Abstract

Adaptive optical pre-compensation is seen as crucial for free-space laser communication in order to overcome the influence of atmospheric turbulence, particularly with respect to Earth-to-GEO feederlinks. This paper presents an experimental investigation into adaptive optical pre-compensation under large point-ahead-angles. We detail the design and realization of a free-space laser communication experiment over a 1.0 km horizontal path using a divergent beacon beam and a focussed signal beam, propagating in opposite directions. We describe the design and development of our experimental setup and measurement campaign using real turbulence. The median isoplanatic angle was calculated to be 0.16 mrad, while an increase in the received optical power through pre-compensation could be demonstrated for point-ahead-angles in the range of 0.13 mrad to 0.27 mrad.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Real-time adaptive optics testbed to investigate point-ahead angle in pre-compensation of Earth-to-GEO optical communication

Nina Leonhard, René Berlich, Stefano Minardi, Alexander Barth, Steffen Mauch, Jacopo Mocci, Matthias Goy, Michael Appelfelder, Erik Beckert, and Claudia Reinlein
Opt. Express 24(12) 13157-13172 (2016)

Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link

Yongxiong Ren, Guodong Xie, Hao Huang, Nisar Ahmed, Yan Yan, Long Li, Changjing Bao, Martin P. J. Lavery, Moshe Tur, Mark A. Neifeld, Robert W. Boyd, Jeffrey H. Shapiro, and Alan E. Willner
Optica 1(6) 376-382 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Majumdar and J. C. Ricklin, eds., Free-Space Laser Communications, vol. 2 (Springer-Verlag, 2008), 1st ed.
    [Crossref]
  2. A. Gharanjik, K. P. Liolis, B. Shankar, and B. E. Ottersten, “Spatial multiplexing in optical feeder links for high throughput satellites,” IEEE Global Conference on Signal and Information Processing (IEEE, 2014), pp. 1112–1116.
  3. B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” in 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), (IEEE, 2015), pp. 1–6.
  4. R. K. Tyson, “Adaptive optics and ground-to-space laser communications,” Appl. Opt. 35, 3640–3646 (1996).
    [Crossref] [PubMed]
  5. M. Chen, C. Liu, D. Rui, and H. Xian, “Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle,” Opt. Express 26, 4230–4242 (2018).
    [Crossref] [PubMed]
  6. P.-D. Arapoglou and N. Girault, “Optical feeder link architectures for very hts: Issues and possibilities,” presented at the International Conference on Space Optics (ICSO), Chania, Greece, 9–12 October 2018.
  7. J. H. Shapiro, “Reciprocity of the turbulent atmosphere*,” J. Opt. Soc. Am. 61, 492–495 (1971).
    [Crossref]
  8. J. D. Barchers and D. L. Fried, “Optimal control of laser beams for propagation through a turbulent medium,” J. Opt. Soc. Am. A 19, 1779–1793 (2002).
    [Crossref]
  9. N. H. Schwartz, N. Védrenne, V. Michau, M.-T. Velluet, and F. Chazallet, “Mitigation of atmospheric effects by adaptive optics for free-space optical communications,” Proc. SPIE 7200, 72000J (2009).
    [Crossref]
  10. C. Robert, J.-M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93, 033860 (2016).
    [Crossref]
  11. N. Leonhard, R. Berlich, S. Minardi, A. Barth, S. Mauch, J. Mocci, M. Goy, M. Appelfelder, E. Beckert, and C. Reinlein, “Real-time adaptive optics testbed to investigate point-ahead-angle in pre-compensation of earth-to-geo optical communication,” Opt. Express 24, 13157–13172 (2016).
    [Crossref] [PubMed]
  12. R. Biérent, M.-T. Velluet, N. Védrenne, and V. Michau, “Experimental demonstration of the full-wave iterative compensation in free space optical communications,” Opt. Lett. 38, 2367–2369 (2013).
    [Crossref] [PubMed]
  13. T. Weyrauch and M. A. Vorontsov, “Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications,” Appl. Opt. 44, 6388–6401 (2005).
    [Crossref] [PubMed]
  14. A. Brady, R. Berlich, N. Leonhard, T. Kopf, P. Böttner, R. Eberhardt, and C. Reinlein, “Experimental validation of phase-only pre-compensation over 494 m free-space propagation,” Opt. Lett. 42, 2679–2682 (2017).
    [Crossref] [PubMed]
  15. B. García-Lorenzo and J. J. Fuensalida, “Statistical structure of the atmospheric optical turbulence at teide observatory from recalibrated generalized scidar data,” Mon. Notices Royal Astron. Soc. 410, 934–945 (2011).
    [Crossref]
  16. R. J. Sasiela, A unified approach to electromagnetic wave propagation in turbulence and the evaluation of multiparameter integrals, vol. 807 (Lincoln Laboratory, Massachusetts Institute of Technology, 1988).
    [Crossref]
  17. R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2011).
  18. V. N. Mahajan and G. ming Dai, “Orthonormal polynomials in wavefront analysis: analytical solution,” J. Opt. Soc. Am. A 24, 2994–3016 (2007).
    [Crossref]
  19. R. J. Noll, “Zernike polynomials and atmospheric turbulence*,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [Crossref]
  20. A. Quirrenbach, The Effects of Atmospheric Turbulence on Astronomical Observations, (The Center for Adaptive Optics, University of California, 2003).

2018 (1)

2017 (1)

2016 (2)

2013 (1)

2011 (1)

B. García-Lorenzo and J. J. Fuensalida, “Statistical structure of the atmospheric optical turbulence at teide observatory from recalibrated generalized scidar data,” Mon. Notices Royal Astron. Soc. 410, 934–945 (2011).
[Crossref]

2009 (1)

N. H. Schwartz, N. Védrenne, V. Michau, M.-T. Velluet, and F. Chazallet, “Mitigation of atmospheric effects by adaptive optics for free-space optical communications,” Proc. SPIE 7200, 72000J (2009).
[Crossref]

2007 (1)

2005 (1)

2002 (1)

1996 (1)

1976 (1)

1971 (1)

Appelfelder, M.

Arapoglou, P.-D.

P.-D. Arapoglou and N. Girault, “Optical feeder link architectures for very hts: Issues and possibilities,” presented at the International Conference on Space Optics (ICSO), Chania, Greece, 9–12 October 2018.

Barchers, J. D.

Barrios, R.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” in 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), (IEEE, 2015), pp. 1–6.

Barth, A.

Beckert, E.

Berlich, R.

Biérent, R.

Böttner, P.

Brady, A.

Chazallet, F.

N. H. Schwartz, N. Védrenne, V. Michau, M.-T. Velluet, and F. Chazallet, “Mitigation of atmospheric effects by adaptive optics for free-space optical communications,” Proc. SPIE 7200, 72000J (2009).
[Crossref]

Chen, M.

Conan, J.-M.

C. Robert, J.-M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93, 033860 (2016).
[Crossref]

Dimitrov, S.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” in 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), (IEEE, 2015), pp. 1–6.

Eberhardt, R.

Fried, D. L.

Fuensalida, J. J.

B. García-Lorenzo and J. J. Fuensalida, “Statistical structure of the atmospheric optical turbulence at teide observatory from recalibrated generalized scidar data,” Mon. Notices Royal Astron. Soc. 410, 934–945 (2011).
[Crossref]

García-Lorenzo, B.

B. García-Lorenzo and J. J. Fuensalida, “Statistical structure of the atmospheric optical turbulence at teide observatory from recalibrated generalized scidar data,” Mon. Notices Royal Astron. Soc. 410, 934–945 (2011).
[Crossref]

Gharanjik, A.

A. Gharanjik, K. P. Liolis, B. Shankar, and B. E. Ottersten, “Spatial multiplexing in optical feeder links for high throughput satellites,” IEEE Global Conference on Signal and Information Processing (IEEE, 2014), pp. 1112–1116.

Giggenbach, D.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” in 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), (IEEE, 2015), pp. 1–6.

Girault, N.

P.-D. Arapoglou and N. Girault, “Optical feeder link architectures for very hts: Issues and possibilities,” presented at the International Conference on Space Optics (ICSO), Chania, Greece, 9–12 October 2018.

Goy, M.

Kernec, A. L.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” in 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), (IEEE, 2015), pp. 1–6.

Kopf, T.

Leonhard, N.

Liolis, K. P.

A. Gharanjik, K. P. Liolis, B. Shankar, and B. E. Ottersten, “Spatial multiplexing in optical feeder links for high throughput satellites,” IEEE Global Conference on Signal and Information Processing (IEEE, 2014), pp. 1112–1116.

Liu, C.

Mahajan, V. N.

Mauch, S.

Michau, V.

R. Biérent, M.-T. Velluet, N. Védrenne, and V. Michau, “Experimental demonstration of the full-wave iterative compensation in free space optical communications,” Opt. Lett. 38, 2367–2369 (2013).
[Crossref] [PubMed]

N. H. Schwartz, N. Védrenne, V. Michau, M.-T. Velluet, and F. Chazallet, “Mitigation of atmospheric effects by adaptive optics for free-space optical communications,” Proc. SPIE 7200, 72000J (2009).
[Crossref]

Minardi, S.

ming Dai, G.

Mocci, J.

Noll, R. J.

Ottersten, B. E.

A. Gharanjik, K. P. Liolis, B. Shankar, and B. E. Ottersten, “Spatial multiplexing in optical feeder links for high throughput satellites,” IEEE Global Conference on Signal and Information Processing (IEEE, 2014), pp. 1112–1116.

Poulenard, S.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” in 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), (IEEE, 2015), pp. 1–6.

Quirrenbach, A.

A. Quirrenbach, The Effects of Atmospheric Turbulence on Astronomical Observations, (The Center for Adaptive Optics, University of California, 2003).

Reinlein, C.

Robert, C.

C. Robert, J.-M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93, 033860 (2016).
[Crossref]

Roy, B.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” in 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), (IEEE, 2015), pp. 1–6.

Rui, D.

Sasiela, R. J.

R. J. Sasiela, A unified approach to electromagnetic wave propagation in turbulence and the evaluation of multiparameter integrals, vol. 807 (Lincoln Laboratory, Massachusetts Institute of Technology, 1988).
[Crossref]

Schwartz, N. H.

N. H. Schwartz, N. Védrenne, V. Michau, M.-T. Velluet, and F. Chazallet, “Mitigation of atmospheric effects by adaptive optics for free-space optical communications,” Proc. SPIE 7200, 72000J (2009).
[Crossref]

Shankar, B.

A. Gharanjik, K. P. Liolis, B. Shankar, and B. E. Ottersten, “Spatial multiplexing in optical feeder links for high throughput satellites,” IEEE Global Conference on Signal and Information Processing (IEEE, 2014), pp. 1112–1116.

Shapiro, J. H.

Sotom, M.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” in 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), (IEEE, 2015), pp. 1–6.

Tyson, R. K.

Védrenne, N.

R. Biérent, M.-T. Velluet, N. Védrenne, and V. Michau, “Experimental demonstration of the full-wave iterative compensation in free space optical communications,” Opt. Lett. 38, 2367–2369 (2013).
[Crossref] [PubMed]

N. H. Schwartz, N. Védrenne, V. Michau, M.-T. Velluet, and F. Chazallet, “Mitigation of atmospheric effects by adaptive optics for free-space optical communications,” Proc. SPIE 7200, 72000J (2009).
[Crossref]

Velluet, M.-T.

R. Biérent, M.-T. Velluet, N. Védrenne, and V. Michau, “Experimental demonstration of the full-wave iterative compensation in free space optical communications,” Opt. Lett. 38, 2367–2369 (2013).
[Crossref] [PubMed]

N. H. Schwartz, N. Védrenne, V. Michau, M.-T. Velluet, and F. Chazallet, “Mitigation of atmospheric effects by adaptive optics for free-space optical communications,” Proc. SPIE 7200, 72000J (2009).
[Crossref]

Vorontsov, M. A.

Weyrauch, T.

Wolf, P.

C. Robert, J.-M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93, 033860 (2016).
[Crossref]

Xian, H.

Appl. Opt. (2)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

Mon. Notices Royal Astron. Soc. (1)

B. García-Lorenzo and J. J. Fuensalida, “Statistical structure of the atmospheric optical turbulence at teide observatory from recalibrated generalized scidar data,” Mon. Notices Royal Astron. Soc. 410, 934–945 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

C. Robert, J.-M. Conan, and P. Wolf, “Impact of turbulence on high-precision ground-satellite frequency transfer with two-way coherent optical links,” Phys. Rev. A 93, 033860 (2016).
[Crossref]

Proc. SPIE (1)

N. H. Schwartz, N. Védrenne, V. Michau, M.-T. Velluet, and F. Chazallet, “Mitigation of atmospheric effects by adaptive optics for free-space optical communications,” Proc. SPIE 7200, 72000J (2009).
[Crossref]

Other (7)

P.-D. Arapoglou and N. Girault, “Optical feeder link architectures for very hts: Issues and possibilities,” presented at the International Conference on Space Optics (ICSO), Chania, Greece, 9–12 October 2018.

A. K. Majumdar and J. C. Ricklin, eds., Free-Space Laser Communications, vol. 2 (Springer-Verlag, 2008), 1st ed.
[Crossref]

A. Gharanjik, K. P. Liolis, B. Shankar, and B. E. Ottersten, “Spatial multiplexing in optical feeder links for high throughput satellites,” IEEE Global Conference on Signal and Information Processing (IEEE, 2014), pp. 1112–1116.

B. Roy, S. Poulenard, S. Dimitrov, R. Barrios, D. Giggenbach, A. L. Kernec, and M. Sotom, “Optical feeder links for high throughput satellites,” in 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), (IEEE, 2015), pp. 1–6.

A. Quirrenbach, The Effects of Atmospheric Turbulence on Astronomical Observations, (The Center for Adaptive Optics, University of California, 2003).

R. J. Sasiela, A unified approach to electromagnetic wave propagation in turbulence and the evaluation of multiparameter integrals, vol. 807 (Lincoln Laboratory, Massachusetts Institute of Technology, 1988).
[Crossref]

R. K. Tyson, Principles of Adaptive Optics (CRC Press, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The predicted values of the isoplanatic angle, θ0, and isokinetic angle, θTA for the anticipated turbulence conditions and the measurement campaign conditions of 1064 nm wavelength, 0.3 m ground terminal aperture and a horizontal path of 1.0 km length and constant turbulence strength. The gray area indicates the PAA values under which pre-compensation could be investigated through the separation of the transmitting and receiving apertures.
Fig. 2
Fig. 2 Sketch of the experimental terminal layout. On the left, the ground terminal comprises of the AO-box, a 30 cm reflective telescope and associated interface optics. On the right, the satellite terminal has separate transmission and receiving apertures with variable separation. The divergent downlink beam is used as a beacon while the uplink is focussed under a PAA which can be implemented using a point-ahead mirror (PAM) and by repositioning of the receiving mirror, M3, in the satellite terminal. EP = AO-box entrance pupil, PSF Cam = point spread function camera, TTM = tip-tilt mirror, DM = deformable mirror, WFS = Shack-Hartmann wavefront sensor, VIS Cam = visible range camera, M1, M2, M3 = motorized mirrors 1, 2 and 3.
Fig. 3
Fig. 3 (a) A construction model of the ground terminal and (b) the installed ground terminal during the measurement campaign. ① indicates the AO-box itself with dimensions 1016 mm × 931 mm × 246 mm and a weight of less than 40 kg. It is mounted on ②, the Astrograph N300 12″ Newton telescope. ③ indicates the direct drive mount which provided motorized declination and right ascension axes.
Fig. 4
Fig. 4 (a) A construction model of the satellite terminal and (b) the installed satellite terminal during the measurement campaign. The overall dimensions are 877 mm × 610 mm × 216 mm. ① indicates the transmission pupil of the downlink beam and ② indicates the receiving aperture of the uplink beam. The uplink is reflected at ②, towards ③. ② can be respositioned along ④
Fig. 5
Fig. 5 Values of D/r0 obtained from a fit of the Zernike decomposition of the residual wavefront of the downlink. By applying AO correction, the effective D/r0 of the residual wavefront was reduced on average to 10 % of the static bias value.
Fig. 6
Fig. 6 The received power measurements at the satellite terminal static bias and live AO for PAA values up to 0.32 mrad
Fig. 7
Fig. 7 The ratio of the received powers as depicted in Fig. 6.
Fig. 8
Fig. 8 The cumulative distribution function of the power measurements for each value of the PAA. The threshold indicates where the CDF for the static bias has reached 1.0