivers,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2017), pp. 1–3.
  7. W. Wang, P. Zhao, Z. Zhang, H. Li, D. Zang, N. Zhu, and Y. Lu, “First demonstration of 112 Gb/s PAM-4 amplifier-free transmission over a record reach of 40 km using 1.3 μm directly modulated laser,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th4B.8.
    [Crossref]
  8. N. Kikuchi and R. Hirai, “Intensity-modulated/direct-detection (IM/DD) Nyquist pulse-amplitude modulation (PAM) signaling for 100-Gbit/s/λ optical short-reach transmission,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2014), pp. 1–3.
    [Crossref]
  9. M. A. Mestre, H. Mardoyan, A. Konczykowska, R. Rios-Müller, J. Renaudier, F. Jorge, B. Duval, J.-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2015), pp. 1–3.
    [Crossref]
  10. R. Hirai, N. Kikuchi, and T. Fukui, “High-spectral efficiency DWDM transmission of 100-Gbit/s/lambda IM/DD single sideband baseband-Nyquist-PAM8 signals,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Th3D.4.
    [Crossref]
  11. Y. C. Wang, H. H. Lu, C. Y. Li, P. H. Chew, Y. B. Jheng, W. S. Tsai, and X. H. Huang, “A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber-IVLLC integration,” IEEE Photonics J. 10(5), 1–9 (2018).
    [Crossref]
  12. Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photonics J. 7(4), 1–5 (2015).
    [Crossref]
  13. P. Li, L. Yi, L. Xue, and W. Hu, “100Gbps IM/DD transmission over 25km SSMF using 20G-class DML and PIN enabled by machine learning,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper W2A.46.
    [Crossref]
  14. C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).
    [Crossref]
  15. F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
    [Crossref]
  16. L. Shi, D. Li, J. He, L. Deng, M. Cheng, M. Tang, S. Fu, M. Zhang, P. P. Shum, and D. Liu, “Experimental demonstration of a 10 Gb/s non-orthogonal multi-dimensional CAP-PON system based on the ISI and CCI cancellation algorithm,” Opt. Lett. 41(17), 3988–3991 (2016).
    [Crossref] [PubMed]
  17. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  18. T. S. D. Singh and A. Chatterjee, “A comparative study of adaptation algorithms for nonlinear system identification based on second order Volterra and bilinear polynomial filters,” Measurement 44(10), 1915–1923 (2011).
    [Crossref]
  19. W. J. Huang, W. F. Chang, C. C. Wei, J. J. Liu, Y. C. Chen, K. L. Chi, C. L. Wang, J. W. Shi, and J. Chen, “93% complexity reduction of Volterra nonlinear equalizer by ℓ 1-regularization for 112-Gbps PAM-4 850-nm VCSEL optical interconnect,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M2D.7.
    [Crossref]
  20. J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD transmission based on modified lookup table nonlinear predistortion,” IEEE Photonics J. 10(3), 1–9 (2018).
    [Crossref]
  21. A. Rodriguez and A. Laio, “Machine learning. Clustering by fast search and find of density peaks,” Science 344(6191), 1492–1496 (2014).
    [Crossref] [PubMed]
  22. Y. K. Park and C. Lee, “Applications of neural networks in high-speed communication networks,” IEEE Commun. Mag. 33(10), 68–74 (1995).
    [Crossref]
  23. E. Giacoumidis, S. T. Le, I. Aldaya, J. L. Wei, M. McCarthy, N. J. Doran, and B. J. Eggleton, “Experimental comparison of artificial neural network and Volterra based nonlinear equalization for CO-OFDM,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3A.4.
    [Crossref]
  24. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol. 30(11), 1664–1676 (2012).
    [Crossref]
  25. M. Tao, L. Zhou, H. Zeng, S. Li, and X. Liu, “50-Gb/s/λ TDM-PON based on 10G DML and 10G APD supporting PR10 link loss budget after 20-km downstream transmission in the O-band,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu3G.2.
    [Crossref]
  26. D. Li, L. Deng, Y. Ye, Y. Zhang, M. Cheng, S. Fu, M. Tang, and D. Liu, “4×96 Gbit/s PAM8 for short-reach applications employing low-cost DML without pre-equalization,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper W2A.33.
    [Crossref]
  27. S. Nebojsa, K. Fotini, Q. Zhang, and P. Cristian, “Volterra and Wiener equalizers for short-reach 100G PAM-4 Applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).
    [Crossref]
  28. J. M. Gené, P. J. Winzer, S. Chandrasekhar, and H. Kogelnik, “Simultaneous compensation of polarization mode dispersion and chromatic dispersion using electronic signal processing,” J. Lightwave Technol. 25(7), 1735–1741 (2007).
    [Crossref]
  29. F. Gao, S. Zhou, X. Li, S. Fu, L. Deng, M. Tang, D. Liu, and Q. Yang, “2 × 64 Gb/s PAM-4 transmission over 70 km SSMF using O-band 18G-class directly modulated lasers (DMLs),” Opt. Express 25(7), 7230–7237 (2017).
    [Crossref] [PubMed]
  30. W. Yi, X. He, J. Wang, and Z. Pan, “Efficient adaptive filtering techniques using hybrid RLS-LMS algorithm for channel equalization in optical few-mode fiber communication systems,” in Proceedings of Photonics Conference (Institute of Electrical and Electronics Engineers, 2016), pp. 517–518.
  31. M. Zhu, J. Zhang, X. Yi, H. Ying, X. Li, M. Luo, Y. Song, X. Huang, and K. Qiu, “Optical single side-band Nyquist PAM-4 transmission using dual-drive MZM modulation and direct detection,” Opt. Express 26(6), 6629–6638 (2018).
    [Crossref] [PubMed]
  32. H. Ji, L. Yi, Z. Li, L. Xue, X. Li, Q. Yang, S. Wang, Y. Yang, S. Yu, and W. Hu, “Field demonstration of a real-time 100-Gb/s PON based on 10G-class optical devices,” J. Lightwave Technol. 35(10), 1914–1921 (2017).
    [Crossref]

2018 (5)

2017 (3)

2016 (2)

2015 (1)

Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photonics J. 7(4), 1–5 (2015).
[Crossref]

2014 (2)

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

A. Rodriguez and A. Laio, “Machine learning. Clustering by fast search and find of density peaks,” Science 344(6191), 1492–1496 (2014).
[Crossref] [PubMed]

2012 (1)

2011 (1)

T. S. D. Singh and A. Chatterjee, “A comparative study of adaptation algorithms for nonlinear system identification based on second order Volterra and bilinear polynomial filters,” Measurement 44(10), 1915–1923 (2011).
[Crossref]

2008 (1)

2007 (1)

1995 (1)

Y. K. Park and C. Lee, “Applications of neural networks in high-speed communication networks,” IEEE Commun. Mag. 33(10), 68–74 (1995).
[Crossref]

Aldaya, I.

E. Giacoumidis, S. T. Le, I. Aldaya, J. L. Wei, M. McCarthy, N. J. Doran, and B. J. Eggleton, “Experimental comparison of artificial neural network and Volterra based nonlinear equalization for CO-OFDM,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3A.4.
[Crossref]

Andrekson, P. A.

Bai, Y.

A. Li, W. R. Peng, Y. Cui, and Y. Bai, “Single-λ 112Gbit/s 80-km transmission of PAM4 signal with optical signal-to-signal beat noise cancellation,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2C.5.
[Crossref]

Bigo, S.

M. A. Mestre, H. Mardoyan, A. Konczykowska, R. Rios-Müller, J. Renaudier, F. Jorge, B. Duval, J.-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2015), pp. 1–3.
[Crossref]

Chandrasekhar, S.

Chang, G. K.

Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photonics J. 7(4), 1–5 (2015).
[Crossref]

Chang, W. F.

W. J. Huang, W. F. Chang, C. C. Wei, J. J. Liu, Y. C. Chen, K. L. Chi, C. L. Wang, J. W. Shi, and J. Chen, “93% complexity reduction of Volterra nonlinear equalizer by ℓ 1-regularization for 112-Gbps PAM-4 850-nm VCSEL optical interconnect,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M2D.7.
[Crossref]

Chatterjee, A.

T. S. D. Singh and A. Chatterjee, “A comparative study of adaptation algorithms for nonlinear system identification based on second order Volterra and bilinear polynomial filters,” Measurement 44(10), 1915–1923 (2011).
[Crossref]

Chen, C.

Chen, J.

W. J. Huang, W. F. Chang, C. C. Wei, J. J. Liu, Y. C. Chen, K. L. Chi, C. L. Wang, J. W. Shi, and J. Chen, “93% complexity reduction of Volterra nonlinear equalizer by ℓ 1-regularization for 112-Gbps PAM-4 850-nm VCSEL optical interconnect,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M2D.7.
[Crossref]

Chen, L.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

Chen, Y.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

Chen, Y. C.

W. J. Huang, W. F. Chang, C. C. Wei, J. J. Liu, Y. C. Chen, K. L. Chi, C. L. Wang, J. W. Shi, and J. Chen, “93% complexity reduction of Volterra nonlinear equalizer by ℓ 1-regularization for 112-Gbps PAM-4 850-nm VCSEL optical interconnect,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M2D.7.
[Crossref]

Cheng, M.

L. Shi, D. Li, J. He, L. Deng, M. Cheng, M. Tang, S. Fu, M. Zhang, P. P. Shum, and D. Liu, “Experimental demonstration of a 10 Gb/s non-orthogonal multi-dimensional CAP-PON system based on the ISI and CCI cancellation algorithm,” Opt. Lett. 41(17), 3988–3991 (2016).
[Crossref] [PubMed]

D. Li, L. Deng, Y. Ye, Y. Zhang, M. Cheng, S. Fu, M. Tang, and D. Liu, “4×96 Gbit/s PAM8 for short-reach applications employing low-cost DML without pre-equalization,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper W2A.33.
[Crossref]

Cheng, W.

T. Zou, S. Zhang, L. Liu, W. Cheng, and X. Xu, “Single-Lane 100Gb/s 4-PAM transmission over 80km SSMF based on K-K scheme and integrated 10G TOSA,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2D.6.

Chew, P. H.

Y. C. Wang, H. H. Lu, C. Y. Li, P. H. Chew, Y. B. Jheng, W. S. Tsai, and X. H. Huang, “A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber-IVLLC integration,” IEEE Photonics J. 10(5), 1–9 (2018).
[Crossref]

Chi, K. L.

W. J. Huang, W. F. Chang, C. C. Wei, J. J. Liu, Y. C. Chen, K. L. Chi, C. L. Wang, J. W. Shi, and J. Chen, “93% complexity reduction of Volterra nonlinear equalizer by ℓ 1-regularization for 112-Gbps PAM-4 850-nm VCSEL optical interconnect,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M2D.7.
[Crossref]

Chi, N.

Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photonics J. 7(4), 1–5 (2015).
[Crossref]

Cristian, P.

Cui, Y.

A. Li, W. R. Peng, Y. Cui, and Y. Bai, “Single-λ 112Gbit/s 80-km transmission of PAM4 signal with optical signal-to-signal beat noise cancellation,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2C.5.
[Crossref]

Deng, L.

Doran, N. J.

E. Giacoumidis, S. T. Le, I. Aldaya, J. L. Wei, M. McCarthy, N. J. Doran, and B. J. Eggleton, “Experimental comparison of artificial neural network and Volterra based nonlinear equalization for CO-OFDM,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3A.4.
[Crossref]

Dupuy, J.-Y.

M. A. Mestre, H. Mardoyan, A. Konczykowska, R. Rios-Müller, J. Renaudier, F. Jorge, B. Duval, J.-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2015), pp. 1–3.
[Crossref]

Duval, B.

M. A. Mestre, H. Mardoyan, A. Konczykowska, R. Rios-Müller, J. Renaudier, F. Jorge, B. Duval, J.-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2015), pp. 1–3.
[Crossref]

Eggleton, B. J.

E. Giacoumidis, S. T. Le, I. Aldaya, J. L. Wei, M. McCarthy, N. J. Doran, and B. J. Eggleton, “Experimental comparison of artificial neural network and Volterra based nonlinear equalization for CO-OFDM,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3A.4.
[Crossref]

Eriksson, T.

Fang, K.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD transmission based on modified lookup table nonlinear predistortion,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

Fotini, K.

Fu, S.

Fukui, T.

R. Hirai, N. Kikuchi, and T. Fukui, “High-spectral efficiency DWDM transmission of 100-Gbit/s/lambda IM/DD single sideband baseband-Nyquist-PAM8 signals,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Th3D.4.
[Crossref]

Gao, F.

Ge, C.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

Gené, J. M.

Ghazisaeidi, A.

M. A. Mestre, H. Mardoyan, A. Konczykowska, R. Rios-Müller, J. Renaudier, F. Jorge, B. Duval, J.-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2015), pp. 1–3.
[Crossref]

Giacoumidis, E.

E. Giacoumidis, S. T. Le, I. Aldaya, J. L. Wei, M. McCarthy, N. J. Doran, and B. J. Eggleton, “Experimental comparison of artificial neural network and Volterra based nonlinear equalization for CO-OFDM,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3A.4.
[Crossref]

Gou, P.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD transmission based on modified lookup table nonlinear predistortion,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

He, J.

He, X.

W. Yi, X. He, J. Wang, and Z. Pan, “Efficient adaptive filtering techniques using hybrid RLS-LMS algorithm for channel equalization in optical few-mode fiber communication systems,” in Proceedings of Photonics Conference (Institute of Electrical and Electronics Engineers, 2016), pp. 517–518.

Hirai, R.

R. Hirai, N. Kikuchi, and T. Fukui, “High-spectral efficiency DWDM transmission of 100-Gbit/s/lambda IM/DD single sideband baseband-Nyquist-PAM8 signals,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Th3D.4.
[Crossref]

N. Kikuchi and R. Hirai, “Intensity-modulated/direct-detection (IM/DD) Nyquist pulse-amplitude modulation (PAM) signaling for 100-Gbit/s/λ optical short-reach transmission,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2014), pp. 1–3.
[Crossref]

Ho, I. L.

B. P. Prashant, M. Li, H. Zhang, Y. Wang, Y. Liang, H.-H. Liao, I. L. Ho, and J. Zheng, “10 km CWDM transmission using 56 Gb/s PAM-4 directly modulated lasers for 200G/400G transceivers,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2017), pp. 1–3.

Hu, R.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Hu, W.

H. Ji, L. Yi, Z. Li, L. Xue, X. Li, Q. Yang, S. Wang, Y. Yang, S. Yu, and W. Hu, “Field demonstration of a real-time 100-Gb/s PON based on 10G-class optical devices,” J. Lightwave Technol. 35(10), 1914–1921 (2017).
[Crossref]

P. Li, L. Yi, L. Xue, and W. Hu, “100Gbps IM/DD transmission over 25km SSMF using 20G-class DML and PIN enabled by machine learning,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper W2A.46.
[Crossref]

Huang, W. J.

W. J. Huang, W. F. Chang, C. C. Wei, J. J. Liu, Y. C. Chen, K. L. Chi, C. L. Wang, J. W. Shi, and J. Chen, “93% complexity reduction of Volterra nonlinear equalizer by ℓ 1-regularization for 112-Gbps PAM-4 850-nm VCSEL optical interconnect,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M2D.7.
[Crossref]

Huang, X.

Huang, X. H.

Y. C. Wang, H. H. Lu, C. Y. Li, P. H. Chew, Y. B. Jheng, W. S. Tsai, and X. H. Huang, “A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber-IVLLC integration,” IEEE Photonics J. 10(5), 1–9 (2018).
[Crossref]

Huo, J.

Jennevé, P.

M. A. Mestre, H. Mardoyan, A. Konczykowska, R. Rios-Müller, J. Renaudier, F. Jorge, B. Duval, J.-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2015), pp. 1–3.
[Crossref]

Jheng, Y. B.

Y. C. Wang, H. H. Lu, C. Y. Li, P. H. Chew, Y. B. Jheng, W. S. Tsai, and X. H. Huang, “A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber-IVLLC integration,” IEEE Photonics J. 10(5), 1–9 (2018).
[Crossref]

Ji, H.

Jorge, F.

M. A. Mestre, H. Mardoyan, A. Konczykowska, R. Rios-Müller, J. Renaudier, F. Jorge, B. Duval, J.-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2015), pp. 1–3.
[Crossref]

Karlsson, M.

Kikuchi, N.

N. Kikuchi and R. Hirai, “Intensity-modulated/direct-detection (IM/DD) Nyquist pulse-amplitude modulation (PAM) signaling for 100-Gbit/s/λ optical short-reach transmission,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2014), pp. 1–3.
[Crossref]

R. Hirai, N. Kikuchi, and T. Fukui, “High-spectral efficiency DWDM transmission of 100-Gbit/s/lambda IM/DD single sideband baseband-Nyquist-PAM8 signals,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Th3D.4.
[Crossref]

Kogelnik, H.

Konczykowska, A.

M. A. Mestre, H. Mardoyan, A. Konczykowska, R. Rios-Müller, J. Renaudier, F. Jorge, B. Duval, J.-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2015), pp. 1–3.
[Crossref]

Kong, M.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD transmission based on modified lookup table nonlinear predistortion,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

Laio, A.

A. Rodriguez and A. Laio, “Machine learning. Clustering by fast search and find of density peaks,” Science 344(6191), 1492–1496 (2014).
[Crossref] [PubMed]

Le, S. T.

E. Giacoumidis, S. T. Le, I. Aldaya, J. L. Wei, M. McCarthy, N. J. Doran, and B. J. Eggleton, “Experimental comparison of artificial neural network and Volterra based nonlinear equalization for CO-OFDM,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3A.4.
[Crossref]

Lee, C.

Y. K. Park and C. Lee, “Applications of neural networks in high-speed communication networks,” IEEE Commun. Mag. 33(10), 68–74 (1995).
[Crossref]

Li, A.

A. Li, W. R. Peng, Y. Cui, and Y. Bai, “Single-λ 112Gbit/s 80-km transmission of PAM4 signal with optical signal-to-signal beat noise cancellation,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2C.5.
[Crossref]

Li, C.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Li, C. Y.

Y. C. Wang, H. H. Lu, C. Y. Li, P. H. Chew, Y. B. Jheng, W. S. Tsai, and X. H. Huang, “A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber-IVLLC integration,” IEEE Photonics J. 10(5), 1–9 (2018).
[Crossref]

Li, D.

L. Shi, D. Li, J. He, L. Deng, M. Cheng, M. Tang, S. Fu, M. Zhang, P. P. Shum, and D. Liu, “Experimental demonstration of a 10 Gb/s non-orthogonal multi-dimensional CAP-PON system based on the ISI and CCI cancellation algorithm,” Opt. Lett. 41(17), 3988–3991 (2016).
[Crossref] [PubMed]

D. Li, L. Deng, Y. Ye, Y. Zhang, M. Cheng, S. Fu, M. Tang, and D. Liu, “4×96 Gbit/s PAM8 for short-reach applications employing low-cost DML without pre-equalization,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper W2A.33.
[Crossref]

Li, F.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

Li, H.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

W. Wang, P. Zhao, Z. Zhang, H. Li, D. Zang, N. Zhu, and Y. Lu, “First demonstration of 112 Gb/s PAM-4 amplifier-free transmission over a record reach of 40 km using 1.3 μm directly modulated laser,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th4B.8.
[Crossref]

Li, J.

Li, M.

B. P. Prashant, M. Li, H. Zhang, Y. Wang, Y. Liang, H.-H. Liao, I. L. Ho, and J. Zheng, “10 km CWDM transmission using 56 Gb/s PAM-4 directly modulated lasers for 200G/400G transceivers,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2017), pp. 1–3.

Li, P.

P. Li, L. Yi, L. Xue, and W. Hu, “100Gbps IM/DD transmission over 25km SSMF using 20G-class DML and PIN enabled by machine learning,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper W2A.46.
[Crossref]

Li, S.

M. Tao, L. Zhou, H. Zeng, S. Li, and X. Liu, “50-Gb/s/λ TDM-PON based on 10G DML and 10G APD supporting PR10 link loss budget after 20-km downstream transmission in the O-band,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu3G.2.
[Crossref]

Li, X.

Li, Z.

Liang, Y.

B. P. Prashant, M. Li, H. Zhang, Y. Wang, Y. Liang, H.-H. Liao, I. L. Ho, and J. Zheng, “10 km CWDM transmission using 56 Gb/s PAM-4 directly modulated lasers for 200G/400G transceivers,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2017), pp. 1–3.

Liao, H.-H.

B. P. Prashant, M. Li, H. Zhang, Y. Wang, Y. Liang, H.-H. Liao, I. L. Ho, and J. Zheng, “10 km CWDM transmission using 56 Gb/s PAM-4 directly modulated lasers for 200G/400G transceivers,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2017), pp. 1–3.

Liu, D.

Liu, J. J.

W. J. Huang, W. F. Chang, C. C. Wei, J. J. Liu, Y. C. Chen, K. L. Chi, C. L. Wang, J. W. Shi, and J. Chen, “93% complexity reduction of Volterra nonlinear equalizer by ℓ 1-regularization for 112-Gbps PAM-4 850-nm VCSEL optical interconnect,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M2D.7.
[Crossref]

Liu, L.

T. Zou, S. Zhang, L. Liu, W. Cheng, and X. Xu, “Single-Lane 100Gb/s 4-PAM transmission over 80km SSMF based on K-K scheme and integrated 10G TOSA,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2D.6.

Liu, X.

M. Tao, L. Zhou, H. Zeng, S. Li, and X. Liu, “50-Gb/s/λ TDM-PON based on 10G DML and 10G APD supporting PR10 link loss budget after 20-km downstream transmission in the O-band,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu3G.2.
[Crossref]

Lu, C.

Lu, H. H.

Y. C. Wang, H. H. Lu, C. Y. Li, P. H. Chew, Y. B. Jheng, W. S. Tsai, and X. H. Huang, “A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber-IVLLC integration,” IEEE Photonics J. 10(5), 1–9 (2018).
[Crossref]

Lu, Y.

W. Wang, P. Zhao, Z. Zhang, H. Li, D. Zang, N. Zhu, and Y. Lu, “First demonstration of 112 Gb/s PAM-4 amplifier-free transmission over a record reach of 40 km using 1.3 μm directly modulated laser,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th4B.8.
[Crossref]

Luo, M.

Mardoyan, H.

M. A. Mestre, H. Mardoyan, A. Konczykowska, R. Rios-Müller, J. Renaudier, F. Jorge, B. Duval, J.-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2015), pp. 1–3.
[Crossref]

McCarthy, M.

E. Giacoumidis, S. T. Le, I. Aldaya, J. L. Wei, M. McCarthy, N. J. Doran, and B. J. Eggleton, “Experimental comparison of artificial neural network and Volterra based nonlinear equalization for CO-OFDM,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3A.4.
[Crossref]

Mestre, M. A.

M. A. Mestre, H. Mardoyan, A. Konczykowska, R. Rios-Müller, J. Renaudier, F. Jorge, B. Duval, J.-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2015), pp. 1–3.
[Crossref]

Nebojsa, S.

Pan, Z.

W. Yi, X. He, J. Wang, and Z. Pan, “Efficient adaptive filtering techniques using hybrid RLS-LMS algorithm for channel equalization in optical few-mode fiber communication systems,” in Proceedings of Photonics Conference (Institute of Electrical and Electronics Engineers, 2016), pp. 517–518.

Park, Y. K.

Y. K. Park and C. Lee, “Applications of neural networks in high-speed communication networks,” IEEE Commun. Mag. 33(10), 68–74 (1995).
[Crossref]

Peng, W. R.

A. Li, W. R. Peng, Y. Cui, and Y. Bai, “Single-λ 112Gbit/s 80-km transmission of PAM4 signal with optical signal-to-signal beat noise cancellation,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2C.5.
[Crossref]

Prashant, B. P.

B. P. Prashant, M. Li, H. Zhang, Y. Wang, Y. Liang, H.-H. Liao, I. L. Ho, and J. Zheng, “10 km CWDM transmission using 56 Gb/s PAM-4 directly modulated lasers for 200G/400G transceivers,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2017), pp. 1–3.

Qiu, K.

Renaudier, J.

M. A. Mestre, H. Mardoyan, A. Konczykowska, R. Rios-Müller, J. Renaudier, F. Jorge, B. Duval, J.-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2015), pp. 1–3.
[Crossref]

Rios-Müller, R.

M. A. Mestre, H. Mardoyan, A. Konczykowska, R. Rios-Müller, J. Renaudier, F. Jorge, B. Duval, J.-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2015), pp. 1–3.
[Crossref]

Rodriguez, A.

A. Rodriguez and A. Laio, “Machine learning. Clustering by fast search and find of density peaks,” Science 344(6191), 1492–1496 (2014).
[Crossref] [PubMed]

Savory, S. J.

Shi, J. W.

W. J. Huang, W. F. Chang, C. C. Wei, J. J. Liu, Y. C. Chen, K. L. Chi, C. L. Wang, J. W. Shi, and J. Chen, “93% complexity reduction of Volterra nonlinear equalizer by ℓ 1-regularization for 112-Gbps PAM-4 850-nm VCSEL optical interconnect,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M2D.7.
[Crossref]

Shi, L.

Shum, P. P.

Singh, T. S. D.

T. S. D. Singh and A. Chatterjee, “A comparative study of adaptation algorithms for nonlinear system identification based on second order Volterra and bilinear polynomial filters,” Measurement 44(10), 1915–1923 (2011).
[Crossref]

Song, Y.

Tang, M.

Tao, M.

M. Tao, L. Zhou, H. Zeng, S. Li, and X. Liu, “50-Gb/s/λ TDM-PON based on 10G DML and 10G APD supporting PR10 link loss budget after 20-km downstream transmission in the O-band,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu3G.2.
[Crossref]

Tao Lau, A. P.

Tipsuwannakul, E.

Tsai, W. S.

Y. C. Wang, H. H. Lu, C. Y. Li, P. H. Chew, Y. B. Jheng, W. S. Tsai, and X. H. Huang, “A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber-IVLLC integration,” IEEE Photonics J. 10(5), 1–9 (2018).
[Crossref]

Wang, C. L.

W. J. Huang, W. F. Chang, C. C. Wei, J. J. Liu, Y. C. Chen, K. L. Chi, C. L. Wang, J. W. Shi, and J. Chen, “93% complexity reduction of Volterra nonlinear equalizer by ℓ 1-regularization for 112-Gbps PAM-4 850-nm VCSEL optical interconnect,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M2D.7.
[Crossref]

Wang, J.

W. Yi, X. He, J. Wang, and Z. Pan, “Efficient adaptive filtering techniques using hybrid RLS-LMS algorithm for channel equalization in optical few-mode fiber communication systems,” in Proceedings of Photonics Conference (Institute of Electrical and Electronics Engineers, 2016), pp. 517–518.

Wang, S.

Wang, W.

W. Wang, P. Zhao, Z. Zhang, H. Li, D. Zang, N. Zhu, and Y. Lu, “First demonstration of 112 Gb/s PAM-4 amplifier-free transmission over a record reach of 40 km using 1.3 μm directly modulated laser,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th4B.8.
[Crossref]

Wang, Y.

Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photonics J. 7(4), 1–5 (2015).
[Crossref]

B. P. Prashant, M. Li, H. Zhang, Y. Wang, Y. Liang, H.-H. Liao, I. L. Ho, and J. Zheng, “10 km CWDM transmission using 56 Gb/s PAM-4 directly modulated lasers for 200G/400G transceivers,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2017), pp. 1–3.

Wang, Y. C.

Y. C. Wang, H. H. Lu, C. Y. Li, P. H. Chew, Y. B. Jheng, W. S. Tsai, and X. H. Huang, “A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber-IVLLC integration,” IEEE Photonics J. 10(5), 1–9 (2018).
[Crossref]

Wei, C. C.

W. J. Huang, W. F. Chang, C. C. Wei, J. J. Liu, Y. C. Chen, K. L. Chi, C. L. Wang, J. W. Shi, and J. Chen, “93% complexity reduction of Volterra nonlinear equalizer by ℓ 1-regularization for 112-Gbps PAM-4 850-nm VCSEL optical interconnect,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M2D.7.
[Crossref]

Wei, J. L.

E. Giacoumidis, S. T. Le, I. Aldaya, J. L. Wei, M. McCarthy, N. J. Doran, and B. J. Eggleton, “Experimental comparison of artificial neural network and Volterra based nonlinear equalization for CO-OFDM,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3A.4.
[Crossref]

Winzer, P. J.

Xia, Y.

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

Xiao, J.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD transmission based on modified lookup table nonlinear predistortion,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

Xin, X.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD transmission based on modified lookup table nonlinear predistortion,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

Xu, X.

T. Zou, S. Zhang, L. Liu, W. Cheng, and X. Xu, “Single-Lane 100Gb/s 4-PAM transmission over 80km SSMF based on K-K scheme and integrated 10G TOSA,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2D.6.

Xue, L.

H. Ji, L. Yi, Z. Li, L. Xue, X. Li, Q. Yang, S. Wang, Y. Yang, S. Yu, and W. Hu, “Field demonstration of a real-time 100-Gb/s PON based on 10G-class optical devices,” J. Lightwave Technol. 35(10), 1914–1921 (2017).
[Crossref]

P. Li, L. Yi, L. Xue, and W. Hu, “100Gbps IM/DD transmission over 25km SSMF using 20G-class DML and PIN enabled by machine learning,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper W2A.46.
[Crossref]

Yang, C.

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Yang, Q.

Yang, Y.

Ye, Y.

D. Li, L. Deng, Y. Ye, Y. Zhang, M. Cheng, S. Fu, M. Tang, and D. Liu, “4×96 Gbit/s PAM8 for short-reach applications employing low-cost DML without pre-equalization,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper W2A.33.
[Crossref]

Yi, L.

H. Ji, L. Yi, Z. Li, L. Xue, X. Li, Q. Yang, S. Wang, Y. Yang, S. Yu, and W. Hu, “Field demonstration of a real-time 100-Gb/s PON based on 10G-class optical devices,” J. Lightwave Technol. 35(10), 1914–1921 (2017).
[Crossref]

P. Li, L. Yi, L. Xue, and W. Hu, “100Gbps IM/DD transmission over 25km SSMF using 20G-class DML and PIN enabled by machine learning,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper W2A.46.
[Crossref]

Yi, W.

W. Yi, X. He, J. Wang, and Z. Pan, “Efficient adaptive filtering techniques using hybrid RLS-LMS algorithm for channel equalization in optical few-mode fiber communication systems,” in Proceedings of Photonics Conference (Institute of Electrical and Electronics Engineers, 2016), pp. 517–518.

Yi, X.

Ying, H.

Yu, C.

Yu, J.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD transmission based on modified lookup table nonlinear predistortion,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photonics J. 7(4), 1–5 (2015).
[Crossref]

Yu, S.

H. Ji, L. Yi, Z. Li, L. Xue, X. Li, Q. Yang, S. Wang, Y. Yang, S. Yu, and W. Hu, “Field demonstration of a real-time 100-Gb/s PON based on 10G-class optical devices,” J. Lightwave Technol. 35(10), 1914–1921 (2017).
[Crossref]

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

Zang, D.

W. Wang, P. Zhao, Z. Zhang, H. Li, D. Zang, N. Zhu, and Y. Lu, “First demonstration of 112 Gb/s PAM-4 amplifier-free transmission over a record reach of 40 km using 1.3 μm directly modulated laser,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th4B.8.
[Crossref]

Zeng, H.

M. Tao, L. Zhou, H. Zeng, S. Li, and X. Liu, “50-Gb/s/λ TDM-PON based on 10G DML and 10G APD supporting PR10 link loss budget after 20-km downstream transmission in the O-band,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu3G.2.
[Crossref]

Zhang, H.

B. P. Prashant, M. Li, H. Zhang, Y. Wang, Y. Liang, H.-H. Liao, I. L. Ho, and J. Zheng, “10 km CWDM transmission using 56 Gb/s PAM-4 directly modulated lasers for 200G/400G transceivers,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2017), pp. 1–3.

Zhang, J.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD transmission based on modified lookup table nonlinear predistortion,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

M. Zhu, J. Zhang, X. Yi, H. Ying, X. Li, M. Luo, Y. Song, X. Huang, and K. Qiu, “Optical single side-band Nyquist PAM-4 transmission using dual-drive MZM modulation and direct detection,” Opt. Express 26(6), 6629–6638 (2018).
[Crossref] [PubMed]

Zhang, M.

Zhang, Q.

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD transmission based on modified lookup table nonlinear predistortion,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

S. Nebojsa, K. Fotini, Q. Zhang, and P. Cristian, “Volterra and Wiener equalizers for short-reach 100G PAM-4 Applications,” J. Lightwave Technol. 35(21), 4583–4594 (2017).
[Crossref]

Zhang, S.

T. Zou, S. Zhang, L. Liu, W. Cheng, and X. Xu, “Single-Lane 100Gb/s 4-PAM transmission over 80km SSMF based on K-K scheme and integrated 10G TOSA,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2D.6.

Zhang, Y.

D. Li, L. Deng, Y. Ye, Y. Zhang, M. Cheng, S. Fu, M. Tang, and D. Liu, “4×96 Gbit/s PAM8 for short-reach applications employing low-cost DML without pre-equalization,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper W2A.33.
[Crossref]

Zhang, Z.

W. Wang, P. Zhao, Z. Zhang, H. Li, D. Zang, N. Zhu, and Y. Lu, “First demonstration of 112 Gb/s PAM-4 amplifier-free transmission over a record reach of 40 km using 1.3 μm directly modulated laser,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th4B.8.
[Crossref]

Zhao, P.

W. Wang, P. Zhao, Z. Zhang, H. Li, D. Zang, N. Zhu, and Y. Lu, “First demonstration of 112 Gb/s PAM-4 amplifier-free transmission over a record reach of 40 km using 1.3 μm directly modulated laser,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th4B.8.
[Crossref]

Zheng, J.

B. P. Prashant, M. Li, H. Zhang, Y. Wang, Y. Liang, H.-H. Liao, I. L. Ho, and J. Zheng, “10 km CWDM transmission using 56 Gb/s PAM-4 directly modulated lasers for 200G/400G transceivers,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2017), pp. 1–3.

Zhong, K.

Zhou, L.

M. Tao, L. Zhou, H. Zeng, S. Li, and X. Liu, “50-Gb/s/λ TDM-PON based on 10G DML and 10G APD supporting PR10 link loss budget after 20-km downstream transmission in the O-band,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu3G.2.
[Crossref]

Zhou, S.

Zhou, X.

Zhu, M.

Zhu, N.

W. Wang, P. Zhao, Z. Zhang, H. Li, D. Zang, N. Zhu, and Y. Lu, “First demonstration of 112 Gb/s PAM-4 amplifier-free transmission over a record reach of 40 km using 1.3 μm directly modulated laser,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th4B.8.
[Crossref]

Zou, T.

T. Zou, S. Zhang, L. Liu, W. Cheng, and X. Xu, “Single-Lane 100Gb/s 4-PAM transmission over 80km SSMF based on K-K scheme and integrated 10G TOSA,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2D.6.

IEEE Commun. Mag. (1)

Y. K. Park and C. Lee, “Applications of neural networks in high-speed communication networks,” IEEE Commun. Mag. 33(10), 68–74 (1995).
[Crossref]

IEEE Photonics J. (4)

Y. C. Wang, H. H. Lu, C. Y. Li, P. H. Chew, Y. B. Jheng, W. S. Tsai, and X. H. Huang, “A high-speed 84 Gb/s VSB-PAM8 VCSEL transmitter-based fiber-IVLLC integration,” IEEE Photonics J. 10(5), 1–9 (2018).
[Crossref]

Y. Wang, J. Yu, N. Chi, and G. K. Chang, “Experimental demonstration of 120-Gb/s Nyquist PAM8-SCFDE for short-reach optical communication,” IEEE Photonics J. 7(4), 1–5 (2015).
[Crossref]

C. Yang, R. Hu, M. Luo, Q. Yang, C. Li, H. Li, and S. Yu, “IM/DD-Based 112-Gb/s/lambda PAM-4 transmission using 18-Gbps DML,” IEEE Photonics J. 8(3), 1–7 (2016).
[Crossref]

J. Zhang, P. Gou, M. Kong, K. Fang, J. Xiao, Q. Zhang, X. Xin, and J. Yu, “PAM-8 IM/DD transmission based on modified lookup table nonlinear predistortion,” IEEE Photonics J. 10(3), 1–9 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Li, X. Li, L. Chen, Y. Xia, C. Ge, and Y. Chen, “High-level QAM OFDM system using DML for low-cost short reach optical communications,” IEEE Photonics Technol. Lett. 26(9), 941–944 (2014).
[Crossref]

J. Lightwave Technol. (5)

Measurement (1)

T. S. D. Singh and A. Chatterjee, “A comparative study of adaptation algorithms for nonlinear system identification based on second order Volterra and bilinear polynomial filters,” Measurement 44(10), 1915–1923 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Science (1)

A. Rodriguez and A. Laio, “Machine learning. Clustering by fast search and find of density peaks,” Science 344(6191), 1492–1496 (2014).
[Crossref] [PubMed]

Other (14)

W. J. Huang, W. F. Chang, C. C. Wei, J. J. Liu, Y. C. Chen, K. L. Chi, C. L. Wang, J. W. Shi, and J. Chen, “93% complexity reduction of Volterra nonlinear equalizer by ℓ 1-regularization for 112-Gbps PAM-4 850-nm VCSEL optical interconnect,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M2D.7.
[Crossref]

P. Li, L. Yi, L. Xue, and W. Hu, “100Gbps IM/DD transmission over 25km SSMF using 20G-class DML and PIN enabled by machine learning,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper W2A.46.
[Crossref]

E. Giacoumidis, S. T. Le, I. Aldaya, J. L. Wei, M. McCarthy, N. J. Doran, and B. J. Eggleton, “Experimental comparison of artificial neural network and Volterra based nonlinear equalization for CO-OFDM,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper W3A.4.
[Crossref]

M. Tao, L. Zhou, H. Zeng, S. Li, and X. Liu, “50-Gb/s/λ TDM-PON based on 10G DML and 10G APD supporting PR10 link loss budget after 20-km downstream transmission in the O-band,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu3G.2.
[Crossref]

D. Li, L. Deng, Y. Ye, Y. Zhang, M. Cheng, S. Fu, M. Tang, and D. Liu, “4×96 Gbit/s PAM8 for short-reach applications employing low-cost DML without pre-equalization,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper W2A.33.
[Crossref]

W. Yi, X. He, J. Wang, and Z. Pan, “Efficient adaptive filtering techniques using hybrid RLS-LMS algorithm for channel equalization in optical few-mode fiber communication systems,” in Proceedings of Photonics Conference (Institute of Electrical and Electronics Engineers, 2016), pp. 517–518.

G. C. I. Cisco, Forecast and methodology, 2016–2021, white paper, 2018.

T. Zou, S. Zhang, L. Liu, W. Cheng, and X. Xu, “Single-Lane 100Gb/s 4-PAM transmission over 80km SSMF based on K-K scheme and integrated 10G TOSA,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2D.6.

A. Li, W. R. Peng, Y. Cui, and Y. Bai, “Single-λ 112Gbit/s 80-km transmission of PAM4 signal with optical signal-to-signal beat noise cancellation,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Tu2C.5.
[Crossref]

B. P. Prashant, M. Li, H. Zhang, Y. Wang, Y. Liang, H.-H. Liao, I. L. Ho, and J. Zheng, “10 km CWDM transmission using 56 Gb/s PAM-4 directly modulated lasers for 200G/400G transceivers,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2017), pp. 1–3.

W. Wang, P. Zhao, Z. Zhang, H. Li, D. Zang, N. Zhu, and Y. Lu, “First demonstration of 112 Gb/s PAM-4 amplifier-free transmission over a record reach of 40 km using 1.3 μm directly modulated laser,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper Th4B.8.
[Crossref]

N. Kikuchi and R. Hirai, “Intensity-modulated/direct-detection (IM/DD) Nyquist pulse-amplitude modulation (PAM) signaling for 100-Gbit/s/λ optical short-reach transmission,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2014), pp. 1–3.
[Crossref]

M. A. Mestre, H. Mardoyan, A. Konczykowska, R. Rios-Müller, J. Renaudier, F. Jorge, B. Duval, J.-Y. Dupuy, A. Ghazisaeidi, P. Jennevé, and S. Bigo, “Direct detection transceiver at 150-Gbit/s net data rate using PAM 8 for optical interconnects,” in Proceedings of European Conference on Optical Communication (Institute of Electrical and Electronics Engineers, 2015), pp. 1–3.
[Crossref]

R. Hirai, N. Kikuchi, and T. Fukui, “High-spectral efficiency DWDM transmission of 100-Gbit/s/lambda IM/DD single sideband baseband-Nyquist-PAM8 signals,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Th3D.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic diagram of the modified Volterra equalizer. w i : tap coefficients of the 1st order Volterra kernel, w ij : tap coefficients of the 2nd order Volterra kernel, h i : tap coefficients of the decision feedback process, T: one symbol delay, x(i): input signal, y(i): output signal, and d(i): decision results of y(i).
Fig. 2
Fig. 2 (a) The experimental setup of PAM4/PAM8 signal transmission, (b) the transmitted optical spectrum after MUX, and (c) the measured S21 curves of four DMLs.
Fig. 3
Fig. 3 The measured BER curves of 4 × 64 Gbit/s PAM4 signals as a function of ROP after OBTB transmission by using Volterra (51,7,3) and the modified Volterra (51,7,3,4) for (a) Lane 1 and Lane2, (b) Lane3 and Lane4.
Fig. 4
Fig. 4 (a) The measured BER values as a function of the parameters of Volterra ( l 1 , l 2 , l 3 ) at the ROP of −10 dBm after 30 km SSMF transmission for Lane3, (b) tap coefficients of the trained Volterra (51,7,3).
Fig. 5
Fig. 5 The measured BER curves of 4 × 64 Gbit/s PAM4 signals as a function of ROP after 30 km SSMF transmission by using Volterra (51,7,3) and the modified Volterra (51,7,3,4) for (a) Lane 1 and Lane2, (b) Lane3 and Lane4.
Fig. 6
Fig. 6 Normalized spectrum of white Gaussian noise (a) before equalizers, (b) after the Volterra (51,7,3), and (c) after modified Volterra (51,7,3,4). Red curves: the envelope of the corresponding spectrum.
Fig. 7
Fig. 7 The measured BER curves of 4 × 96 Gbit/s PAM8 signals as a function of ROP after OBTB transmission by using Volterra (51,7,3) and the modified Volterra (51,7,3,6) for (a) Lane 1 and Lane2, (b) Lane3 and Lane4.
Fig. 8
Fig. 8 The measured BER curves of 4 × 96 Gbit/s PAM8 signals as a function of ROP after 15 km SSMF transmission by using Volterra (51,7,3) and the modified Volterra (51,7,3,6) for (a) Lane 1 and Lane2, (b) Lane3 and Lane4.
Fig. 9
Fig. 9 Normalized spectrum of white Gaussian noise after (a) modified Volterra equalizer (51,7,3,6), and (b) the conventional Volterra equalizer (51,7,3). The equalized PAM8 symbols by using (c) the modified Volterra equalizer (51,7,3,6), and (d) the conventional Volterra equalizer (51,7,3) at the ROP of 1 dBm for Lane1. Red curves: the envelope of the corresponding spectrum.
Fig. 10
Fig. 10 The measured BER performance and the required computation complexity of different equalizers at the ROP of 1 dBm for Lane1 with 96 Gbit/s PAM8 signal transmission over 15 km SSMF.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

y(i)= n=1 k m 1 =0 l 1 m k = m k1 l k w( m 1 ,, m k )×x(i m 1 )x(i m k ) + n=1 q h(n)d(in) ,
U(n)=[ x(n),x(n1), 1st order input terms , x(ni)x(nj), 2nd order input terms , x(ni)x(nj)x(np), 3rd order input terms , d(n1), decision input terms ].
W(n)=[ w 1 , w 2 , 1st order kernel , w ij , 2nd order kernel , w ijp , 3rd order kernel , h 1 , h 2 , decision feedback filter ],
W(n)=W(n1)+K(n)e(n),
π(n)=U(n)P(n1),
K(n)= π T (n)/(λ+π(n) U T (n)),
P(n)= 1 λ (P(n1)K(n)π(n)),
th(n)=th(n1)+μ e ¯ ,
C 1 = l 1 + l 2 ( l 2 +1)+ 3 2 (1(1+1)+2(2+1)++ l 3 ( l 3 +1)).
C 2 = C 1 +q= l 1 + l 2 ( l 2 +1)+ 3 2 (1(1+1)+2(2+1)++ l 3 ( l 3 +1))+q.