Abstract

We demonstrate experimentally that flat and broadband chaotic signals can be easily generated by combining a multi-mode laser diode subject to optical feedback with a band-pass filter. Measurements are made of the RF spectra of multi-mode and single-mode outputs from an external cavity Fabry-Perot (FP) semiconductor laser before and after the filtering procedure. In this way it is found that in the chaos regime the low-frequency energy of the single-mode output is enhanced by about 25 dB comparing with that of the multi-mode output. Moreover, the associated 3-dB chaos bandwidth can reach around 6 GHz for the single mode case. Numerical demonstrations show mode competition is the physical origin of the low-frequency enhancement in the single-mode chaotic outputs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of flat wideband chaos with suppressed time delay signature by using optical time lens

Ning Jiang, Chao Wang, Chenpeng Xue, Guilan Li, Shuqing Lin, and Kun Qiu
Opt. Express 25(13) 14359-14367 (2017)

Chaos laser chips with delayed optical feedback using a passive ring waveguide

Satoshi Sunada, Takahisa Harayama, Kenichi Arai, Kazuyuki Yoshimura, Peter Davis, Ken Tsuzuki, and Atsushi Uchida
Opt. Express 19(7) 5713-5724 (2011)

Synchronization of bandwidth-enhanced chaos in semiconductor lasers with optical feedback and injection

Hiroyuki Someya, Isao Oowada, Haruka Okumura, Takahiko Kida, and Atsushi Uchida
Opt. Express 17(22) 19536-19543 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
    [Crossref] [PubMed]
  2. J. Ke, L. Yi, G. Xia, and W. Hu, “Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate,” Opt. Lett. 43(6), 1323–1326 (2018).
    [Crossref] [PubMed]
  3. N. Jiang, A. Zhao, C. Xue, J. Tang, and K. Qiu, “Physical secure optical communication based on private chaotic spectral phase encryption/decryption,” Opt. Lett. 44(7), 1536–1539 (2019).
    [Crossref] [PubMed]
  4. F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
    [Crossref]
  5. C. H. Cheng, C. Y. Chen, J. D. Chen, D. K. Pan, K. T. Ting, and F. Y. Lin, “3D pulsed chaos lidar system,” Opt. Express 26(9), 12230–12241 (2018).
    [Crossref] [PubMed]
  6. X. Y. Dong, A. B. Wang, J. G. Zhang, H. Han, T. Zhao, X. L. Liu, and Y. C. Wang, “Combined attenuation and high-resolution fault measurements using chaos-OTDR,” IEEE Photon. J. 7(6), 1–6 (2015).
  7. A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
    [Crossref]
  8. I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
    [Crossref]
  9. P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. A. Shore, E. Dubrova, B. J. Xu, Y. C. Wang, and A. B. Wang, “Self-balanced real-time photonic scheme for ultrafast random number generation,” APL Photon. 3(6), 061301 (2018).
    [Crossref]
  10. P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. Y. Li, K. A. Shore, Y. C. Wang, and A. B. Wang, “Ultrafast fully photonic random bit generator,” J. Lightwave Technol. 36(12), 2531–2540 (2018).
    [Crossref]
  11. P. Li, J. Zhang, L. Sang, X. Liu, Y. Guo, X. Guo, A. Wang, K. Alan Shore, and Y. Wang, “Real-time online photonic random number generation,” Opt. Lett. 42(14), 2699–2702 (2017).
    [Crossref] [PubMed]
  12. X. Z. Li, S. S. Li, J. P. Zhuang, and S. C. Chan, “Random bit generation at tunable rates using a chaotic semiconductor laser under distributed feedback,” Opt. Lett. 40(17), 3970–3973 (2015).
    [Crossref] [PubMed]
  13. N. Li, B. Kim, V. N. Chizhevsky, A. Locquet, M. Bloch, D. S. Citrin, and W. Pan, “Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser,” Opt. Express 22(6), 6634–6646 (2014).
    [Crossref] [PubMed]
  14. X. Tang, Z. M. Wu, J. G. Wu, T. Deng, J. J. Chen, L. Fan, Z. Q. Zhong, and G. Q. Xia, “Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source,” Opt. Express 23(26), 33130–33141 (2015).
    [Crossref] [PubMed]
  15. M. Virte, E. Mercier, H. Thienpont, K. Panajotov, and M. Sciamanna, “Physical random bit generation from chaotic solitary laser diode,” Opt. Express 22(14), 17271–17280 (2014).
    [Crossref] [PubMed]
  16. A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18(18), 18763–18768 (2010).
    [Crossref] [PubMed]
  17. L. Zhang, B. Pan, G. Chen, L. Guo, D. Lu, L. Zhao, and W. Wang, “640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser,” Sci. Rep.  7, 1–8 (2017).
  18. S. Shinohara, K. Arai, P. Davis, S. Sunada, and T. Harayama, “Chaotic laser based physical random bit streaming system with a computer application interface,” Opt. Express 25(6), 6461–6474 (2017).
    [Crossref] [PubMed]
  19. K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, “Real-time fast physical random number generator with a photonic integrated circuit,” Opt. Express 25(6), 6511–6523 (2017).
    [Crossref] [PubMed]
  20. C. H. L. Quay, I. Z. Maxwell, and J. A. Hudgings, “Coherence collapse and redshifting in vertical-cavity surface-emitting lasers exposed to strong optical feedback,” J. Appl. Phys. 90(12), 5856–5858 (2001).
    [Crossref]
  21. D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Opt. Lett. 32(20), 2960–2962 (2007).
    [Crossref] [PubMed]
  22. J. G. Wu, G. Q. Xia, X. Tang, X. D. Lin, T. Deng, L. Fan, and Z. M. Wu, “Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser,” Opt. Express 18(7), 6661–6666 (2010).
    [Crossref] [PubMed]
  23. N. Q. Li, W. Pan, A. Locquet, V. N. Chizhevsky, and D. S. Citrin, “Silicon photonic waveguides and devices for near- and mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron.  21(4), 1–12 (2015).
  24. B. M. Al Bayati, A. K. Ahmad, and K. A. M. Naimee, “Influence of optical feedback strength and semiconductor laser coherence on chaos communications,” J. Opt. Soc. Am. B 35(4), 918–925 (2018).
    [Crossref]
  25. H. Huang, L. C. Lin, C. Y. Chen, D. Arsenijević, D. Bimberg, F. Y. Lin, and F. Grillot, “Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes,” Opt. Express 26(2), 1743–1751 (2018).
    [Crossref] [PubMed]
  26. A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
    [Crossref] [PubMed]
  27. A. B. Wang, Y. B. Yang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron.  21(6), 1–10 (2015).
  28. A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
    [Crossref]
  29. Y. H. Hong, X. F. Chen, P. S. Spencer, and K. A. Shore, “Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator,” IEEE J. Quantum Electron.  51(3), 1–6 (2015).
  30. A. T. Ryan, G. P. Agrawal, G. R. Gray, and E. C. Gage, “Optical-feedback-induced chaos and its control in multimode semiconductor lasers,” IEEE J. Quantum Electron. 30(3), 668–679 (1994).
    [Crossref]
  31. Q. Yang, Z. M. Wu, G. J. Wu, and G. Q. Xia, “Influence of injection patterns on chaos synchronization performance between a multimode laser diode and a single-mode laser,” Opt. Commun. 281(19), 5025–5030 (2008).
    [Crossref]

2019 (1)

2018 (6)

2017 (4)

2015 (6)

X. Z. Li, S. S. Li, J. P. Zhuang, and S. C. Chan, “Random bit generation at tunable rates using a chaotic semiconductor laser under distributed feedback,” Opt. Lett. 40(17), 3970–3973 (2015).
[Crossref] [PubMed]

X. Y. Dong, A. B. Wang, J. G. Zhang, H. Han, T. Zhao, X. L. Liu, and Y. C. Wang, “Combined attenuation and high-resolution fault measurements using chaos-OTDR,” IEEE Photon. J. 7(6), 1–6 (2015).

X. Tang, Z. M. Wu, J. G. Wu, T. Deng, J. J. Chen, L. Fan, Z. Q. Zhong, and G. Q. Xia, “Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source,” Opt. Express 23(26), 33130–33141 (2015).
[Crossref] [PubMed]

A. B. Wang, Y. B. Yang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron.  21(6), 1–10 (2015).

N. Q. Li, W. Pan, A. Locquet, V. N. Chizhevsky, and D. S. Citrin, “Silicon photonic waveguides and devices for near- and mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron.  21(4), 1–12 (2015).

Y. H. Hong, X. F. Chen, P. S. Spencer, and K. A. Shore, “Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator,” IEEE J. Quantum Electron.  51(3), 1–6 (2015).

2014 (2)

2013 (2)

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref] [PubMed]

2010 (3)

2008 (2)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Q. Yang, Z. M. Wu, G. J. Wu, and G. Q. Xia, “Influence of injection patterns on chaos synchronization performance between a multimode laser diode and a single-mode laser,” Opt. Commun. 281(19), 5025–5030 (2008).
[Crossref]

2007 (1)

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

2004 (1)

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

2001 (1)

C. H. L. Quay, I. Z. Maxwell, and J. A. Hudgings, “Coherence collapse and redshifting in vertical-cavity surface-emitting lasers exposed to strong optical feedback,” J. Appl. Phys. 90(12), 5856–5858 (2001).
[Crossref]

1994 (1)

A. T. Ryan, G. P. Agrawal, G. R. Gray, and E. C. Gage, “Optical-feedback-induced chaos and its control in multimode semiconductor lasers,” IEEE J. Quantum Electron. 30(3), 668–679 (1994).
[Crossref]

Agrawal, G. P.

A. T. Ryan, G. P. Agrawal, G. R. Gray, and E. C. Gage, “Optical-feedback-induced chaos and its control in multimode semiconductor lasers,” IEEE J. Quantum Electron. 30(3), 668–679 (1994).
[Crossref]

Ahmad, A. K.

Al Bayati, B. M.

Alan Shore, K.

Amano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Arai, K.

Argyris, A.

A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18(18), 18763–18768 (2010).
[Crossref] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Arsenijevic, D.

Aviad, Y.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Bimberg, D.

Bloch, M.

Bogris, A.

Chan, S. C.

Chen, C. Y.

Chen, G.

L. Zhang, B. Pan, G. Chen, L. Guo, D. Lu, L. Zhao, and W. Wang, “640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser,” Sci. Rep.  7, 1–8 (2017).

Chen, J. D.

Chen, J. J.

Chen, X. F.

Y. H. Hong, X. F. Chen, P. S. Spencer, and K. A. Shore, “Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator,” IEEE J. Quantum Electron.  51(3), 1–6 (2015).

Cheng, C. H.

Chizhevsky, V. N.

N. Q. Li, W. Pan, A. Locquet, V. N. Chizhevsky, and D. S. Citrin, “Silicon photonic waveguides and devices for near- and mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron.  21(4), 1–12 (2015).

N. Li, B. Kim, V. N. Chizhevsky, A. Locquet, M. Bloch, D. S. Citrin, and W. Pan, “Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser,” Opt. Express 22(6), 6634–6646 (2014).
[Crossref] [PubMed]

Citrin, D. S.

Cohen, E.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Davis, P.

S. Shinohara, K. Arai, P. Davis, S. Sunada, and T. Harayama, “Chaotic laser based physical random bit streaming system with a computer application interface,” Opt. Express 25(6), 6461–6474 (2017).
[Crossref] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Deligiannidis, S.

Deng, T.

Dong, X. Y.

X. Y. Dong, A. B. Wang, J. G. Zhang, H. Han, T. Zhao, X. L. Liu, and Y. C. Wang, “Combined attenuation and high-resolution fault measurements using chaos-OTDR,” IEEE Photon. J. 7(6), 1–6 (2015).

Dubrova, E.

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. A. Shore, E. Dubrova, B. J. Xu, Y. C. Wang, and A. B. Wang, “Self-balanced real-time photonic scheme for ultrafast random number generation,” APL Photon. 3(6), 061301 (2018).
[Crossref]

Fan, L.

Fan, Y. L.

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. A. Shore, E. Dubrova, B. J. Xu, Y. C. Wang, and A. B. Wang, “Self-balanced real-time photonic scheme for ultrafast random number generation,” APL Photon. 3(6), 061301 (2018).
[Crossref]

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. Y. Li, K. A. Shore, Y. C. Wang, and A. B. Wang, “Ultrafast fully photonic random bit generator,” J. Lightwave Technol. 36(12), 2531–2540 (2018).
[Crossref]

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Gage, E. C.

A. T. Ryan, G. P. Agrawal, G. R. Gray, and E. C. Gage, “Optical-feedback-induced chaos and its control in multimode semiconductor lasers,” IEEE J. Quantum Electron. 30(3), 668–679 (1994).
[Crossref]

García-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Gray, G. R.

A. T. Ryan, G. P. Agrawal, G. R. Gray, and E. C. Gage, “Optical-feedback-induced chaos and its control in multimode semiconductor lasers,” IEEE J. Quantum Electron. 30(3), 668–679 (1994).
[Crossref]

Grillot, F.

Guo, L.

L. Zhang, B. Pan, G. Chen, L. Guo, D. Lu, L. Zhao, and W. Wang, “640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser,” Sci. Rep.  7, 1–8 (2017).

Guo, X.

Guo, X. M.

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. Y. Li, K. A. Shore, Y. C. Wang, and A. B. Wang, “Ultrafast fully photonic random bit generator,” J. Lightwave Technol. 36(12), 2531–2540 (2018).
[Crossref]

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. A. Shore, E. Dubrova, B. J. Xu, Y. C. Wang, and A. B. Wang, “Self-balanced real-time photonic scheme for ultrafast random number generation,” APL Photon. 3(6), 061301 (2018).
[Crossref]

Guo, Y.

Guo, Y. Q.

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. Y. Li, K. A. Shore, Y. C. Wang, and A. B. Wang, “Ultrafast fully photonic random bit generator,” J. Lightwave Technol. 36(12), 2531–2540 (2018).
[Crossref]

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. A. Shore, E. Dubrova, B. J. Xu, Y. C. Wang, and A. B. Wang, “Self-balanced real-time photonic scheme for ultrafast random number generation,” APL Photon. 3(6), 061301 (2018).
[Crossref]

Han, H.

X. Y. Dong, A. B. Wang, J. G. Zhang, H. Han, T. Zhao, X. L. Liu, and Y. C. Wang, “Combined attenuation and high-resolution fault measurements using chaos-OTDR,” IEEE Photon. J. 7(6), 1–6 (2015).

Harayama, T.

Hirano, K.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Hong, Y. H.

Y. H. Hong, X. F. Chen, P. S. Spencer, and K. A. Shore, “Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator,” IEEE J. Quantum Electron.  51(3), 1–6 (2015).

Hu, W.

Huang, H.

Hudgings, J. A.

C. H. L. Quay, I. Z. Maxwell, and J. A. Hudgings, “Coherence collapse and redshifting in vertical-cavity surface-emitting lasers exposed to strong optical feedback,” J. Appl. Phys. 90(12), 5856–5858 (2001).
[Crossref]

Inoue, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Inubushi, M.

Iwakawa, K.

Jiang, N.

Kanter, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Ke, J.

Kim, B.

Kurashige, T.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Li, K. Y.

Li, L.

A. B. Wang, Y. B. Yang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron.  21(6), 1–10 (2015).

A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref] [PubMed]

Li, N.

Li, N. Q.

N. Q. Li, W. Pan, A. Locquet, V. N. Chizhevsky, and D. S. Citrin, “Silicon photonic waveguides and devices for near- and mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron.  21(4), 1–12 (2015).

Li, P.

Li, S. S.

Li, X. Z.

Lin, F. Y.

Lin, L. C.

Lin, X. D.

Liu, J. M.

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

Liu, X.

Liu, X. L.

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. Y. Li, K. A. Shore, Y. C. Wang, and A. B. Wang, “Ultrafast fully photonic random bit generator,” J. Lightwave Technol. 36(12), 2531–2540 (2018).
[Crossref]

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. A. Shore, E. Dubrova, B. J. Xu, Y. C. Wang, and A. B. Wang, “Self-balanced real-time photonic scheme for ultrafast random number generation,” APL Photon. 3(6), 061301 (2018).
[Crossref]

X. Y. Dong, A. B. Wang, J. G. Zhang, H. Han, T. Zhao, X. L. Liu, and Y. C. Wang, “Combined attenuation and high-resolution fault measurements using chaos-OTDR,” IEEE Photon. J. 7(6), 1–6 (2015).

Locquet, A.

Lu, D.

L. Zhang, B. Pan, G. Chen, L. Guo, D. Lu, L. Zhao, and W. Wang, “640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser,” Sci. Rep.  7, 1–8 (2017).

Maxwell, I. Z.

C. H. L. Quay, I. Z. Maxwell, and J. A. Hudgings, “Coherence collapse and redshifting in vertical-cavity surface-emitting lasers exposed to strong optical feedback,” J. Appl. Phys. 90(12), 5856–5858 (2001).
[Crossref]

Mercier, E.

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Naimee, K. A. M.

Naito, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Oowada, I.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Pan, B.

L. Zhang, B. Pan, G. Chen, L. Guo, D. Lu, L. Zhao, and W. Wang, “640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser,” Sci. Rep.  7, 1–8 (2017).

Pan, D. K.

Pan, W.

N. Q. Li, W. Pan, A. Locquet, V. N. Chizhevsky, and D. S. Citrin, “Silicon photonic waveguides and devices for near- and mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron.  21(4), 1–12 (2015).

N. Li, B. Kim, V. N. Chizhevsky, A. Locquet, M. Bloch, D. S. Citrin, and W. Pan, “Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser,” Opt. Express 22(6), 6634–6646 (2014).
[Crossref] [PubMed]

Panajotov, K.

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Pikasis, E.

Qiu, K.

Quay, C. H. L.

C. H. L. Quay, I. Z. Maxwell, and J. A. Hudgings, “Coherence collapse and redshifting in vertical-cavity surface-emitting lasers exposed to strong optical feedback,” J. Appl. Phys. 90(12), 5856–5858 (2001).
[Crossref]

Reidler, I.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Rontani, D.

Rosenbluh, M.

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Ryan, A. T.

A. T. Ryan, G. P. Agrawal, G. R. Gray, and E. C. Gage, “Optical-feedback-induced chaos and its control in multimode semiconductor lasers,” IEEE J. Quantum Electron. 30(3), 668–679 (1994).
[Crossref]

Sang, L.

Sciamanna, M.

Shiki, M.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Shinohara, S.

Shore, K. A.

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. A. Shore, E. Dubrova, B. J. Xu, Y. C. Wang, and A. B. Wang, “Self-balanced real-time photonic scheme for ultrafast random number generation,” APL Photon. 3(6), 061301 (2018).
[Crossref]

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. Y. Li, K. A. Shore, Y. C. Wang, and A. B. Wang, “Ultrafast fully photonic random bit generator,” J. Lightwave Technol. 36(12), 2531–2540 (2018).
[Crossref]

A. B. Wang, Y. B. Yang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron.  21(6), 1–10 (2015).

Y. H. Hong, X. F. Chen, P. S. Spencer, and K. A. Shore, “Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator,” IEEE J. Quantum Electron.  51(3), 1–6 (2015).

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Someya, H.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Spencer, P. S.

Y. H. Hong, X. F. Chen, P. S. Spencer, and K. A. Shore, “Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator,” IEEE J. Quantum Electron.  51(3), 1–6 (2015).

Sunada, S.

Syvridis, D.

A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18(18), 18763–18768 (2010).
[Crossref] [PubMed]

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Tang, J.

Tang, X.

Terashima, Y.

Thienpont, H.

Ting, K. T.

Uchida, A.

K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, “Real-time fast physical random number generator with a photonic integrated circuit,” Opt. Express 25(6), 6511–6523 (2017).
[Crossref] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Ugajin, K.

Virte, M.

Wang, A.

Wang, A. B.

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. A. Shore, E. Dubrova, B. J. Xu, Y. C. Wang, and A. B. Wang, “Self-balanced real-time photonic scheme for ultrafast random number generation,” APL Photon. 3(6), 061301 (2018).
[Crossref]

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. Y. Li, K. A. Shore, Y. C. Wang, and A. B. Wang, “Ultrafast fully photonic random bit generator,” J. Lightwave Technol. 36(12), 2531–2540 (2018).
[Crossref]

A. B. Wang, Y. B. Yang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron.  21(6), 1–10 (2015).

X. Y. Dong, A. B. Wang, J. G. Zhang, H. Han, T. Zhao, X. L. Liu, and Y. C. Wang, “Combined attenuation and high-resolution fault measurements using chaos-OTDR,” IEEE Photon. J. 7(6), 1–6 (2015).

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Wang, B.

Wang, B. J.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Wang, W.

L. Zhang, B. Pan, G. Chen, L. Guo, D. Lu, L. Zhao, and W. Wang, “640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser,” Sci. Rep.  7, 1–8 (2017).

Wang, Y.

Wang, Y. C.

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. A. Shore, E. Dubrova, B. J. Xu, Y. C. Wang, and A. B. Wang, “Self-balanced real-time photonic scheme for ultrafast random number generation,” APL Photon. 3(6), 061301 (2018).
[Crossref]

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. Y. Li, K. A. Shore, Y. C. Wang, and A. B. Wang, “Ultrafast fully photonic random bit generator,” J. Lightwave Technol. 36(12), 2531–2540 (2018).
[Crossref]

X. Y. Dong, A. B. Wang, J. G. Zhang, H. Han, T. Zhao, X. L. Liu, and Y. C. Wang, “Combined attenuation and high-resolution fault measurements using chaos-OTDR,” IEEE Photon. J. 7(6), 1–6 (2015).

A. B. Wang, Y. B. Yang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron.  21(6), 1–10 (2015).

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Wu, G. J.

Q. Yang, Z. M. Wu, G. J. Wu, and G. Q. Xia, “Influence of injection patterns on chaos synchronization performance between a multimode laser diode and a single-mode laser,” Opt. Commun. 281(19), 5025–5030 (2008).
[Crossref]

Wu, J. G.

Wu, Z. M.

Xia, G.

Xia, G. Q.

Xu, B. J.

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. A. Shore, E. Dubrova, B. J. Xu, Y. C. Wang, and A. B. Wang, “Self-balanced real-time photonic scheme for ultrafast random number generation,” APL Photon. 3(6), 061301 (2018).
[Crossref]

Xu, H.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Xue, C.

Yang, Q.

Q. Yang, Z. M. Wu, G. J. Wu, and G. Q. Xia, “Influence of injection patterns on chaos synchronization performance between a multimode laser diode and a single-mode laser,” Opt. Commun. 281(19), 5025–5030 (2008).
[Crossref]

Yang, Y.

Yang, Y. B.

A. B. Wang, Y. B. Yang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron.  21(6), 1–10 (2015).

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Yi, L.

Yoshimori, S.

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Yoshimura, K.

K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, “Real-time fast physical random number generator with a photonic integrated circuit,” Opt. Express 25(6), 6511–6523 (2017).
[Crossref] [PubMed]

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

Zhang, B.

Zhang, J.

Zhang, J. G.

X. Y. Dong, A. B. Wang, J. G. Zhang, H. Han, T. Zhao, X. L. Liu, and Y. C. Wang, “Combined attenuation and high-resolution fault measurements using chaos-OTDR,” IEEE Photon. J. 7(6), 1–6 (2015).

Zhang, L.

L. Zhang, B. Pan, G. Chen, L. Guo, D. Lu, L. Zhao, and W. Wang, “640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser,” Sci. Rep.  7, 1–8 (2017).

Zhang, M. J.

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

Zhao, A.

Zhao, L.

L. Zhang, B. Pan, G. Chen, L. Guo, D. Lu, L. Zhao, and W. Wang, “640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser,” Sci. Rep.  7, 1–8 (2017).

Zhao, T.

X. Y. Dong, A. B. Wang, J. G. Zhang, H. Han, T. Zhao, X. L. Liu, and Y. C. Wang, “Combined attenuation and high-resolution fault measurements using chaos-OTDR,” IEEE Photon. J. 7(6), 1–6 (2015).

Zhong, Z. Q.

Zhuang, J. P.

APL Photon. (1)

P. Li, Y. Guo, Y. Q. Guo, Y. L. Fan, X. M. Guo, X. L. Liu, K. A. Shore, E. Dubrova, B. J. Xu, Y. C. Wang, and A. B. Wang, “Self-balanced real-time photonic scheme for ultrafast random number generation,” APL Photon. 3(6), 061301 (2018).
[Crossref]

Appl. Phys. Lett. (1)

A. B. Wang, Y. C. Wang, Y. B. Yang, M. J. Zhang, H. Xu, and B. J. Wang, “Generation of flat-spectrum wideband chaos by fiber ring resonator,” Appl. Phys. Lett. 102(3), 031112 (2013).
[Crossref]

IEEE J. Quantum Electron (1)

Y. H. Hong, X. F. Chen, P. S. Spencer, and K. A. Shore, “Enhanced flat broadband optical chaos using low-cost VCSEL and fiber ring resonator,” IEEE J. Quantum Electron.  51(3), 1–6 (2015).

IEEE J. Quantum Electron. (1)

A. T. Ryan, G. P. Agrawal, G. R. Gray, and E. C. Gage, “Optical-feedback-induced chaos and its control in multimode semiconductor lasers,” IEEE J. Quantum Electron. 30(3), 668–679 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (2)

N. Q. Li, W. Pan, A. Locquet, V. N. Chizhevsky, and D. S. Citrin, “Silicon photonic waveguides and devices for near- and mid-IR Applications,” IEEE J. Sel. Top. Quantum Electron.  21(4), 1–12 (2015).

A. B. Wang, Y. B. Yang, L. Li, Y. C. Wang, and K. A. Shore, “Optical heterodyne generation of high-dimensional and broadband white chaos,” IEEE J. Sel. Top. Quantum Electron.  21(6), 1–10 (2015).

IEEE J. Sel. Top. Quantum Electron. (1)

F. Y. Lin and J. M. Liu, “Chaotic lidar,” IEEE J. Sel. Top. Quantum Electron. 10(5), 991–997 (2004).
[Crossref]

IEEE Photon. J. (1)

X. Y. Dong, A. B. Wang, J. G. Zhang, H. Han, T. Zhao, X. L. Liu, and Y. C. Wang, “Combined attenuation and high-resolution fault measurements using chaos-OTDR,” IEEE Photon. J. 7(6), 1–6 (2015).

J. Appl. Phys. (1)

C. H. L. Quay, I. Z. Maxwell, and J. A. Hudgings, “Coherence collapse and redshifting in vertical-cavity surface-emitting lasers exposed to strong optical feedback,” J. Appl. Phys. 90(12), 5856–5858 (2001).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, and P. Davis, “Fast physical random bit generation with chaotic semiconductor lasers,” Nat. Photonics 2(12), 728–732 (2008).
[Crossref]

I. Kanter, Y. Aviad, I. Reidler, E. Cohen, and M. Rosenbluh, “An optical ultrafast random bit generator,” Nat. Photonics 4(1), 58–61 (2010).
[Crossref]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, and K. A. Shore, “Chaos-based communications at high bit rates using commercial fibre-optic links,” Nature 438(7066), 343–346 (2005).
[Crossref] [PubMed]

Opt. Commun. (1)

Q. Yang, Z. M. Wu, G. J. Wu, and G. Q. Xia, “Influence of injection patterns on chaos synchronization performance between a multimode laser diode and a single-mode laser,” Opt. Commun. 281(19), 5025–5030 (2008).
[Crossref]

Opt. Express (10)

H. Huang, L. C. Lin, C. Y. Chen, D. Arsenijević, D. Bimberg, F. Y. Lin, and F. Grillot, “Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes,” Opt. Express 26(2), 1743–1751 (2018).
[Crossref] [PubMed]

A. Wang, Y. Yang, B. Wang, B. Zhang, L. Li, and Y. Wang, “Generation of wideband chaos with suppressed time-delay signature by delayed self-interference,” Opt. Express 21(7), 8701–8710 (2013).
[Crossref] [PubMed]

J. G. Wu, G. Q. Xia, X. Tang, X. D. Lin, T. Deng, L. Fan, and Z. M. Wu, “Time delay signature concealment of optical feedback induced chaos in an external cavity semiconductor laser,” Opt. Express 18(7), 6661–6666 (2010).
[Crossref] [PubMed]

C. H. Cheng, C. Y. Chen, J. D. Chen, D. K. Pan, K. T. Ting, and F. Y. Lin, “3D pulsed chaos lidar system,” Opt. Express 26(9), 12230–12241 (2018).
[Crossref] [PubMed]

S. Shinohara, K. Arai, P. Davis, S. Sunada, and T. Harayama, “Chaotic laser based physical random bit streaming system with a computer application interface,” Opt. Express 25(6), 6461–6474 (2017).
[Crossref] [PubMed]

K. Ugajin, Y. Terashima, K. Iwakawa, A. Uchida, T. Harayama, K. Yoshimura, and M. Inubushi, “Real-time fast physical random number generator with a photonic integrated circuit,” Opt. Express 25(6), 6511–6523 (2017).
[Crossref] [PubMed]

N. Li, B. Kim, V. N. Chizhevsky, A. Locquet, M. Bloch, D. S. Citrin, and W. Pan, “Two approaches for ultrafast random bit generation based on the chaotic dynamics of a semiconductor laser,” Opt. Express 22(6), 6634–6646 (2014).
[Crossref] [PubMed]

X. Tang, Z. M. Wu, J. G. Wu, T. Deng, J. J. Chen, L. Fan, Z. Q. Zhong, and G. Q. Xia, “Tbits/s physical random bit generation based on mutually coupled semiconductor laser chaotic entropy source,” Opt. Express 23(26), 33130–33141 (2015).
[Crossref] [PubMed]

M. Virte, E. Mercier, H. Thienpont, K. Panajotov, and M. Sciamanna, “Physical random bit generation from chaotic solitary laser diode,” Opt. Express 22(14), 17271–17280 (2014).
[Crossref] [PubMed]

A. Argyris, S. Deligiannidis, E. Pikasis, A. Bogris, and D. Syvridis, “Implementation of 140 Gb/s true random bit generator based on a chaotic photonic integrated circuit,” Opt. Express 18(18), 18763–18768 (2010).
[Crossref] [PubMed]

Opt. Lett. (5)

Sci. Rep (1)

L. Zhang, B. Pan, G. Chen, L. Guo, D. Lu, L. Zhao, and W. Wang, “640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser,” Sci. Rep.  7, 1–8 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for the RF spectrum analysis of optical feedback FP laser diode. FP-LD, Fabry-Perot laser diode; PC, polarization controller; OC1,OC2, optical coupler; VOA, variable optical attenuator; FM, fiber mirror; EDFA, erbium-doped fiber amplifier; BPF, optical band-pass filter; PD, photodetector; ESA, electrical spectrum analyzer; OSA, optical spectrum analyzer.
Fig. 2
Fig. 2 Characteristics of the measured multi-mode chaos: (a) optical spectrum; (b) RF spectrum.
Fig. 3
Fig. 3 Characteristics of measured single-mode chaotic signals (m = −1, 0, + 1): (a1-a3) optical spectra and (b1-b3) RF spectra.
Fig. 4
Fig. 4 Numerical results of the multi-mode FP-LD with optical feedback: (a) optical spectrum (M = 15); (b) power spectrum.
Fig. 5
Fig. 5 Simulation results of the single-mode chaotic signals (m = −1, 0, + 1): (a1-a3) power spectra; (b1-b3) time series; (c1-c3) cross-correlations.
Fig. 6
Fig. 6 Simulation results of the cross-correlations (CCs) between single-mode chaotic signals (m = −1, 0, + 1) after a low pass filtering (LPF) process with different cut-off frequencies. (a) CCs between modes m = −1 and + 1; (b) CCs between modes m = −1 and 0; (c) CCs between modes m = 0 and + 1. In each column, the CCs from the top to bottom correspond to the cases where the cut-off frequencies of their own LPF are 5 GHz, 3 GHz and 1 GHz, respectively.

Tables (1)

Tables Icon

Table 1 Simulation parameters of the FP-LD subject to optical feedback

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d E m ( t ) dt = 1 2 [ G m ( N )γ ] E m ( t )+ k t E m ( t τ t )cos( Δ m ( t ) )+ F r ( t )
d Φ m ( t ) dt = α 2 [ G m ( N )γ ] k t sin( Δ m ( t ) ) E m ( t τ t ) E m ( t )
dN( t ) dt = γ e [ C N th N ] m=1 M G m ( N ) | E m ( t ) | 2
G m ( N )= g c ( N N 0 ) 1+s m=1 M | E m ( t ) | 2 [ 1( mΔ ω L Δ ω g ) ] 2
Δ m ( t )=( ω c +mΔ ω L )+ Φ m ( t ) Φ m ( t τ t )
CC= ( ( E i ( t ) ) 2 ( E i ) 2 )( ( E j ( t ) ) 2 ( E j ) 2 ) ( ( E i ( t ) ) 2 ( E i ) 2 ) 2 ( ( E j ( t ) ) 2 ( E j ) 2 ) 2