Abstract

As one of the most striking localized structures in dissipative systems, pulsating soliton has been widely studied in theory but rarely observed in experiments. Here, three typical types of soliton pulsations are experimentally demonstrated in an L-band normal-dispersion mode-locked fiber laser via the dispersive Fourier transform (DFT) technique. According to the distinctive features, they are classified as single-periodic pulsating soliton, double-periodic pulsating soliton and soliton explosion. These pulsations have common features such as energy oscillation, bandwidth breathing and temporal shift. However, the pulse is repeated every two oscillations for double-periodic pulsating soliton. When it comes to soliton explosion, because of the intermittent overdriven nonlinear effect induced by the extreme energy oscillation, the spectrum cracks into pieces at a periodic manner. To the best of our knowledge, it is the first time that both pure soliton pulsations and soliton explosion are observed experimentally in the same fiber laser. The results will enhance a more comprehensive understanding for the soliton pulsating phenomena.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dynamical diversity of pulsating solitons in a fiber laser

Hong-Jie Chen, Yan-Jie Tan, Jin-Gan Long, Wei-Cheng Chen, Wei-Yi Hong, Hu Cui, Ai-Ping Luo, Zhi-Chao Luo, and Wen-Cheng Xu
Opt. Express 27(20) 28507-28522 (2019)

Stationary and pulsating vector dissipative solitons in nonlinear multimode interference based fiber lasers

Yiyang Luo, Yang Xiang, Perry Ping Shum, Yusong Liu, Ran Xia, Wenjun Ni, Huy Quoc Lam, Qizhen Sun, and Xiahui Tang
Opt. Express 28(3) 4216-4224 (2020)

Real-time observation of dissociation dynamics within a pulsating soliton molecule

Xiaoqing Wang, Jiangyong He, Baiwei Mao, Huiyi Guo, Zhi Wang, Yang Yue, and Yan-ge Liu
Opt. Express 27(20) 28214-28222 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Kang, C. Kong, P. Feng, X. Wei, Z. C. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6 μm,” IEEE Photonics Technol. Lett. 30(4), 311–314 (2018).
    [Crossref]
  2. G. Whitenett, G. Stewart, H. B. Yu, and B. Culshaw, “Investigation of a tuneable mode-locked fiber laser for application to multipoint gas spectroscopy,” J. Lightwave Technol. 22(3), 813–819 (2004).
    [Crossref]
  3. S. Hu, J. Yao, M. Liu, A. P. Luo, Z. C. Luo, and W. C. Xu, “Gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy,” Opt. Express 24(10), 10786–10796 (2016).
    [Crossref] [PubMed]
  4. F. Morin, F. Druon, M. Hanna, and P. Georges, “Microjoule femtosecond fiber laser at 1.6 µm for corneal surgery applications,” Opt. Lett. 34(13), 1991–1993 (2009).
    [Crossref] [PubMed]
  5. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
    [Crossref]
  6. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  7. N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63, 056602 (2001).
    [Crossref] [PubMed]
  8. Y. Du, Z. Xu, and X. Shu, “Spatio-spectral dynamics of the pulsating dissipative solitons in a normal-dispersion fiber laser,” Opt. Lett. 43(15), 3602–3605 (2018).
    [Crossref] [PubMed]
  9. M. Liu, A. P. Luo, Y. R. Yan, S. Hu, Y. C. Liu, H. Cui, Z. C. Luo, and W. C. Xu, “Successive soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41(6), 1181–1184 (2016).
    [Crossref] [PubMed]
  10. W. Chang, J. M. Soto-Crespo, P. Vouzas, and N. Akhmediev, “Extreme soliton pulsations in dissipative systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022926 (2015).
    [Crossref] [PubMed]
  11. J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
    [Crossref] [PubMed]
  12. R. J. Deissler and H. R. Brand, “Periodic, quasiperiodic, and chaotic localized solutions of the quintic complex Ginzburg-Landau equation,” Phys. Rev. Lett. 72(4), 478–481 (1994).
    [Crossref] [PubMed]
  13. J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 066612 (2004).
    [Crossref] [PubMed]
  14. A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2(1), 36–39 (2015).
    [Crossref]
  15. P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
    [Crossref]
  16. H. J. Chen, M. Liu, J. Yao, S. Hu, J. B. He, A. P. Luo, W. C. Xu, and Z. C. Luo, “Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion,” Opt. Express 26(3), 2972–2982 (2018).
    [Crossref] [PubMed]
  17. X. Wei, B. Li, Y. Yu, C. Zhang, K. K. Tsia, and K. K. Y. Wong, “Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies,” Opt. Express 25(23), 29098–29120 (2017).
    [Crossref]
  18. J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1(1), 20 (2018).
    [Crossref]
  19. K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121(13), 133902 (2018).
    [Crossref] [PubMed]
  20. G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
    [Crossref] [PubMed]
  21. K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
    [Crossref] [PubMed]
  22. J. Peng and H. Zeng, “Build-up of dissipative optical soliton molecules via diverse soliton interactions,” Laser Photonics Rev. 12(8), 1800009 (2018).
    [Crossref]
  23. S. D. Chowdhury, A. Pal, S. Chatterjee, R. Sen, and M. Pal, “Multipulse dynamics of dissipative soliton resonance in an all-normal dispersion mode-locked fiber laser,” J. Lightwave Technol. 36(24), 5773–5779 (2018).
    [Crossref]
  24. Z. W. Wei, M. Liu, S. X. Ming, A. P. Luo, W. C. Xu, and Z. C. Luo, “Pulsating soliton with chaotic behavior in a fiber laser,” Opt. Lett. 43(24), 5965–5968 (2018).
    [Crossref] [PubMed]
  25. Y. Yu, Z. C. Luo, J. Kang, and K. K. Y. Wong, “Mutually ignited soliton explosions in a fiber laser,” Opt. Lett. 43(17), 4132–4135 (2018).
    [Crossref] [PubMed]
  26. M. Suzuki, O. Boyraz, H. Asghari, P. Trinh, H. Kuroda, and B. Jalali, “Spectral periodicity in soliton explosions on a broadband mode-locked Yb fiber laser using time-stretch spectroscopy,” Opt. Lett. 43(8), 1862–1865 (2018).
    [Crossref] [PubMed]
  27. Z. Wang, Z. Wang, Y. Liu, R. He, J. Zhao, G. Wang, and G. Yang, “Self-organized compound pattern and pulsation of dissipative solitons in a passively mode-locked fiber laser,” Opt. Lett. 43(3), 478–481 (2018).
    [Crossref] [PubMed]
  28. J. Peng and H. Zeng, “Soliton collision induced explosions in a mode-locked fibre laser,” Commun. Phys. 2(1), 34 (2019).
    [Crossref]
  29. K. Krupa, K. Nithyanandan, and P. Grelu, “Vector dynamics of incoherent dissipative optical solitons,” Optica 4(10), 1239–1244 (2017).
    [Crossref]
  30. X. Wang, Y. G. Liu, Z. Wang, Z. Wang, and G. Yang, “L-band efficient dissipative soliton Erbium-doped fiber laser with a pulse energy of 6.15 nJ and 3 dB bandwidth of 47.8 nm,” J. Lightwave Technol. 37(4), 1168–1173 (2019).
    [Crossref]
  31. C. Lecaplain, M. Baumgartl, T. Schreiber, and A. Hideur, “On the mode-locking mechanism of a dissipative- soliton fiber oscillator,” Opt. Express 19(27), 26742–26751 (2011).
    [Crossref] [PubMed]
  32. C. Lecaplain, J. M. Soto-Crespo, P. Grelu, and C. Conti, “Dissipative shock waves in all-normal-dispersion mode-locked fiber lasers,” Opt. Lett. 39(2), 263–266 (2014).
    [Crossref] [PubMed]
  33. A. Komarov, H. Leblond, and F. Sanchez, “Quintic complex Ginzburg-Landau model for ring fiber lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 025604 (2005).
    [Crossref] [PubMed]
  34. J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
    [Crossref]

2019 (2)

2018 (12)

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

H. J. Chen, M. Liu, J. Yao, S. Hu, J. B. He, A. P. Luo, W. C. Xu, and Z. C. Luo, “Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion,” Opt. Express 26(3), 2972–2982 (2018).
[Crossref] [PubMed]

J. Peng and H. Zeng, “Build-up of dissipative optical soliton molecules via diverse soliton interactions,” Laser Photonics Rev. 12(8), 1800009 (2018).
[Crossref]

S. D. Chowdhury, A. Pal, S. Chatterjee, R. Sen, and M. Pal, “Multipulse dynamics of dissipative soliton resonance in an all-normal dispersion mode-locked fiber laser,” J. Lightwave Technol. 36(24), 5773–5779 (2018).
[Crossref]

Z. W. Wei, M. Liu, S. X. Ming, A. P. Luo, W. C. Xu, and Z. C. Luo, “Pulsating soliton with chaotic behavior in a fiber laser,” Opt. Lett. 43(24), 5965–5968 (2018).
[Crossref] [PubMed]

Y. Yu, Z. C. Luo, J. Kang, and K. K. Y. Wong, “Mutually ignited soliton explosions in a fiber laser,” Opt. Lett. 43(17), 4132–4135 (2018).
[Crossref] [PubMed]

M. Suzuki, O. Boyraz, H. Asghari, P. Trinh, H. Kuroda, and B. Jalali, “Spectral periodicity in soliton explosions on a broadband mode-locked Yb fiber laser using time-stretch spectroscopy,” Opt. Lett. 43(8), 1862–1865 (2018).
[Crossref] [PubMed]

Z. Wang, Z. Wang, Y. Liu, R. He, J. Zhao, G. Wang, and G. Yang, “Self-organized compound pattern and pulsation of dissipative solitons in a passively mode-locked fiber laser,” Opt. Lett. 43(3), 478–481 (2018).
[Crossref] [PubMed]

J. Kang, C. Kong, P. Feng, X. Wei, Z. C. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6 μm,” IEEE Photonics Technol. Lett. 30(4), 311–314 (2018).
[Crossref]

Y. Du, Z. Xu, and X. Shu, “Spatio-spectral dynamics of the pulsating dissipative solitons in a normal-dispersion fiber laser,” Opt. Lett. 43(15), 3602–3605 (2018).
[Crossref] [PubMed]

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1(1), 20 (2018).
[Crossref]

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121(13), 133902 (2018).
[Crossref] [PubMed]

2017 (4)

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref] [PubMed]

X. Wei, B. Li, Y. Yu, C. Zhang, K. K. Tsia, and K. K. Y. Wong, “Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies,” Opt. Express 25(23), 29098–29120 (2017).
[Crossref]

K. Krupa, K. Nithyanandan, and P. Grelu, “Vector dynamics of incoherent dissipative optical solitons,” Optica 4(10), 1239–1244 (2017).
[Crossref]

2016 (2)

2015 (2)

W. Chang, J. M. Soto-Crespo, P. Vouzas, and N. Akhmediev, “Extreme soliton pulsations in dissipative systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022926 (2015).
[Crossref] [PubMed]

A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2(1), 36–39 (2015).
[Crossref]

2014 (1)

2012 (2)

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

2011 (1)

2009 (2)

F. Morin, F. Druon, M. Hanna, and P. Georges, “Microjoule femtosecond fiber laser at 1.6 µm for corneal surgery applications,” Opt. Lett. 34(13), 1991–1993 (2009).
[Crossref] [PubMed]

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

2005 (1)

A. Komarov, H. Leblond, and F. Sanchez, “Quintic complex Ginzburg-Landau model for ring fiber lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 025604 (2005).
[Crossref] [PubMed]

2004 (2)

G. Whitenett, G. Stewart, H. B. Yu, and B. Culshaw, “Investigation of a tuneable mode-locked fiber laser for application to multipoint gas spectroscopy,” J. Lightwave Technol. 22(3), 813–819 (2004).
[Crossref]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 066612 (2004).
[Crossref] [PubMed]

2001 (1)

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63, 056602 (2001).
[Crossref] [PubMed]

2000 (1)

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[Crossref] [PubMed]

1994 (1)

R. J. Deissler and H. R. Brand, “Periodic, quasiperiodic, and chaotic localized solutions of the quintic complex Ginzburg-Landau equation,” Phys. Rev. Lett. 72(4), 478–481 (1994).
[Crossref] [PubMed]

Akhmediev, N.

W. Chang, J. M. Soto-Crespo, P. Vouzas, and N. Akhmediev, “Extreme soliton pulsations in dissipative systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022926 (2015).
[Crossref] [PubMed]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 066612 (2004).
[Crossref] [PubMed]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63, 056602 (2001).
[Crossref] [PubMed]

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[Crossref] [PubMed]

Andral, U.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref] [PubMed]

Ankiewicz, A.

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[Crossref] [PubMed]

Asghari, H.

Baumgartl, M.

Billet, C.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Boyraz, O.

Brand, H. R.

R. J. Deissler and H. R. Brand, “Periodic, quasiperiodic, and chaotic localized solutions of the quintic complex Ginzburg-Landau equation,” Phys. Rev. Lett. 72(4), 478–481 (1994).
[Crossref] [PubMed]

Broderick, N. G. R.

Chang, W.

W. Chang, J. M. Soto-Crespo, P. Vouzas, and N. Akhmediev, “Extreme soliton pulsations in dissipative systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022926 (2015).
[Crossref] [PubMed]

Chatterjee, S.

Chen, H. J.

Chowdhury, S. D.

Churkin, D. V.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1(1), 20 (2018).
[Crossref]

Conti, C.

Cui, H.

Culshaw, B.

Deissler, R. J.

R. J. Deissler and H. R. Brand, “Periodic, quasiperiodic, and chaotic localized solutions of the quintic complex Ginzburg-Landau equation,” Phys. Rev. Lett. 72(4), 478–481 (1994).
[Crossref] [PubMed]

Druon, F.

Du, Y.

Dudley, J. M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Erkintalo, M.

Feng, P.

J. Kang, C. Kong, P. Feng, X. Wei, Z. C. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6 μm,” IEEE Photonics Technol. Lett. 30(4), 311–314 (2018).
[Crossref]

Ferrari, A. C.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Fridman, M.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121(13), 133902 (2018).
[Crossref] [PubMed]

Gat, O.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121(13), 133902 (2018).
[Crossref] [PubMed]

Genty, G.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Georges, P.

Grapinet, M.

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 066612 (2004).
[Crossref] [PubMed]

Grelu, P.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121(13), 133902 (2018).
[Crossref] [PubMed]

K. Krupa, K. Nithyanandan, and P. Grelu, “Vector dynamics of incoherent dissipative optical solitons,” Optica 4(10), 1239–1244 (2017).
[Crossref]

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref] [PubMed]

C. Lecaplain, J. M. Soto-Crespo, P. Grelu, and C. Conti, “Dissipative shock waves in all-normal-dispersion mode-locked fiber lasers,” Opt. Lett. 39(2), 263–266 (2014).
[Crossref] [PubMed]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 066612 (2004).
[Crossref] [PubMed]

Gu, Z.

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

Hanna, M.

Hasan, T.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

He, J. B.

He, R.

Herink, G.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Hideur, A.

Hu, S.

Jalali, B.

M. Suzuki, O. Boyraz, H. Asghari, P. Trinh, H. Kuroda, and B. Jalali, “Spectral periodicity in soliton explosions on a broadband mode-locked Yb fiber laser using time-stretch spectroscopy,” Opt. Lett. 43(8), 1862–1865 (2018).
[Crossref] [PubMed]

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Kang, J.

Y. Yu, Z. C. Luo, J. Kang, and K. K. Y. Wong, “Mutually ignited soliton explosions in a fiber laser,” Opt. Lett. 43(17), 4132–4135 (2018).
[Crossref] [PubMed]

J. Kang, C. Kong, P. Feng, X. Wei, Z. C. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6 μm,” IEEE Photonics Technol. Lett. 30(4), 311–314 (2018).
[Crossref]

Klein, A.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121(13), 133902 (2018).
[Crossref] [PubMed]

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, “Quintic complex Ginzburg-Landau model for ring fiber lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 025604 (2005).
[Crossref] [PubMed]

Kong, C.

J. Kang, C. Kong, P. Feng, X. Wei, Z. C. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6 μm,” IEEE Photonics Technol. Lett. 30(4), 311–314 (2018).
[Crossref]

Krupa, K.

K. Krupa, K. Nithyanandan, and P. Grelu, “Vector dynamics of incoherent dissipative optical solitons,” Optica 4(10), 1239–1244 (2017).
[Crossref]

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref] [PubMed]

Kuroda, H.

Kurtz, F.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Lam, E. Y.

J. Kang, C. Kong, P. Feng, X. Wei, Z. C. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6 μm,” IEEE Photonics Technol. Lett. 30(4), 311–314 (2018).
[Crossref]

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, “Quintic complex Ginzburg-Landau model for ring fiber lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 025604 (2005).
[Crossref] [PubMed]

Lecaplain, C.

Li, B.

Lib, O.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121(13), 133902 (2018).
[Crossref] [PubMed]

Liu, M.

Liu, Y.

Liu, Y. C.

Liu, Y. G.

Luo, A. P.

Luo, S.

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

Luo, Z. C.

Masri, G.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121(13), 133902 (2018).
[Crossref] [PubMed]

Merolla, J. M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Ming, S. X.

Morin, F.

Närhi, M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Nithyanandan, K.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref] [PubMed]

K. Krupa, K. Nithyanandan, and P. Grelu, “Vector dynamics of incoherent dissipative optical solitons,” Optica 4(10), 1239–1244 (2017).
[Crossref]

O’Neill, W.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Pal, A.

Pal, M.

Peng, J.

J. Peng and H. Zeng, “Soliton collision induced explosions in a mode-locked fibre laser,” Commun. Phys. 2(1), 34 (2019).
[Crossref]

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1(1), 20 (2018).
[Crossref]

J. Peng and H. Zeng, “Build-up of dissipative optical soliton molecules via diverse soliton interactions,” Laser Photonics Rev. 12(8), 1800009 (2018).
[Crossref]

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

Popa, D.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Qian, K.

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

Ropers, C.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Rozhin, A. G.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Runge, A. F. J.

Ryczkowski, P.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, “Quintic complex Ginzburg-Landau model for ring fiber lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 025604 (2005).
[Crossref] [PubMed]

Schreiber, T.

Sen, R.

Shen, Q.

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

Shu, X.

Solli, D. R.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Sorokina, M.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1(1), 20 (2018).
[Crossref]

Soto-Crespo, J. M.

W. Chang, J. M. Soto-Crespo, P. Vouzas, and N. Akhmediev, “Extreme soliton pulsations in dissipative systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022926 (2015).
[Crossref] [PubMed]

C. Lecaplain, J. M. Soto-Crespo, P. Grelu, and C. Conti, “Dissipative shock waves in all-normal-dispersion mode-locked fiber lasers,” Opt. Lett. 39(2), 263–266 (2014).
[Crossref] [PubMed]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 066612 (2004).
[Crossref] [PubMed]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63, 056602 (2001).
[Crossref] [PubMed]

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[Crossref] [PubMed]

Steinberg, H.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121(13), 133902 (2018).
[Crossref] [PubMed]

Stewart, G.

Sugavanam, S.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1(1), 20 (2018).
[Crossref]

Sulimany, K.

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121(13), 133902 (2018).
[Crossref] [PubMed]

Sun, Z.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Suzuki, M.

Tarasov, N.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1(1), 20 (2018).
[Crossref]

Tchofo-Dinda, P.

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref] [PubMed]

Town, G.

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63, 056602 (2001).
[Crossref] [PubMed]

Trinh, P.

Tsia, K. K.

Turitsyn, S. K.

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1(1), 20 (2018).
[Crossref]

Vouzas, P.

W. Chang, J. M. Soto-Crespo, P. Vouzas, and N. Akhmediev, “Extreme soliton pulsations in dissipative systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022926 (2015).
[Crossref] [PubMed]

Wang, F.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Wang, G.

Wang, X.

Wang, Z.

Wei, X.

J. Kang, C. Kong, P. Feng, X. Wei, Z. C. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6 μm,” IEEE Photonics Technol. Lett. 30(4), 311–314 (2018).
[Crossref]

X. Wei, B. Li, Y. Yu, C. Zhang, K. K. Tsia, and K. K. Y. Wong, “Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies,” Opt. Express 25(23), 29098–29120 (2017).
[Crossref]

Wei, Z. W.

Whitenett, G.

Wong, K. K. Y.

Xu, W. C.

Xu, Z.

Yan, Y. R.

Yang, G.

Yao, J.

Yu, H. B.

Yu, Y.

Zeng, H.

J. Peng and H. Zeng, “Soliton collision induced explosions in a mode-locked fibre laser,” Commun. Phys. 2(1), 34 (2019).
[Crossref]

J. Peng and H. Zeng, “Build-up of dissipative optical soliton molecules via diverse soliton interactions,” Laser Photonics Rev. 12(8), 1800009 (2018).
[Crossref]

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1(1), 20 (2018).
[Crossref]

Zhan, L.

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

Zhang, C.

Zhao, J.

Appl. Phys. Lett. (1)

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O’Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009).
[Crossref]

Commun. Phys. (2)

J. Peng, M. Sorokina, S. Sugavanam, N. Tarasov, D. V. Churkin, S. K. Turitsyn, and H. Zeng, “Real-time observation of dissipative soliton formation in nonlinear polarization rotation mode-locked fibre lasers,” Commun. Phys. 1(1), 20 (2018).
[Crossref]

J. Peng and H. Zeng, “Soliton collision induced explosions in a mode-locked fibre laser,” Commun. Phys. 2(1), 34 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Kang, C. Kong, P. Feng, X. Wei, Z. C. Luo, E. Y. Lam, and K. K. Y. Wong, “Broadband high-energy all-fiber laser at 1.6 μm,” IEEE Photonics Technol. Lett. 30(4), 311–314 (2018).
[Crossref]

J. Lightwave Technol. (3)

Laser Photonics Rev. (1)

J. Peng and H. Zeng, “Build-up of dissipative optical soliton molecules via diverse soliton interactions,” Laser Photonics Rev. 12(8), 1800009 (2018).
[Crossref]

Nat. Photonics (2)

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12(4), 221–227 (2018).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

Z. Wang, Z. Wang, Y. Liu, R. He, J. Zhao, G. Wang, and G. Yang, “Self-organized compound pattern and pulsation of dissipative solitons in a passively mode-locked fiber laser,” Opt. Lett. 43(3), 478–481 (2018).
[Crossref] [PubMed]

C. Lecaplain, J. M. Soto-Crespo, P. Grelu, and C. Conti, “Dissipative shock waves in all-normal-dispersion mode-locked fiber lasers,” Opt. Lett. 39(2), 263–266 (2014).
[Crossref] [PubMed]

M. Liu, A. P. Luo, Y. R. Yan, S. Hu, Y. C. Liu, H. Cui, Z. C. Luo, and W. C. Xu, “Successive soliton explosions in an ultrafast fiber laser,” Opt. Lett. 41(6), 1181–1184 (2016).
[Crossref] [PubMed]

M. Suzuki, O. Boyraz, H. Asghari, P. Trinh, H. Kuroda, and B. Jalali, “Spectral periodicity in soliton explosions on a broadband mode-locked Yb fiber laser using time-stretch spectroscopy,” Opt. Lett. 43(8), 1862–1865 (2018).
[Crossref] [PubMed]

Y. Du, Z. Xu, and X. Shu, “Spatio-spectral dynamics of the pulsating dissipative solitons in a normal-dispersion fiber laser,” Opt. Lett. 43(15), 3602–3605 (2018).
[Crossref] [PubMed]

Y. Yu, Z. C. Luo, J. Kang, and K. K. Y. Wong, “Mutually ignited soliton explosions in a fiber laser,” Opt. Lett. 43(17), 4132–4135 (2018).
[Crossref] [PubMed]

Z. W. Wei, M. Liu, S. X. Ming, A. P. Luo, W. C. Xu, and Z. C. Luo, “Pulsating soliton with chaotic behavior in a fiber laser,” Opt. Lett. 43(24), 5965–5968 (2018).
[Crossref] [PubMed]

F. Morin, F. Druon, M. Hanna, and P. Georges, “Microjoule femtosecond fiber laser at 1.6 µm for corneal surgery applications,” Opt. Lett. 34(13), 1991–1993 (2009).
[Crossref] [PubMed]

Optica (2)

Phys. Rev. A (1)

J. Peng, L. Zhan, Z. Gu, K. Qian, S. Luo, and Q. Shen, “Experimental observation of transitions of different pulse solutions of the Ginzburg-Landau equation in a mode-locked fiber laser,” Phys. Rev. A 86(3), 033808 (2012).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (4)

A. Komarov, H. Leblond, and F. Sanchez, “Quintic complex Ginzburg-Landau model for ring fiber lasers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72, 025604 (2005).
[Crossref] [PubMed]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 066612 (2004).
[Crossref] [PubMed]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 63, 056602 (2001).
[Crossref] [PubMed]

W. Chang, J. M. Soto-Crespo, P. Vouzas, and N. Akhmediev, “Extreme soliton pulsations in dissipative systems,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92(2), 022926 (2015).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

J. M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems,” Phys. Rev. Lett. 85(14), 2937–2940 (2000).
[Crossref] [PubMed]

R. J. Deissler and H. R. Brand, “Periodic, quasiperiodic, and chaotic localized solutions of the quintic complex Ginzburg-Landau equation,” Phys. Rev. Lett. 72(4), 478–481 (1994).
[Crossref] [PubMed]

K. Sulimany, O. Lib, G. Masri, A. Klein, M. Fridman, P. Grelu, O. Gat, and H. Steinberg, “Bidirectional soliton rain dynamics induced by casimir-like interactions in a graphene mode-locked fiber laser,” Phys. Rev. Lett. 121(13), 133902 (2018).
[Crossref] [PubMed]

K. Krupa, K. Nithyanandan, U. Andral, P. Tchofo-Dinda, and P. Grelu, “Real-time observation of internal motion within ultrafast dissipative optical soliton molecules,” Phys. Rev. Lett. 118(24), 243901 (2017).
[Crossref] [PubMed]

Science (1)

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356(6333), 50–54 (2017).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1       Experimentally measured real-time spectral evolution of single-periodic pulsating soliton.
» Visualization 2       Experimentally measured real-time spectral evolution of soliton explosion.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of the proposed dissipative soliton all-fiber laser. LD: laser diode, WDM: wavelength division multiplexer, EDF: erbium-doped fiber, OC: optical coupler, PC: polarization controller, PD-ISO: polarization dependent isolator, DCF: dispersive compensation fiber, OSA: optical spectrum analyzer, PD: photodetector.
Fig. 2
Fig. 2 The pulsating soliton with single period. (a) Optical spectrum directly recorded by the OSA (black curve) and the average of 7006 consecutive single-shot spectra (red curve). (b) RF spectrum. (c) Spatio-temporal dynamics. (d) Spatio-spectral dynamics. (e) Pulse energy evolution.
Fig. 3
Fig. 3 Typical spectra within a pulsating period (see Visualization 1). (a) 190th roundtrip. (b) 230th roundtrip. (c) 270th roundtrip. (d) 285th roundtrip. (e) 300th roundtrip. (f) 600th roundtrip. (g) 800th roundtrip. (h) 980th roundtrip.
Fig. 4
Fig. 4 The change of spatio-spectral dynamics with increasing pump power. (a) 174.9 mW. (b) 178.6 mW. (c) 211.8 mW. (d) 217.8 mW. (e) 220.1 mW. (f) 228.6 mW.
Fig. 5
Fig. 5 The change of spatio-temporal dynamics with increasing pump power. (a) 174.9 mW. (b) 178.6 mW. (c) 211.8 mW. (d) 217.8 mW. (e) 220.1 mW. (f) 228.6 mW.
Fig. 6
Fig. 6 The pulsating soliton in the triple-soliton regime. (a) Spatio-spectral dynamics. (b) Pulse energy evolutions. (c) Pulse energy evolutions with higher resolution. The insets are spectra at 763th and 800th roundtrips, respectively.
Fig. 7
Fig. 7 The plain pulsating soliton with double period. (a) Optical spectrum directly recorded by the OSA (black curve) and the average of 7006 consecutive single-shot spectra (red curve). (b) Real-time spectral evolution in 3D format. (c) Spatio-temporal dynamics. (d) Spatio-spectral dynamics. (e) Pulse energy evolution.
Fig. 8
Fig. 8 The double-soliton pulsation with double period. (a) Spatio-temporal dynamics. (b) Spatio-spectral dynamics. (c) Pulse energy evolution. (pump power: 210.7 mW).
Fig. 9
Fig. 9 Soliton explosion. (a) Optical spectrum directly recorded by the OSA (black curve) and the average of 7006 consecutive single-shot spectra (red curve). (b) Real-time spectrum evolution in a three-dimensional (3D) format. (c) Spatio-spectral dynamics. (d) Pulse energy evolution.
Fig. 10
Fig. 10 Typical spectra over an explosion period (see Visualization 2). (a) 1200th roundtrip. (b) 1500th roundtrip. (c) 1650th roundtrip. (d) 1675th roundtrip. (e) 1680th roundtrip. (f) 1685th roundtrip. (g) 1710th roundtrip. (h) 1800th roundtrip.

Metrics