Abstract

We have focused on the optical form that is low cost while maintaining high performance for airborne application. We report the optical design as well as the alignment and test results for a push-broom imaging spectrometer. The smart architecture of the prism-grating based spectrometer ensures high uniformity and image quality. Moreover, an effective method for aligning the spectrometer is also proposed. The results of laboratory-based optical tests and a flight test confirm the easy manufacture and excellent performance. Thus, the proposed system should be suitable for use as a hyperspectral instrument that can be loaded onto airborne and unmanned aerial vehicles.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical design, laboratory test, and calibration of airborne long wave infrared imaging spectrometer

Liyin Yuan, Zhiping He, Gang Lv, Yueming Wang, Chunlai Li, Jia’nan Xie, and Jianyu Wang
Opt. Express 25(19) 22440-22454 (2017)

Optical design of a short-wave infrared prism-grating imaging spectrometer

Jianjun Chen, Jin Yang, Jianan Liu, Jianli Liu, Ci Sun, Xiaotian Li, Bayanheshig, and Jicheng Cui
Appl. Opt. 57(34) F8-F14 (2018)

Optical design of a prism–grating-based lenslet array integral field spectrometer

Jianan Liu, Jianjun Chen, Jianli Liu, Shulong Feng, Xiaotian Li, and Jicheng Cui
Opt. Express 26(15) 19456-19469 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Z. Mouroulis and R. O. Green, “Review of high fidelity imaging spectrometer design for remote sensing,” Opt. Eng. 57(4), 040901 (2018).
    [Crossref]
  2. A. F. H. Goetz, “Three decades of hyperspectral remote sensing of the Earth: A personal view,” Remote Sens. Environ. 113, S5–S16 (2009).
    [Crossref]
  3. F. Sigernes, M. Syrjäsuo, R. Storvold, J. Fortuna, M. E. Grøtte, and T. A. Johansen, “Do it yourself hyperspectral imager for handheld to airborne operations,” Opt. Express 26(5), 6021–6035 (2018).
    [Crossref] [PubMed]
  4. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
    [Crossref]
  5. http://www.itres.com .
  6. B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
    [Crossref]
  7. P. Z. Mouroulis, R. O. Green, B. V. Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
    [Crossref]
  8. P. Mouroulis, R. O. Green, and T. G. Chrien, “Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,” Appl. Opt. 39(13), 2210–2220 (2000).
    [Crossref] [PubMed]
  9. S. Qian, Optical Satellite: Signal Processing and Enhancement (SPIE, 2013), Chap. 8.
  10. X. Prieto-Blanco, C. Montero-Orille, B. Couce, and R. de la Fuente, “Analytical design of an Offner imaging spectrometer,” Opt. Express 14(20), 9156–9168 (2006).
    [Crossref] [PubMed]
  11. P. Z. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, “Optical design of a compact imaging spectrometer for planetary mineralogy,” J. Geophys. Opt. Eng. 46(6), 063001 (2007).
    [Crossref]
  12. D. W. Warren, D. J. Gutierrez, and E. R. Keim, “Dyson spectrometers for high-performance infrared applications,” Opt. Eng. 47(10), 103601 (2008).
    [Crossref]
  13. P. Mouroulis, R. O. Green, and D. W. Wilson, “Optical design of a coastal ocean imaging spectrometer,” Opt. Express 16(12), 9087–9096 (2008).
    [Crossref] [PubMed]
  14. J. Kolmeder, A. Kuisl, B. Sang, M. Lettner, A. Godenir, M. Glier, M. Sornig, and S. Fischer, “Optical intergration process for the earth-observing satellite mission ENMAP,” Proc. SPIE 10562, 1056226 (2016).
  15. B. M. Braam, J. T. Okkonen, M. Aikio, K. Makisara, and J. F. Bolton, “I Design and first test results of the Finnish Airborne Imaging Spectrometer for different Applications, AISA,” Proc. SPIE 1937, 142–151 (1993).
    [Crossref]
  16. J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
    [Crossref] [PubMed]
  17. L. Yuan, J. Xie, J. Hou, G. Lv, and Z. He, “Optical design of compact infrared imaging spectrometer,” Infrared Laser Eng. 47(4), 0418001 (2018).
    [Crossref]
  18. G. Wu, Design of spectrograph (Science, 1978), Chap. 4.
  19. L. B. Moore and P. Mouroulis, “Tolerancing methods and metrics for imaging spectrometers,” Proc. SPIE 10590, 105900Q–1 (2017).
  20. L. Yuan, Z. He, G. Lv, Y. Wang, C. Li, J. Xie, and J. Wang, “Optical design, laboratory test, and calibration of airborne long wave infrared imaging spectrometer,” Opt. Express 25(19), 22440–22454 (2017).
    [Crossref] [PubMed]

2018 (3)

P. Z. Mouroulis and R. O. Green, “Review of high fidelity imaging spectrometer design for remote sensing,” Opt. Eng. 57(4), 040901 (2018).
[Crossref]

L. Yuan, J. Xie, J. Hou, G. Lv, and Z. He, “Optical design of compact infrared imaging spectrometer,” Infrared Laser Eng. 47(4), 0418001 (2018).
[Crossref]

F. Sigernes, M. Syrjäsuo, R. Storvold, J. Fortuna, M. E. Grøtte, and T. A. Johansen, “Do it yourself hyperspectral imager for handheld to airborne operations,” Opt. Express 26(5), 6021–6035 (2018).
[Crossref] [PubMed]

2017 (3)

L. Yuan, Z. He, G. Lv, Y. Wang, C. Li, J. Xie, and J. Wang, “Optical design, laboratory test, and calibration of airborne long wave infrared imaging spectrometer,” Opt. Express 25(19), 22440–22454 (2017).
[Crossref] [PubMed]

L. B. Moore and P. Mouroulis, “Tolerancing methods and metrics for imaging spectrometers,” Proc. SPIE 10590, 105900Q–1 (2017).

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

2016 (2)

P. Z. Mouroulis, R. O. Green, B. V. Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

J. Kolmeder, A. Kuisl, B. Sang, M. Lettner, A. Godenir, M. Glier, M. Sornig, and S. Fischer, “Optical intergration process for the earth-observing satellite mission ENMAP,” Proc. SPIE 10562, 1056226 (2016).

2009 (1)

A. F. H. Goetz, “Three decades of hyperspectral remote sensing of the Earth: A personal view,” Remote Sens. Environ. 113, S5–S16 (2009).
[Crossref]

2008 (3)

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

D. W. Warren, D. J. Gutierrez, and E. R. Keim, “Dyson spectrometers for high-performance infrared applications,” Opt. Eng. 47(10), 103601 (2008).
[Crossref]

P. Mouroulis, R. O. Green, and D. W. Wilson, “Optical design of a coastal ocean imaging spectrometer,” Opt. Express 16(12), 9087–9096 (2008).
[Crossref] [PubMed]

2007 (1)

P. Z. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, “Optical design of a compact imaging spectrometer for planetary mineralogy,” J. Geophys. Opt. Eng. 46(6), 063001 (2007).
[Crossref]

2006 (1)

2000 (1)

1998 (1)

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

1993 (1)

B. M. Braam, J. T. Okkonen, M. Aikio, K. Makisara, and J. F. Bolton, “I Design and first test results of the Finnish Airborne Imaging Spectrometer for different Applications, AISA,” Proc. SPIE 1937, 142–151 (1993).
[Crossref]

Aikio, M.

B. M. Braam, J. T. Okkonen, M. Aikio, K. Makisara, and J. F. Bolton, “I Design and first test results of the Finnish Airborne Imaging Spectrometer for different Applications, AISA,” Proc. SPIE 1937, 142–151 (1993).
[Crossref]

Aronsson, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Bauer, A.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

Bender, H. A.

P. Z. Mouroulis, R. O. Green, B. V. Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

Bolton, J. F.

B. M. Braam, J. T. Okkonen, M. Aikio, K. Makisara, and J. F. Bolton, “I Design and first test results of the Finnish Airborne Imaging Spectrometer for different Applications, AISA,” Proc. SPIE 1937, 142–151 (1993).
[Crossref]

Braam, B. M.

B. M. Braam, J. T. Okkonen, M. Aikio, K. Makisara, and J. F. Bolton, “I Design and first test results of the Finnish Airborne Imaging Spectrometer for different Applications, AISA,” Proc. SPIE 1937, 142–151 (1993).
[Crossref]

Chippendale, B. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Chlebekd, C.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

Chovit, C. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Chrien, T. G.

P. Mouroulis, R. O. Green, and T. G. Chrien, “Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,” Appl. Opt. 39(13), 2210–2220 (2000).
[Crossref] [PubMed]

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Couce, B.

de la Fuente, R.

Eastwood, M. L.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Eversberg, T.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

Faust, J. A.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Fischer, S.

J. Kolmeder, A. Kuisl, B. Sang, M. Lettner, A. Godenir, M. Glier, M. Sornig, and S. Fischer, “Optical intergration process for the earth-observing satellite mission ENMAP,” Proc. SPIE 10562, 1056226 (2016).

Förster, K.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

Fortuna, J.

Glier, M.

J. Kolmeder, A. Kuisl, B. Sang, M. Lettner, A. Godenir, M. Glier, M. Sornig, and S. Fischer, “Optical intergration process for the earth-observing satellite mission ENMAP,” Proc. SPIE 10562, 1056226 (2016).

Godenir, A.

J. Kolmeder, A. Kuisl, B. Sang, M. Lettner, A. Godenir, M. Glier, M. Sornig, and S. Fischer, “Optical intergration process for the earth-observing satellite mission ENMAP,” Proc. SPIE 10562, 1056226 (2016).

Goetz, A. F. H.

A. F. H. Goetz, “Three decades of hyperspectral remote sensing of the Earth: A personal view,” Remote Sens. Environ. 113, S5–S16 (2009).
[Crossref]

Gorp, B. V.

P. Z. Mouroulis, R. O. Green, B. V. Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

Green, R. O.

P. Z. Mouroulis and R. O. Green, “Review of high fidelity imaging spectrometer design for remote sensing,” Opt. Eng. 57(4), 040901 (2018).
[Crossref]

P. Z. Mouroulis, R. O. Green, B. V. Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

P. Mouroulis, R. O. Green, and D. W. Wilson, “Optical design of a coastal ocean imaging spectrometer,” Opt. Express 16(12), 9087–9096 (2008).
[Crossref] [PubMed]

P. Z. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, “Optical design of a compact imaging spectrometer for planetary mineralogy,” J. Geophys. Opt. Eng. 46(6), 063001 (2007).
[Crossref]

P. Mouroulis, R. O. Green, and T. G. Chrien, “Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information,” Appl. Opt. 39(13), 2210–2220 (2000).
[Crossref] [PubMed]

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Grøtte, M. E.

Gutierrez, D. J.

D. W. Warren, D. J. Gutierrez, and E. R. Keim, “Dyson spectrometers for high-performance infrared applications,” Opt. Eng. 47(10), 103601 (2008).
[Crossref]

He, Z.

Hofer, S.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

Hou, J.

L. Yuan, J. Xie, J. Hou, G. Lv, and Z. He, “Optical design of compact infrared imaging spectrometer,” Infrared Laser Eng. 47(4), 0418001 (2018).
[Crossref]

Johansen, T. A.

Kaiser, S.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

Kaufmann, H.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

Keim, E. R.

D. W. Warren, D. J. Gutierrez, and E. R. Keim, “Dyson spectrometers for high-performance infrared applications,” Opt. Eng. 47(10), 103601 (2008).
[Crossref]

Kolmeder, J.

J. Kolmeder, A. Kuisl, B. Sang, M. Lettner, A. Godenir, M. Glier, M. Sornig, and S. Fischer, “Optical intergration process for the earth-observing satellite mission ENMAP,” Proc. SPIE 10562, 1056226 (2016).

Kuisl, A.

J. Kolmeder, A. Kuisl, B. Sang, M. Lettner, A. Godenir, M. Glier, M. Sornig, and S. Fischer, “Optical intergration process for the earth-observing satellite mission ENMAP,” Proc. SPIE 10562, 1056226 (2016).

Lettner, M.

J. Kolmeder, A. Kuisl, B. Sang, M. Lettner, A. Godenir, M. Glier, M. Sornig, and S. Fischer, “Optical intergration process for the earth-observing satellite mission ENMAP,” Proc. SPIE 10562, 1056226 (2016).

Li, C.

Lv, G.

Makisara, K.

B. M. Braam, J. T. Okkonen, M. Aikio, K. Makisara, and J. F. Bolton, “I Design and first test results of the Finnish Airborne Imaging Spectrometer for different Applications, AISA,” Proc. SPIE 1937, 142–151 (1993).
[Crossref]

Mogulsky, V.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

Montero-Orille, C.

Moore, L. B.

L. B. Moore and P. Mouroulis, “Tolerancing methods and metrics for imaging spectrometers,” Proc. SPIE 10590, 105900Q–1 (2017).

P. Z. Mouroulis, R. O. Green, B. V. Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

Mouroulis, P.

Mouroulis, P. Z.

P. Z. Mouroulis and R. O. Green, “Review of high fidelity imaging spectrometer design for remote sensing,” Opt. Eng. 57(4), 040901 (2018).
[Crossref]

P. Z. Mouroulis, R. O. Green, B. V. Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

P. Z. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, “Optical design of a compact imaging spectrometer for planetary mineralogy,” J. Geophys. Opt. Eng. 46(6), 063001 (2007).
[Crossref]

Müllerc, A.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

Neumann, C.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

Okkonen, J. T.

B. M. Braam, J. T. Okkonen, M. Aikio, K. Makisara, and J. F. Bolton, “I Design and first test results of the Finnish Airborne Imaging Spectrometer for different Applications, AISA,” Proc. SPIE 1937, 142–151 (1993).
[Crossref]

Olah, M. R.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Pavri, B. E.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Prieto-Blanco, X.

Reimers, J.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

Rolland, J. P.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

Sang, B.

J. Kolmeder, A. Kuisl, B. Sang, M. Lettner, A. Godenir, M. Glier, M. Sornig, and S. Fischer, “Optical intergration process for the earth-observing satellite mission ENMAP,” Proc. SPIE 10562, 1056226 (2016).

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

Sarture, C. M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Schubert, J.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

Sellar, R. G.

P. Z. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, “Optical design of a compact imaging spectrometer for planetary mineralogy,” J. Geophys. Opt. Eng. 46(6), 063001 (2007).
[Crossref]

Shea, J. J.

P. Z. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, “Optical design of a compact imaging spectrometer for planetary mineralogy,” J. Geophys. Opt. Eng. 46(6), 063001 (2007).
[Crossref]

Sigernes, F.

Solis, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Sornig, M.

J. Kolmeder, A. Kuisl, B. Sang, M. Lettner, A. Godenir, M. Glier, M. Sornig, and S. Fischer, “Optical intergration process for the earth-observing satellite mission ENMAP,” Proc. SPIE 10562, 1056226 (2016).

Storvold, R.

Stufflera, T.

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

Syrjäsuo, M.

Thompson, K. P.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

Wang, J.

Wang, Y.

Warren, D. W.

D. W. Warren, D. J. Gutierrez, and E. R. Keim, “Dyson spectrometers for high-performance infrared applications,” Opt. Eng. 47(10), 103601 (2008).
[Crossref]

Williams, O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

Wilson, D. W.

P. Z. Mouroulis, R. O. Green, B. V. Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

P. Mouroulis, R. O. Green, and D. W. Wilson, “Optical design of a coastal ocean imaging spectrometer,” Opt. Express 16(12), 9087–9096 (2008).
[Crossref] [PubMed]

P. Z. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, “Optical design of a compact imaging spectrometer for planetary mineralogy,” J. Geophys. Opt. Eng. 46(6), 063001 (2007).
[Crossref]

Xie, J.

Yuan, L.

Appl. Opt. (1)

Infrared Laser Eng. (1)

L. Yuan, J. Xie, J. Hou, G. Lv, and Z. He, “Optical design of compact infrared imaging spectrometer,” Infrared Laser Eng. 47(4), 0418001 (2018).
[Crossref]

J. Geophys. Opt. Eng. (1)

P. Z. Mouroulis, R. G. Sellar, D. W. Wilson, J. J. Shea, and R. O. Green, “Optical design of a compact imaging spectrometer for planetary mineralogy,” J. Geophys. Opt. Eng. 46(6), 063001 (2007).
[Crossref]

Light Sci. Appl. (1)

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

Opt. Eng. (3)

P. Z. Mouroulis, R. O. Green, B. V. Gorp, L. B. Moore, D. W. Wilson, and H. A. Bender, “Landsat swath imaging spectrometer design,” Opt. Eng. 55(1), 015104 (2016).
[Crossref]

P. Z. Mouroulis and R. O. Green, “Review of high fidelity imaging spectrometer design for remote sensing,” Opt. Eng. 57(4), 040901 (2018).
[Crossref]

D. W. Warren, D. J. Gutierrez, and E. R. Keim, “Dyson spectrometers for high-performance infrared applications,” Opt. Eng. 47(10), 103601 (2008).
[Crossref]

Opt. Express (4)

Proc. SPIE (4)

B. Sang, J. Schubert, S. Kaiser, V. Mogulsky, C. Neumann, K. Förster, S. Hofer, T. Stufflera, H. Kaufmann, A. Müllerc, T. Eversberg, and C. Chlebekd, “The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies,” Proc. SPIE 7086, 708605 (2008).
[Crossref]

J. Kolmeder, A. Kuisl, B. Sang, M. Lettner, A. Godenir, M. Glier, M. Sornig, and S. Fischer, “Optical intergration process for the earth-observing satellite mission ENMAP,” Proc. SPIE 10562, 1056226 (2016).

B. M. Braam, J. T. Okkonen, M. Aikio, K. Makisara, and J. F. Bolton, “I Design and first test results of the Finnish Airborne Imaging Spectrometer for different Applications, AISA,” Proc. SPIE 1937, 142–151 (1993).
[Crossref]

L. B. Moore and P. Mouroulis, “Tolerancing methods and metrics for imaging spectrometers,” Proc. SPIE 10590, 105900Q–1 (2017).

Remote Sens. Environ. (2)

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[Crossref]

A. F. H. Goetz, “Three decades of hyperspectral remote sensing of the Earth: A personal view,” Remote Sens. Environ. 113, S5–S16 (2009).
[Crossref]

Other (3)

S. Qian, Optical Satellite: Signal Processing and Enhancement (SPIE, 2013), Chap. 8.

http://www.itres.com .

G. Wu, Design of spectrograph (Science, 1978), Chap. 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Layout of the prism-grating imaging spectrometer.
Fig. 2
Fig. 2 (a) Layout of prism-grating dispersive component. (b) Analysis for deriving smile of prism. (c) Analysis for deriving smile of grating. Symbols used are as follows: OS is half length of slit, and points O and S are center and off-axis points, respectively; interfaces 1, 2, and 3 are front and rear of prism and grating surface, respectively; N1, N2, and N3 are normals; α is wedge angle of prism; ω and ξ are mirror and grating tilt angles about z-axis, respectively; n is refraction index of prism; i1β and i1 are incidence angles of center and off-axis points of slit at interface 1, respectively; i and iε are incidence angles of center and off-axis points of slit at interface 3 (grating surface), respectively.
Fig. 3
Fig. 3 Optical design results of the prism-grating spectrometer: (a) RMS spots radii as a function of wavelength. (b) Designed SRF FWHM curves spanning the entire spectrum.
Fig. 4
Fig. 4 (a) Other-order re-images at imaging plane. Blue, green, and red rays denote wavelengths of 400, 700, and 1000 nm respectively. (b) Design of order-sorting filter. Coating of segment A: 0.3–0.35 μm, cut off < 0.5%, 0.4–0.8 μm, bandpass > 95%; coating of segment B: 0.3–0.55 μm, cut off < 0.5%, 0.65–1.0 μm, bandpass > 95%.
Fig. 5
Fig. 5 Optical design performance of imaging spectrometer: (a) RMS radii of spots as function of field. (b)–(d) MTF of three field points (0°, ± 5.15° and ± 7.29°, normalized 0, ± 0.707, and ± 1) at wavelengths 400, 700, and 1000 nm, respectively.
Fig. 6
Fig. 6 (a) Simulated quantum efficiency of sensor used. (b) Predicted and measured diffraction efficiencies of flat reflective grating.
Fig. 7
Fig. 7 Predicted signal-to-noise ratio.
Fig. 8
Fig. 8 (a) Opto-mechanical model and (b) assembly of imaging spectrometer.
Fig. 9
Fig. 9 Alignment result of the fore-optics. (a) RMS wavefront error for five field points (0, ± 0.707 and ± 1 normalized). (b) Interferogram of the center field point.
Fig. 10
Fig. 10 (a) Sketch of auxiliary two-dimensional slit. Letters A to E stand for field points (normalized −1, −0.707, 0, + 0.707, and + 1, respectively). a, equal to pixel size (16 μm), is width and space of vertical bars and width of the horizontal slits. b and c, given appropriate values, are lengths of vertical bars and horizontal slits, respectively. Each vertical bar corresponds to a column of detector. (b) Spatial response obtained using tungsten halogen lamp. (c) Spectral response obtained using mercury lamp.
Fig. 11
Fig. 11 (a) CRF and (b) ARF values measured at spectral rows 20, 128, and 240 (approximately 435, 589, and 915 nm) of center field. Horizontal axis has been converted into pixel units.
Fig. 12
Fig. 12 Keystone measured for approximately normalized 0, −0.707 and −1 field points. The curves are obtained by second or third-order polynomial fitting for the centroids of CRF.
Fig. 13
Fig. 13 (a) Normalized SRF values of center field spanning from 522 to 542 nm. The colored curves stand for SRF of the spectral rows 53 (black) to 61 (darker blue). Horizontal axis has been converted into pixel units. (b) Variation in FWHM of SRF of center field. The curves are obtained through second-order polynomial fitting for the measured values.
Fig. 14
Fig. 14 Smile measured for spectral rows 20, 128 and 240 (approximately 435, 589, and 915 nm).
Fig. 15
Fig. 15 Rectified RGB-bands image taken during flight.

Tables (5)

Tables Icon

Table 1 System Design Specifications and Performance

Tables Icon

Table 2 Design Specifications and Performance of TMA Fore-optics

Tables Icon

Table 3 Budgeting of Tolerance

Tables Icon

Table 4 Details of Optical Components

Tables Icon

Table 5 MTF of Prism-grating Imaging Spectrometer

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

i 1β = 90 2ξα,
sin i 1 =nsin i 1 ,nsin i 2 =sin i 2 ,
sin β 1 =nsin β 1 ,nsin β 2 =sin β 2 , β 1 = β 2 , β 1 = β 2 ,
sin i 1β =Nsin i 1β ,Nsin i 2β =sin i 2β ,
d i 2β =( Nn ) sinα cos i 1β cos i 2β .
dcosε( sin i ε +sin θ ε )=mλ,
d( sin i 0 +sin θ 0 )=mλ.
Δθ= θ ε θ 0 = mλ d ( secε1 ).

Metrics