Abstract

A novel optofluidic refracrtive index (RI) sensor was proposed based on asymmetric Fraunhofer diffraction. In-plane optofluidic lens, light source, slit, diffraction pattern visualization zone and optical path were integrated into the microfluidic networks to avoid the manual alignment of the optical components as well as to reduce the cost of external bulky components. Unlike the conventional RI sensor, this device visualizes the bulk refractive index change of the liquid through a diffraction image, which is readily read-out for clinical diagnosis right at the point-of-care or on-site security check. In the experiment, the device can measure a RI change of as low as ~10−5 RIU. A low noise-equivalent detection limit (NEDL) of ~10−6 refractive index unit (RIU) and high sensitivity of ~1.1 × 104/RIU were achieved. The new device is practical and suitable to be extended for high throughput applications by simultaneously reading multiple chips with an 2D-array image sensor.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Liquid refractive index sensing independent of opacity using an optofluidic diffraction sensor

Zhida Xu, Kevin Han, Ibrahim Khan, Xinhao Wang, and G. Logan Liu
Opt. Lett. 39(20) 6082-6085 (2014)

Nanoscale optofluidic sensor arrays

Sudeep Mandal and David Erickson
Opt. Express 16(3) 1623-1631 (2008)

Highly sensitive refractive index sensor based on cascaded microfiber knots with Vernier effect

Zhilin Xu, Qizhen Sun, Borui Li, Yiyang Luo, Wengao Lu, Deming Liu, Perry Ping Shum, and Lin Zhang
Opt. Express 23(5) 6662-6672 (2015)

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [Crossref] [PubMed]
  2. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
    [Crossref] [PubMed]
  3. C. Song, N.-T. Nguyen, and S. H. Tan, “Toward the commercialization of optofluidics,” Microfluid. Nanofluidics 21(8), 139 (2017).
    [Crossref]
  4. C. Song and H. S. Tan, “A perspective on the rise of optofluidics and the future,” Micromachines (Basel) 8(5), 152 (2017).
    [Crossref]
  5. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
    [Crossref]
  6. R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
    [Crossref]
  7. W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
    [Crossref]
  8. Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
    [Crossref]
  9. A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1–3), 1–7 (2002).
    [Crossref]
  10. A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
    [Crossref] [PubMed]
  11. M. I. Lapsley, I. K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip 11(10), 1795–1800 (2011).
    [Crossref] [PubMed]
  12. C. Chang, Z. Ding, V. N. L. R. Patchigolla, B. Ziaie, and C. A. Savran, “Reflective diffraction gratings from hydrogels as biochemical sensors,” IEEE Sens. J. 12(7), 2374–2379 (2012).
    [Crossref]
  13. O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2–3), 149–159 (1999).
    [Crossref]
  14. C. Lv, Z. Jia, Y. Liu, J. Mo, P. Li, and X. Lv, “Angle-resolved diffraction grating biosensor based on porous silicon,” J. Appl. Phys. 119(9), 094502 (2016).
    [Crossref]
  15. H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Phase-transmission-grating-based compact optofluidic refractometer,” Opt. Lett. 34(12), 1753–1755 (2009).
    [Crossref] [PubMed]
  16. S. Calixto, N. C. Bruce, and M. Rosete-Aguilar, “Diffraction grating-based sensing optofluidic device for measuring the refractive index of liquids,” Opt. Express 24(1), 180–190 (2016).
    [Crossref] [PubMed]
  17. F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
    [Crossref] [PubMed]
  18. L. F. G. Dib and E. A. Barbosa, “Immersed diffraction grating refractometers of liquids,” Appl. Opt. 55(30), 8582–8588 (2016).
    [Crossref] [PubMed]
  19. G. Bettella R, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators B Chem. 282, 391–398 (2019).
  20. J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
    [PubMed]
  21. A. Llobera, R. Wilke, and S. Büttgenbach, “Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing,” Lab Chip 5(5), 506–511 (2005).
    [Crossref] [PubMed]
  22. A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
    [Crossref] [PubMed]
  23. B. Ibarlucea, C. Fernández-Sánchez, S. Demming, S. Büttgenbach, and A. Llobera, “Selective functionalisation of PDMS-based photonic lab on a chip for biosensing,” Analyst (Lond.) 136(17), 3496–3502 (2011).
    [Crossref] [PubMed]
  24. M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
    [Crossref] [PubMed]
  25. H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
    [Crossref] [PubMed]
  26. I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
    [Crossref] [PubMed]
  27. H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
    [Crossref]
  28. F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76(13), 3530–3535 (2004).
    [Crossref] [PubMed]
  29. C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Optofluidic concentration: plasmonic nanostructure as concentrator and sensor,” Nano Lett. 12(3), 1592–1596 (2012).
    [Crossref] [PubMed]
  30. Z. Xiao, H. Dai, and X. Chen, “Ultrasensitive optofluidic resonator refractive index sensor,” Opt. Lett. 43(17), 4216–4219 (2018).
    [Crossref] [PubMed]
  31. A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
    [Crossref]
  32. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
    [Crossref] [PubMed]
  33. Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
    [Crossref] [PubMed]
  34. C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
    [Crossref] [PubMed]
  35. H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. S. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
    [Crossref] [PubMed]
  36. Y. F. Ku, H.-Y. Li, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers,” Opt. Express 23(11), 14850–14859 (2015).
    [Crossref] [PubMed]
  37. Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B Chem. 250, 659–666 (2017).
    [Crossref]
  38. Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express 18(18), 19120–19128 (2010).
    [Crossref] [PubMed]
  39. S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
    [Crossref] [PubMed]
  40. J. Adrian, S. Pasche, J.-M. Diserens, F. Sánchez-Baeza, H. Gao, M. P. Marco, and G. Voirin, “Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk,” Biosens. Bioelectron. 24(11), 3340–3346 (2009).
    [Crossref] [PubMed]
  41. C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N.-T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
    [Crossref] [PubMed]
  42. C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4-5), 889–896 (2010).
    [Crossref]
  43. C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
    [Crossref] [PubMed]
  44. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed (Cambridge University, 1999).
  45. A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics, 4th ed (Cambridge University, 2011).
  46. H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131(46), 16612–16613 (2009).
    [Crossref] [PubMed]
  47. X. Chen, T. Li, and Z. Hu, “A novel research on serpentine microchannels of passive micromixers,” Microsyst. Technol. 23(7), 2649–2656 (2017).
    [Crossref]
  48. J. M. Zhu, Y. Shi, X. Q. Zhu, Y. Yang, F. H. Jiang, C. J. Sun, W. H. Zhao, and X. T. Han, “Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator,” Lab Chip 17(23), 4025–4030 (2017).
    [Crossref] [PubMed]
  49. M. Oraie and H. Latifi, “Real-time refractive index sensing by using liquid core/liquid cladding optofluidic waveguide,” Opt. Laser Technol. 111, 303–306 (2019).
    [Crossref]
  50. https://www.kdscientific.com/kds-270-270p-legacy-syringe-pump.html

2019 (2)

G. Bettella R, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators B Chem. 282, 391–398 (2019).

M. Oraie and H. Latifi, “Real-time refractive index sensing by using liquid core/liquid cladding optofluidic waveguide,” Opt. Laser Technol. 111, 303–306 (2019).
[Crossref]

2018 (2)

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N.-T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

Z. Xiao, H. Dai, and X. Chen, “Ultrasensitive optofluidic resonator refractive index sensor,” Opt. Lett. 43(17), 4216–4219 (2018).
[Crossref] [PubMed]

2017 (6)

C. Song, N.-T. Nguyen, and S. H. Tan, “Toward the commercialization of optofluidics,” Microfluid. Nanofluidics 21(8), 139 (2017).
[Crossref]

C. Song and H. S. Tan, “A perspective on the rise of optofluidics and the future,” Micromachines (Basel) 8(5), 152 (2017).
[Crossref]

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B Chem. 250, 659–666 (2017).
[Crossref]

X. Chen, T. Li, and Z. Hu, “A novel research on serpentine microchannels of passive micromixers,” Microsyst. Technol. 23(7), 2649–2656 (2017).
[Crossref]

J. M. Zhu, Y. Shi, X. Q. Zhu, Y. Yang, F. H. Jiang, C. J. Sun, W. H. Zhao, and X. T. Han, “Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator,” Lab Chip 17(23), 4025–4030 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (1)

2014 (2)

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

2013 (2)

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

2012 (2)

C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Optofluidic concentration: plasmonic nanostructure as concentrator and sensor,” Nano Lett. 12(3), 1592–1596 (2012).
[Crossref] [PubMed]

C. Chang, Z. Ding, V. N. L. R. Patchigolla, B. Ziaie, and C. A. Savran, “Reflective diffraction gratings from hydrogels as biochemical sensors,” IEEE Sens. J. 12(7), 2374–2379 (2012).
[Crossref]

2011 (6)

M. I. Lapsley, I. K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip 11(10), 1795–1800 (2011).
[Crossref] [PubMed]

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

B. Ibarlucea, C. Fernández-Sánchez, S. Demming, S. Büttgenbach, and A. Llobera, “Selective functionalisation of PDMS-based photonic lab on a chip for biosensing,” Analyst (Lond.) 136(17), 3496–3502 (2011).
[Crossref] [PubMed]

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

H. W. Lee, M. A. Schmidt, P. Uebel, H. Tyagi, N. Y. Joly, M. Scharrer, and P. S. Russell, “Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel,” Opt. Express 19(9), 8200–8207 (2011).
[Crossref] [PubMed]

2010 (5)

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[PubMed]

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
[Crossref] [PubMed]

Y. Nazirizadeh, U. Bog, S. Sekula, T. Mappes, U. Lemmer, and M. Gerken, “Low-cost label-free biosensors using photonic crystals embedded between crossed polarizers,” Opt. Express 18(18), 19120–19128 (2010).
[Crossref] [PubMed]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4-5), 889–896 (2010).
[Crossref]

2009 (5)

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131(46), 16612–16613 (2009).
[Crossref] [PubMed]

J. Adrian, S. Pasche, J.-M. Diserens, F. Sánchez-Baeza, H. Gao, M. P. Marco, and G. Voirin, “Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk,” Biosens. Bioelectron. 24(11), 3340–3346 (2009).
[Crossref] [PubMed]

H. Yu, G. Zhou, F. S. Chau, and F. Lee, “Phase-transmission-grating-based compact optofluidic refractometer,” Opt. Lett. 34(12), 1753–1755 (2009).
[Crossref] [PubMed]

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

2008 (2)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
[Crossref] [PubMed]

2007 (2)

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
[Crossref] [PubMed]

A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
[Crossref] [PubMed]

2006 (3)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

2005 (1)

A. Llobera, R. Wilke, and S. Büttgenbach, “Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing,” Lab Chip 5(5), 506–511 (2005).
[Crossref] [PubMed]

2004 (1)

F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76(13), 3530–3535 (2004).
[Crossref] [PubMed]

2002 (1)

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1–3), 1–7 (2002).
[Crossref]

1999 (1)

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2–3), 149–159 (1999).
[Crossref]

Adrian, J.

J. Adrian, S. Pasche, J.-M. Diserens, F. Sánchez-Baeza, H. Gao, M. P. Marco, and G. Voirin, “Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk,” Biosens. Bioelectron. 24(11), 3340–3346 (2009).
[Crossref] [PubMed]

Asundi, A. K.

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4-5), 889–896 (2010).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

Barbosa, E. A.

Bassu, M.

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Bettella R, G.

G. Bettella R, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators B Chem. 282, 391–398 (2019).

Bog, U.

Brittain, S. T.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2–3), 149–159 (1999).
[Crossref]

Brolo, A. G.

C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Optofluidic concentration: plasmonic nanostructure as concentrator and sensor,” Nano Lett. 12(3), 1592–1596 (2012).
[Crossref] [PubMed]

Bruce, N. C.

Burg, T. P.

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Büttgenbach, S.

B. Ibarlucea, C. Fernández-Sánchez, S. Demming, S. Büttgenbach, and A. Llobera, “Selective functionalisation of PDMS-based photonic lab on a chip for biosensing,” Analyst (Lond.) 136(17), 3496–3502 (2011).
[Crossref] [PubMed]

A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
[Crossref] [PubMed]

A. Llobera, R. Wilke, and S. Büttgenbach, “Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing,” Lab Chip 5(5), 506–511 (2005).
[Crossref] [PubMed]

Calixto, S.

Cerullo, G.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
[Crossref] [PubMed]

Chang, C.

C. Chang, Z. Ding, V. N. L. R. Patchigolla, B. Ziaie, and C. A. Savran, “Reflective diffraction gratings from hydrogels as biochemical sensors,” IEEE Sens. J. 12(7), 2374–2379 (2012).
[Crossref]

Chang, F.-C.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

Chang, G.-E.

Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B Chem. 250, 659–666 (2017).
[Crossref]

Y. F. Ku, H.-Y. Li, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers,” Opt. Express 23(11), 14850–14859 (2015).
[Crossref] [PubMed]

Chang, J.-Y.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

Chau, F. S.

Chau, L.-K.

Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B Chem. 250, 659–666 (2017).
[Crossref]

Y. F. Ku, H.-Y. Li, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers,” Opt. Express 23(11), 14850–14859 (2015).
[Crossref] [PubMed]

Chauvet, M.

G. Bettella R, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators B Chem. 282, 391–398 (2019).

Chen, W.-Y.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

Chen, X.

Z. Xiao, H. Dai, and X. Chen, “Ultrasensitive optofluidic resonator refractive index sensor,” Opt. Lett. 43(17), 4216–4219 (2018).
[Crossref] [PubMed]

X. Chen, T. Li, and Z. Hu, “A novel research on serpentine microchannels of passive micromixers,” Microsyst. Technol. 23(7), 2649–2656 (2017).
[Crossref]

Chen, Z.-H.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

Chiang, I. K.

M. I. Lapsley, I. K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip 11(10), 1795–1800 (2011).
[Crossref] [PubMed]

Chin, L. K.

Chung, Y.

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Crespi, A.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
[Crossref] [PubMed]

Cronin-Golomb, M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

Cubillas, A. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Dai, H.

Demming, S.

B. Ibarlucea, C. Fernández-Sánchez, S. Demming, S. Büttgenbach, and A. Llobera, “Selective functionalisation of PDMS-based photonic lab on a chip for biosensing,” Analyst (Lond.) 136(17), 3496–3502 (2011).
[Crossref] [PubMed]

A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
[Crossref] [PubMed]

Dib, L. F. G.

Dietzel, A.

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Ding, H.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N.-T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

Ding, X.

M. I. Lapsley, I. K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip 11(10), 1795–1800 (2011).
[Crossref] [PubMed]

Ding, Z.

C. Chang, Z. Ding, V. N. L. R. Patchigolla, B. Ziaie, and C. A. Savran, “Reflective diffraction gratings from hydrogels as biochemical sensors,” IEEE Sens. J. 12(7), 2374–2379 (2012).
[Crossref]

Diserens, J.-M.

J. Adrian, S. Pasche, J.-M. Diserens, F. Sánchez-Baeza, H. Gao, M. P. Marco, and G. Voirin, “Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk,” Biosens. Bioelectron. 24(11), 3340–3346 (2009).
[Crossref] [PubMed]

Domachuk, P.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

Dongre, C.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
[Crossref] [PubMed]

Du, H.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Duffy, D. C.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2–3), 149–159 (1999).
[Crossref]

Eggleton, B. J.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

Escobedo, C.

C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Optofluidic concentration: plasmonic nanostructure as concentrator and sensor,” Nano Lett. 12(3), 1592–1596 (2012).
[Crossref] [PubMed]

Etzold, B. J. M.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Euser, T. G.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Fan, X.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
[Crossref] [PubMed]

Fernández-Sánchez, C.

B. Ibarlucea, C. Fernández-Sánchez, S. Demming, S. Büttgenbach, and A. Llobera, “Selective functionalisation of PDMS-based photonic lab on a chip for biosensing,” Analyst (Lond.) 136(17), 3496–3502 (2011).
[Crossref] [PubMed]

Gao, H.

J. Adrian, S. Pasche, J.-M. Diserens, F. Sánchez-Baeza, H. Gao, M. P. Marco, and G. Voirin, “Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk,” Biosens. Bioelectron. 24(11), 3340–3346 (2009).
[Crossref] [PubMed]

Gao, S.

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Gauthier-Manuel, L.

G. Bettella R, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators B Chem. 282, 391–398 (2019).

Gerken, M.

Gohring, J.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
[Crossref] [PubMed]

Gordon, R.

C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Optofluidic concentration: plasmonic nanostructure as concentrator and sensor,” Nano Lett. 12(3), 1592–1596 (2012).
[Crossref] [PubMed]

Greve, J.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1–3), 1–7 (2002).
[Crossref]

Gu, Y.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
[Crossref] [PubMed]

Guan, B.-O.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

Guo, Y.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Han, X. T.

J. M. Zhu, Y. Shi, X. Q. Zhu, Y. Yang, F. H. Jiang, C. J. Sun, W. H. Zhao, and X. T. Han, “Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator,” Lab Chip 17(23), 4025–4030 (2017).
[Crossref] [PubMed]

He, S.

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

He, Z.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Hoekstra, H. J. W. M.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
[Crossref] [PubMed]

Hosseini, H. M. M.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Hsieh, W.-H.

Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B Chem. 250, 659–666 (2017).
[Crossref]

Y. F. Ku, H.-Y. Li, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Enhanced sensitivity in injection-molded guided-mode-resonance sensors via low-index cavity layers,” Opt. Express 23(11), 14850–14859 (2015).
[Crossref] [PubMed]

Hu, Z.

X. Chen, T. Li, and Z. Hu, “A novel research on serpentine microchannels of passive micromixers,” Microsyst. Technol. 23(7), 2649–2656 (2017).
[Crossref]

Huang, T.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N.-T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

Huang, T. J.

M. I. Lapsley, I. K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip 11(10), 1795–1800 (2011).
[Crossref] [PubMed]

Ibarlucea, B.

B. Ibarlucea, C. Fernández-Sánchez, S. Demming, S. Büttgenbach, and A. Llobera, “Selective functionalisation of PDMS-based photonic lab on a chip for biosensing,” Analyst (Lond.) 136(17), 3496–3502 (2011).
[Crossref] [PubMed]

Im, J.

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Jia, Z.

C. Lv, Z. Jia, Y. Liu, J. Mo, P. Li, and X. Lv, “Angle-resolved diffraction grating biosensor based on porous silicon,” J. Appl. Phys. 119(9), 094502 (2016).
[Crossref]

Jiang, F. H.

J. M. Zhu, Y. Shi, X. Q. Zhu, Y. Yang, F. H. Jiang, C. J. Sun, W. H. Zhao, and X. T. Han, “Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator,” Lab Chip 17(23), 4025–4030 (2017).
[Crossref] [PubMed]

Jin, T.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N.-T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

Joly, N. Y.

Jones, A. C.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Kanger, J. S.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1–3), 1–7 (2002).
[Crossref]

Kim, B.

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Knoll, W.

F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76(13), 3530–3535 (2004).
[Crossref] [PubMed]

Ku, Y. F.

Lacey, S.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
[Crossref] [PubMed]

Lambeck, P. V.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1–3), 1–7 (2002).
[Crossref]

Lapsley, M. I.

M. I. Lapsley, I. K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip 11(10), 1795–1800 (2011).
[Crossref] [PubMed]

Latifi, H.

M. Oraie and H. Latifi, “Real-time refractive index sensing by using liquid core/liquid cladding optofluidic waveguide,” Opt. Laser Technol. 111, 303–306 (2019).
[Crossref]

Lavlinskaia, N.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Lee, F.

Lee, H. W.

Lemmer, U.

Li, H.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131(46), 16612–16613 (2009).
[Crossref] [PubMed]

Li, H.-Y.

Li, M.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Li, P.

C. Lv, Z. Jia, Y. Liu, J. Mo, P. Li, and X. Lv, “Angle-resolved diffraction grating biosensor based on porous silicon,” J. Appl. Phys. 119(9), 094502 (2016).
[Crossref]

Li, T.

X. Chen, T. Li, and Z. Hu, “A novel research on serpentine microchannels of passive micromixers,” Microsyst. Technol. 23(7), 2649–2656 (2017).
[Crossref]

Lim, C. S.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Lin, S.-F.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

Lin, Y.-C.

Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B Chem. 250, 659–666 (2017).
[Crossref]

Littler, I. C. M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

Liu, A. Q.

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[PubMed]

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Liu, L.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131(46), 16612–16613 (2009).
[Crossref] [PubMed]

Liu, Y.

C. Lv, Z. Jia, Y. Liu, J. Mo, P. Li, and X. Lv, “Angle-resolved diffraction grating biosensor based on porous silicon,” J. Appl. Phys. 119(9), 094502 (2016).
[Crossref]

Liu, Z.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

Llobera, A.

B. Ibarlucea, C. Fernández-Sánchez, S. Demming, S. Büttgenbach, and A. Llobera, “Selective functionalisation of PDMS-based photonic lab on a chip for biosensing,” Analyst (Lond.) 136(17), 3496–3502 (2011).
[Crossref] [PubMed]

A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
[Crossref] [PubMed]

A. Llobera, R. Wilke, and S. Büttgenbach, “Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing,” Lab Chip 5(5), 506–511 (2005).
[Crossref] [PubMed]

Lowe, R. D.

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Lu, C.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

Lv, C.

C. Lv, Z. Jia, Y. Liu, J. Mo, P. Li, and X. Lv, “Angle-resolved diffraction grating biosensor based on porous silicon,” J. Appl. Phys. 119(9), 094502 (2016).
[Crossref]

Lv, X.

C. Lv, Z. Jia, Y. Liu, J. Mo, P. Li, and X. Lv, “Angle-resolved diffraction grating biosensor based on porous silicon,” J. Appl. Phys. 119(9), 094502 (2016).
[Crossref]

Mao, X.

M. I. Lapsley, I. K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip 11(10), 1795–1800 (2011).
[Crossref] [PubMed]

Mappes, T.

Marco, M. P.

J. Adrian, S. Pasche, J.-M. Diserens, F. Sánchez-Baeza, H. Gao, M. P. Marco, and G. Voirin, “Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk,” Biosens. Bioelectron. 24(11), 3340–3346 (2009).
[Crossref] [PubMed]

Masson, J.

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

Mistura, G.

G. Bettella R, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators B Chem. 282, 391–398 (2019).

Mo, J.

C. Lv, Z. Jia, Y. Liu, J. Mo, P. Li, and X. Lv, “Angle-resolved diffraction grating biosensor based on porous silicon,” J. Appl. Phys. 119(9), 094502 (2016).
[Crossref]

Montevecchi, C.

G. Bettella R, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators B Chem. 282, 391–398 (2019).

Nazirizadeh, Y.

Ngamsom, B.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
[Crossref] [PubMed]

Nguyen, N.-T.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N.-T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

C. Song, N.-T. Nguyen, and S. H. Tan, “Toward the commercialization of optofluidics,” Microfluid. Nanofluidics 21(8), 139 (2017).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4-5), 889–896 (2010).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

Nittoor, V. R.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Oraie, M.

M. Oraie and H. Latifi, “Real-time refractive index sensing by using liquid core/liquid cladding optofluidic waveguide,” Opt. Laser Technol. 111, 303–306 (2019).
[Crossref]

Osellame, R.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
[Crossref] [PubMed]

Pasche, S.

J. Adrian, S. Pasche, J.-M. Diserens, F. Sánchez-Baeza, H. Gao, M. P. Marco, and G. Voirin, “Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk,” Biosens. Bioelectron. 24(11), 3340–3346 (2009).
[Crossref] [PubMed]

Patchigolla, V. N. L. R.

C. Chang, Z. Ding, V. N. L. R. Patchigolla, B. Ziaie, and C. A. Savran, “Reflective diffraction gratings from hydrogels as biochemical sensors,” IEEE Sens. J. 12(7), 2374–2379 (2012).
[Crossref]

Peter, Y. A.

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

Pierno, M.

G. Bettella R, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators B Chem. 282, 391–398 (2019).

Pollnau, M.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
[Crossref] [PubMed]

Pozza, G.

G. Bettella R, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators B Chem. 282, 391–398 (2019).

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Purr, F.

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Qi, W.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N.-T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Ramponi, R.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
[Crossref] [PubMed]

Reddy, K.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Rogers, J. A.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2–3), 149–159 (1999).
[Crossref]

Rosete-Aguilar, M.

Russell, P. S.

Russell, P. S. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Sada, C.

G. Bettella R, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators B Chem. 282, 391–398 (2019).

Sadler, P. J.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Sánchez-Baeza, F.

J. Adrian, S. Pasche, J.-M. Diserens, F. Sánchez-Baeza, H. Gao, M. P. Marco, and G. Voirin, “Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk,” Biosens. Bioelectron. 24(11), 3340–3346 (2009).
[Crossref] [PubMed]

Savran, C. A.

C. Chang, Z. Ding, V. N. L. R. Patchigolla, B. Ziaie, and C. A. Savran, “Reflective diffraction gratings from hydrogels as biochemical sensors,” IEEE Sens. J. 12(7), 2374–2379 (2012).
[Crossref]

Scharrer, M.

Schmidt, M. A.

Schueller, O. J. A.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2–3), 149–159 (1999).
[Crossref]

Sekula, S.

Shang, L.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131(46), 16612–16613 (2009).
[Crossref] [PubMed]

Shelar, H. S.

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

Shi, Y.

J. M. Zhu, Y. Shi, X. Q. Zhu, Y. Yang, F. H. Jiang, C. J. Sun, W. H. Zhao, and X. T. Han, “Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator,” Lab Chip 17(23), 4025–4030 (2017).
[Crossref] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Sinton, D.

C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Optofluidic concentration: plasmonic nanostructure as concentrator and sensor,” Nano Lett. 12(3), 1592–1596 (2012).
[Crossref] [PubMed]

Song, C.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N.-T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

C. Song and H. S. Tan, “A perspective on the rise of optofluidics and the future,” Micromachines (Basel) 8(5), 152 (2017).
[Crossref]

C. Song, N.-T. Nguyen, and S. H. Tan, “Toward the commercialization of optofluidics,” Microfluid. Nanofluidics 21(8), 139 (2017).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4-5), 889–896 (2010).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

Song, W. Z.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

St-Gelais, R.

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

Sun, C. J.

J. M. Zhu, Y. Shi, X. Q. Zhu, Y. Yang, F. H. Jiang, C. J. Sun, W. H. Zhao, and X. T. Han, “Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator,” Lab Chip 17(23), 4025–4030 (2017).
[Crossref] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
[Crossref] [PubMed]

Suter, J. D.

H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
[Crossref] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Tam, H.-Y.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

Tan, H. S.

C. Song and H. S. Tan, “A perspective on the rise of optofluidics and the future,” Micromachines (Basel) 8(5), 152 (2017).
[Crossref]

Tan, S. H.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N.-T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

C. Song, N.-T. Nguyen, and S. H. Tan, “Toward the commercialization of optofluidics,” Microfluid. Nanofluidics 21(8), 139 (2017).
[Crossref]

Tan, S.-H.

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4-5), 889–896 (2010).
[Crossref]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

Thürmann, B.

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

Tian, F.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Tian, S.

F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76(13), 3530–3535 (2004).
[Crossref] [PubMed]

Tse, M.-L. V.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

Tu, X.

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131(46), 16612–16613 (2009).
[Crossref] [PubMed]

Tyagi, H.

Uebel, P.

Unterkofler, S.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

van den Vlekkert, H. H.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
[Crossref] [PubMed]

Voirin, G.

J. Adrian, S. Pasche, J.-M. Diserens, F. Sánchez-Baeza, H. Gao, M. P. Marco, and G. Voirin, “Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk,” Biosens. Bioelectron. 24(11), 3340–3346 (2009).
[Crossref] [PubMed]

Wang, C.-M.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

Wasserscheid, P.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

Watts, P.

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
[Crossref] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
[Crossref] [PubMed]

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
[Crossref] [PubMed]

Whitesides, G. M.

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2–3), 149–159 (1999).
[Crossref]

Wijn, R.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1–3), 1–7 (2002).
[Crossref]

Wilke, R.

A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
[Crossref] [PubMed]

A. Llobera, R. Wilke, and S. Büttgenbach, “Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing,” Lab Chip 5(5), 506–511 (2005).
[Crossref] [PubMed]

Wu, C.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

Wu, X.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

Xi, L.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N.-T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

Xiao, Z.

Xu, L.

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131(46), 16612–16613 (2009).
[Crossref] [PubMed]

Yan, G.

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Yan, R.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N.-T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Yang, G.

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
[Crossref] [PubMed]

Yang, T.-H.

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

Yang, Y.

J. M. Zhu, Y. Shi, X. Q. Zhu, Y. Yang, F. H. Jiang, C. J. Sun, W. H. Zhao, and X. T. Han, “Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator,” Lab Chip 17(23), 4025–4030 (2017).
[Crossref] [PubMed]

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[PubMed]

Yao, D.

F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76(13), 3530–3535 (2004).
[Crossref] [PubMed]

Yap, P. H.

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Ymeti, A.

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1–3), 1–7 (2002).
[Crossref]

Yu, F.

F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76(13), 3530–3535 (2004).
[Crossref] [PubMed]

Yu, H.

Yu, J. Q.

Zaltron, A.

G. Bettella R, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators B Chem. 282, 391–398 (2019).

Zamboni, R.

G. Bettella R, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators B Chem. 282, 391–398 (2019).

Zhang, A. P.

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Zhang, X. M.

J. Q. Yu, Y. Yang, A. Q. Liu, L. K. Chin, and X. M. Zhang, “Microfluidic droplet grating for reconfigurable optical diffraction,” Opt. Lett. 35(11), 1890–1892 (2010).
[PubMed]

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Zhao, W. H.

J. M. Zhu, Y. Shi, X. Q. Zhu, Y. Yang, F. H. Jiang, C. J. Sun, W. H. Zhao, and X. T. Han, “Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator,” Lab Chip 17(23), 4025–4030 (2017).
[Crossref] [PubMed]

Zheng, Y. B.

M. I. Lapsley, I. K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip 11(10), 1795–1800 (2011).
[Crossref] [PubMed]

Zhou, G.

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
[Crossref] [PubMed]

Zhu, J. M.

J. M. Zhu, Y. Shi, X. Q. Zhu, Y. Yang, F. H. Jiang, C. J. Sun, W. H. Zhao, and X. T. Han, “Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator,” Lab Chip 17(23), 4025–4030 (2017).
[Crossref] [PubMed]

Zhu, X. Q.

J. M. Zhu, Y. Shi, X. Q. Zhu, Y. Yang, F. H. Jiang, C. J. Sun, W. H. Zhao, and X. T. Han, “Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator,” Lab Chip 17(23), 4025–4030 (2017).
[Crossref] [PubMed]

Zhu, Y.

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

Ziaie, B.

C. Chang, Z. Ding, V. N. L. R. Patchigolla, B. Ziaie, and C. A. Savran, “Reflective diffraction gratings from hydrogels as biochemical sensors,” IEEE Sens. J. 12(7), 2374–2379 (2012).
[Crossref]

Anal. Chem. (2)

M. Li, X. Wu, L. Liu, X. Fan, and L. Xu, “Self-referencing optofluidic ring resonator sensor for highly sensitive biomolecular detection,” Anal. Chem. 85(19), 9328–9332 (2013).
[Crossref] [PubMed]

F. Yu, S. Tian, D. Yao, and W. Knoll, “Surface plasmon enhanced diffraction for label-free biosensing,” Anal. Chem. 76(13), 3530–3535 (2004).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[Crossref] [PubMed]

Analyst (Lond.) (2)

C. Wu, M.-L. V. Tse, Z. Liu, B.-O. Guan, A. P. Zhang, C. Lu, and H.-Y. Tam, “In-line microfluidic integration of photonic crystal fibres as a highly sensitive refractometer,” Analyst (Lond.) 139(21), 5422–5429 (2014).
[Crossref] [PubMed]

B. Ibarlucea, C. Fernández-Sánchez, S. Demming, S. Büttgenbach, and A. Llobera, “Selective functionalisation of PDMS-based photonic lab on a chip for biosensing,” Analyst (Lond.) 136(17), 3496–3502 (2011).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

I. M. White, J. Gohring, Y. Sun, G. Yang, S. Lacey, and X. Fan, “Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators,” Appl. Phys. Lett. 91(24), 241104 (2007).
[Crossref] [PubMed]

H. Li and X. Fan, “Characterization of sensing capability of optofluidic ring resonator biosensors,” Appl. Phys. Lett. 97(1), 011105 (2010).
[Crossref]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett. 88(9), 093513 (2006).
[Crossref]

R. St-Gelais, J. Masson, and Y. A. Peter, “All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems,” Appl. Phys. Lett. 94(24), 243905 (2009).
[Crossref]

W. Z. Song, X. M. Zhang, A. Q. Liu, C. S. Lim, P. H. Yap, and H. M. M. Hosseini, “Refractive index measurement of single living cells using on-chip Fabry-Pérot cavity,” Appl. Phys. Lett. 89(20), 203901 (2006).
[Crossref]

Y. Guo, H. Li, K. Reddy, H. S. Shelar, V. R. Nittoor, and X. Fan, “Optofluidic Fabry–Pérot cavity biosensor with integrated flow-through micro-/nanochannels,” Appl. Phys. Lett. 98(4), 041104 (2011).
[Crossref]

A. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Biosens. Bioelectron. (3)

J. Adrian, S. Pasche, J.-M. Diserens, F. Sánchez-Baeza, H. Gao, M. P. Marco, and G. Voirin, “Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk,” Biosens. Bioelectron. 24(11), 3340–3346 (2009).
[Crossref] [PubMed]

Z. He, F. Tian, Y. Zhu, N. Lavlinskaia, and H. Du, “Long-period gratings in photonic crystal fiber as an optofluidic label-free biosensor,” Biosens. Bioelectron. 26(12), 4774–4778 (2011).
[Crossref] [PubMed]

H. Zhu, I. M. White, J. D. Suter, and X. Fan, “Phage-based label-free biomolecule detection in an opto-fluidic ring resonator,” Biosens. Bioelectron. 24(3), 461–466 (2008).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013).
[Crossref] [PubMed]

IEEE Sens. J. (1)

C. Chang, Z. Ding, V. N. L. R. Patchigolla, B. Ziaie, and C. A. Savran, “Reflective diffraction gratings from hydrogels as biochemical sensors,” IEEE Sens. J. 12(7), 2374–2379 (2012).
[Crossref]

J. Am. Chem. Soc. (1)

H. Li, L. Shang, X. Tu, L. Liu, and L. Xu, “Coupling variation induced ultrasensitive label-free biosensing by using single mode coupled microcavity laser,” J. Am. Chem. Soc. 131(46), 16612–16613 (2009).
[Crossref] [PubMed]

J. Appl. Phys. (1)

C. Lv, Z. Jia, Y. Liu, J. Mo, P. Li, and X. Lv, “Angle-resolved diffraction grating biosensor based on porous silicon,” J. Appl. Phys. 119(9), 094502 (2016).
[Crossref]

Lab Chip (8)

F. Purr, M. Bassu, R. D. Lowe, B. Thürmann, A. Dietzel, and T. P. Burg, “Asymmetric nanofluidic grating detector for differential refractive index measurement and biosensing,” Lab Chip 17(24), 4265–4272 (2017).
[Crossref] [PubMed]

A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip 10(9), 1167–1173 (2010).
[Crossref] [PubMed]

M. I. Lapsley, I. K. Chiang, Y. B. Zheng, X. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip 11(10), 1795–1800 (2011).
[Crossref] [PubMed]

A. Llobera, R. Wilke, and S. Büttgenbach, “Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing,” Lab Chip 5(5), 506–511 (2005).
[Crossref] [PubMed]

A. Llobera, S. Demming, R. Wilke, and S. Büttgenbach, “Multiple internal reflection poly(dimethylsiloxane) systems for optical sensing,” Lab Chip 7(11), 1560–1566 (2007).
[Crossref] [PubMed]

J. M. Zhu, Y. Shi, X. Q. Zhu, Y. Yang, F. H. Jiang, C. J. Sun, W. H. Zhao, and X. T. Han, “Optofluidic marine phosphate detection with enhanced absorption using a Fabry-Pérot resonator,” Lab Chip 17(23), 4025–4030 (2017).
[Crossref] [PubMed]

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N.-T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “Modelling and optimization of micro optofluidic lenses,” Lab Chip 9(9), 1178–1184 (2009).
[Crossref] [PubMed]

Microfluid. Nanofluidics (2)

C. Song, N.-T. Nguyen, S.-H. Tan, and A. K. Asundi, “A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length,” Microfluid. Nanofluidics 9(4-5), 889–896 (2010).
[Crossref]

C. Song, N.-T. Nguyen, and S. H. Tan, “Toward the commercialization of optofluidics,” Microfluid. Nanofluidics 21(8), 139 (2017).
[Crossref]

Micromachines (Basel) (1)

C. Song and H. S. Tan, “A perspective on the rise of optofluidics and the future,” Micromachines (Basel) 8(5), 152 (2017).
[Crossref]

Microsyst. Technol. (1)

X. Chen, T. Li, and Z. Hu, “A novel research on serpentine microchannels of passive micromixers,” Microsyst. Technol. 23(7), 2649–2656 (2017).
[Crossref]

Nano Lett. (1)

C. Escobedo, A. G. Brolo, R. Gordon, and D. Sinton, “Optofluidic concentration: plasmonic nanostructure as concentrator and sensor,” Nano Lett. 12(3), 1592–1596 (2012).
[Crossref] [PubMed]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Laser Technol. (1)

M. Oraie and H. Latifi, “Real-time refractive index sensing by using liquid core/liquid cladding optofluidic waveguide,” Opt. Laser Technol. 111, 303–306 (2019).
[Crossref]

Opt. Lett. (3)

Sens. Actuators A Phys. (1)

O. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, and G. M. Whitesides, “Reconfigurable diffraction gratings based on elastomeric microfluidic devices,” Sens. Actuators A Phys. 78(2–3), 149–159 (1999).
[Crossref]

Sens. Actuators B Chem. (3)

A. Ymeti, J. S. Kanger, R. Wijn, P. V. Lambeck, and J. Greve, “Development of a multichannel integrated interferometer immunosensor,” Sens. Actuators B Chem. 83(1–3), 1–7 (2002).
[Crossref]

G. Bettella R, R. Zamboni, G. Pozza, A. Zaltron, C. Montevecchi, M. Pierno, G. Mistura, C. Sada, L. Gauthier-Manuel, and M. Chauvet, “LiNbO3 integrated system for opto-microfluidic sensing,” Sens. Actuators B Chem. 282, 391–398 (2019).

Y.-C. Lin, W.-H. Hsieh, L.-K. Chau, and G.-E. Chang, “Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection,” Sens. Actuators B Chem. 250, 659–666 (2017).
[Crossref]

Sensors (Basel) (1)

S.-F. Lin, F.-C. Chang, Z.-H. Chen, C.-M. Wang, T.-H. Yang, W.-Y. Chen, and J.-Y. Chang, “A polarization control system for intensity-resolved guided mode resonance sensors,” Sensors (Basel) 14(3), 5198–5206 (2014).
[Crossref] [PubMed]

Other (3)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed (Cambridge University, 1999).

A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics, 4th ed (Cambridge University, 2011).

https://www.kdscientific.com/kds-270-270p-legacy-syringe-pump.html

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 A schematic illustration of the optofluidic chip. The chip consists of a inserted fiber, a slit, microchannel networks, micromixers, an in-plane optofluidic biconvex microlens and a visualization zone for displaying the fluorescence diffraction pattern.
Fig. 2
Fig. 2 (a) Calculated diffraction patterns for varied RI change Δn of the analyte. The optical intensity of the 1st diffraction orders grow up dramatically while the −1st diffraction orders fall down with the increase of the RI change Δn. (b) Calculated transducing signal S as a function of the RI change Δn. The slope of the curve indicates that the calculated sensitivity is about 1.3 × 104/RIU. The inset shows the transducing signal S as a function of the phase difference Δϕ which indicates S is a periodic function. The curve in the red circle has a steep and linear slope so that it is used to achieve high RI sensitivity in our experiment.
Fig. 3
Fig. 3 (a) Optofluidic chip: Laser beam passes through the sensing microchannel, a slit and then a diffraction pattern is displayed in the visualization zone. (b) The experimental setup: syringe pumps, laser, objective, camera and computer.
Fig. 4
Fig. 4 (a) The simulation results for the mixing of DI water and glycerin in three different sets of flow rates (Q1, Q2). The homogenous color at the out-ports reveal that the liquids are well-mixed (b) The relation between the RI of the mixed liquid and Q2 for a fixed Q1 of 80 μl/min. The RI decreases nearly linearly as the flow rate of the low-RI liquid (Q2) increases.
Fig. 5
Fig. 5 (a) 2D diffraction patterns before (n = 1.33416) and after (n = 1.33409) analyte RI change. The diffraction patterns are asymmetric and the ratio of the intensity of the ± m-order diffraction fringes increases dramatically when the RI of the analyte decreases slightly. (b) The tranducer signal S as a function of the measurement time without changing the RI of the analyte (n = 1.33416).
Fig. 6
Fig. 6 (a) The ladder-like signal S sensorgram corresponding to the flow rate of DI water Q2 = 1-7 μl/min. The signal S was tracked 100 times for every different low-RI flow rate Q2. (b) The experimental transducing signal S as a function of the RI change. The RI of the analyte is varied by changing the flow rate (Q2) of DI wafer from 1 μl/min to 7 μl/min with a constant flow rate (Q1) of the glycerin-water mixture at 80 μl/min. The slope of the theoretical fitted curve indicates that the sensitivity is close to 1.1 × 104/RIU within a confidence level of 95% as verified by Student’s t-test. Error bars: one standard deviation.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

U 1 = Aicosδ λrs a ε e i[ k( r+s )+Δϕ ] dξ ,
U 2 = Aicosδ λrs ε a e ik( r+s ) dξ ,
Δϕ=k( n analyte n PDMS )L ,
I= | U 1 + U 2 | 2 ,
I(x)=C 4s ' 2 k 2 x 2 [ 1+2sin Δϕ 2 cos( k x s' ε )sin( k x s' a Δϕ 2 )cos( k x s' a )cos( k x s' aΔϕ ) ] ,
S=ln( I 1 / I 1 ) ,