Abstract

As a lateral shift of reflected light beam from the optical interface, the Goos-Hänchen (GH) effect led to various practical applications in biosensing and optical field manipulations. Magneto-optical (MO) effect of dielectric or metal may bring flexible modulation for GH effect, which can be regarded as the magneto-optical Goos-Hänchen (MOGH) effect. In this paper, the GH and MOGH effects in a BK7 prism/Fe/Au waveguide enhanced by surface plasmon resonance (SPR) are demonstrated experimentally for the first time. By weak measurement, the GH and MOGH shifts are further amplified to facilitate their applications. By contrast, the results of theory and experiment are basically consistent. The maximum MOGH shift of the proposed BK7/Fe/Au waveguide achieves 120 μm when optimum thicknesses are chosen. As MOGH effect exhibits a higher sensitivity to the refractive index of sample than GH shift, it can be applied in refractive index detection. The demonstrated MOGH effect with advantages of high sensitivity and convenient control opens avenues for future applications with biosensors and functionally optical devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Magneto-optical Goos-Hänchen effect in a prism-waveguide coupling structure

Tingting Tang, Jun Qin, Jianliang Xie, Longjiang Deng, and Lei Bi
Opt. Express 22(22) 27042-27055 (2014)

Giant and controllable Goos-Hänchen shifts based on surface plasmon resonance with graphene-MoS2 heterostructure

Qi You, Youxian Shan, Shuaiwen Gan, Yuting Zhao, Xiaoyu Dai, and Yuanjiang Xiang
Opt. Mater. Express 8(10) 3036-3048 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys. 436, 333–346 (1947).
    [Crossref]
  2. L. Chen, Z. Cao, F. Ou, H. Li, Q. Shen, and H. Qiao, “Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides,” Opt. Lett. 32(11), 1432–1434 (2007).
    [Crossref] [PubMed]
  3. K. V. Sreekanth, Q. L. Ouyang, S. Han, K.-T. Yong, and R. Singh, “Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity,” Appl. Phys. Lett. 112(16), 161109 (2018).
    [Crossref]
  4. Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
    [Crossref]
  5. O. J. S. Santana and L. E. E. de Araujo, “Direct measurement of the composite Goos-Hänchen shift of an optical beam,” Opt. Lett. 43(16), 4037–4040 (2018).
    [Crossref] [PubMed]
  6. S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332(6034), 1170–1173 (2011).
    [Crossref] [PubMed]
  7. J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474(7350), 188–191 (2011).
    [Crossref] [PubMed]
  8. G. Strübi and C. Bruder, “Measuring ultrasmall time delays of light by joint weak measurements,” Phys. Rev. Lett. 110(8), 083605 (2013).
    [Crossref] [PubMed]
  9. J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. U.S.A. 116(22), 11137–11140 (2019).
  10. T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
    [Crossref]
  11. O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
    [Crossref] [PubMed]
  12. X. X. Zhou, Z. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
    [Crossref]
  13. G. Jayaswal, G. Mistura, and M. Merano, “Weak measurement of the Goos-Hänchen shift,” Opt. Lett. 38(8), 1232–1234 (2013).
    [Crossref] [PubMed]
  14. Y. Q. Kang, Y. J. Xiang, and C. Y. Luo, “Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials,” Appl. Phys. B 124(6), 115 (2018).
    [Crossref]
  15. Y. P. Wong, Y. Miao, J. Skarda, and O. Solgaard, “Large negative and positive optical Goos-Hänchen shift in photonic crystals,” Opt. Lett. 43(12), 2803–2806 (2018).
    [Crossref] [PubMed]
  16. X. B. Jiao, Z. Qiao, W. Q. Gao, and S. H. Shen, “Tunable Goos–Hänchen and Imbert–Fedorov shifts,” Opt. Commun. 436, 239–242 (2019).
    [Crossref]
  17. G. Z. Ye, W. S. Zhang, and H. L. Luo, “Goos-Hänchen and Imbert-Fedorov effects in Weyl semimetals,” Phys. Rev. A (Coll. Park) 99(2), 023807 (2019).
    [Crossref]
  18. X. B. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
    [Crossref]
  19. T. T. Tang, C. Y. Li, L. Luo, Y. F. Zhang, and J. Li, “Goos–Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor,” Appl. Phys. B 122, 167 (2016).
    [Crossref]
  20. X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, and Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect,” Opt. Express 21(11), 13380–13385 (2013).
    [Crossref] [PubMed]
  21. K. V. Sreekanth, Q. L. Ouyang, S. Sreejith, S. Zeng, W. Lishu, E. Ilker, W. Dong, M. ElKabbash, Y. Ting, C. T. Lim, M. Hinczewski, G. Strangi, K.-T. Yong, R. E. Simpson, and R. Singh, “Phase-change-material-based low-loss visible-frequency hyperbolic metamaterials for ultrasensitive label-free biosensing,” Adv. Opt. Mater. 1900081 (Epub 12 April 2019).
  22. T. Shui, W. X. Yang, Q. Y. Zhang, X. Liu, and L. Li, “Squeezing-induced giant Goos-Hänchen shift and hypersensitized displacement sensor in a two-level atomic system,” Phys. Rev. A (Coll. Park) 99(1), 013806 (2019).
    [Crossref]
  23. Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, R. V. Petrov, I. L. Lyubchanskii, and M. I. Bichurin, “Controlling the Goos-Hänchen shift with external electric and magnetic fields in an electro-optic/magneto-electric heterostructure,” J. Appl. Phys. 119(20), 203101 (2016).
    [Crossref]
  24. Y. S. Dadoenkova, F. F. L. Bentivegna, V. V. Svetukhin, A. V. Zhukov, R. V. Petrov, and M. I. Bichurin, “Controlling optical beam shifts upon reflection from a magneto-electric liquid-crystal-based system for applications to chemical vapor sensing,” Appl. Phys. B 123(4), 107–109 (2017).
  25. Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, I. L. Lyubchanskii, and Y. P. Lee, “Influence of misfit strain on the Goos–Hänchen shift upon reflection from a magnetic film on a nonmagnetic substrate,” J. Opt. Soc. Am. B 33(3), 393–404 (2016).
    [Crossref]
  26. Y. S. Dadoenkova, N. N. Dadoenkova, J. W. Klos, M. Krawczyk, and I. L. Lyubchanskii, “Goos-Hänchen effect in light transmission through biperiodic photonic-magnonic crystals,” Phys. Rev. A (Coll. Park) 96(4), 043804 (2017).
    [Crossref]
  27. I. J. Singh and V. P. Nayyar, “Lateral displacement of a light beam at a ferrite interface,” J. Appl. Phys. 69(11), 7820–7824 (1991).
    [Crossref]
  28. S. B. Borisov, N. N. Dadoenkova, I. Lyubchanskii, and M. I. Lyubchanskii, “Guse-Hanchen effect for the light reflected from the interface formed by bigyrotropic and nongyrotropic media,” Opt. Spectrosc. 85(2), 225–231 (1998).
  29. X. Zeng, M. Al-Amri, and M. S. Zubairy, “Tunable Goos-Hänchen shift from graphene ribbon array,” Opt. Express 25(20), 23579–23588 (2017).
    [Crossref] [PubMed]
  30. W. J. Wu, S. Z. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A (Coll. Park) 96(4), 043814 (2017).
    [Crossref]
  31. T. T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos-Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
    [Crossref]
  32. T. Tang, J. Qin, J. Xie, L. Deng, and L. Bi, “Magneto-optical Goos-Hänchen effect in a prism-waveguide coupling structure,” Opt. Express 22(22), 27042–27055 (2014).
    [Crossref] [PubMed]
  33. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
    [Crossref]
  34. N. Goswami, A. Kar, and A. Saha, “Long range surface plasmon resonance enhanced electro-optically tunable Goos–Hänchen shift and Imbert–Fedorov shift in ZnSe prism,” Opt. Commun. 330, 169–174 (2014).
    [Crossref]
  35. X. D. Qiu, X. X. Zhou, D. J. Hu, J. L. Du, F. H. Gao, Z. Y. Zhang, and H. L. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
    [Crossref]
  36. P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
    [Crossref]
  37. X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4(1), 7388 (2015).
    [Crossref] [PubMed]
  38. E. D. Palik, Handbook of optical constants of solids (Academic, 1998).
  39. J. Li, T. Tang, L. Luo, N. Li, and P. Zhang, “Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate,” Opt. Express 25(16), 19117–19128 (2017).
    [Crossref] [PubMed]
  40. S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
    [Crossref]
  41. X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
    [Crossref] [PubMed]
  42. X. X. Zhou, Z. C. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
    [Crossref]

2019 (5)

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. U.S.A. 116(22), 11137–11140 (2019).

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

X. B. Jiao, Z. Qiao, W. Q. Gao, and S. H. Shen, “Tunable Goos–Hänchen and Imbert–Fedorov shifts,” Opt. Commun. 436, 239–242 (2019).
[Crossref]

G. Z. Ye, W. S. Zhang, and H. L. Luo, “Goos-Hänchen and Imbert-Fedorov effects in Weyl semimetals,” Phys. Rev. A (Coll. Park) 99(2), 023807 (2019).
[Crossref]

T. Shui, W. X. Yang, Q. Y. Zhang, X. Liu, and L. Li, “Squeezing-induced giant Goos-Hänchen shift and hypersensitized displacement sensor in a two-level atomic system,” Phys. Rev. A (Coll. Park) 99(1), 013806 (2019).
[Crossref]

2018 (7)

K. V. Sreekanth, Q. L. Ouyang, S. Han, K.-T. Yong, and R. Singh, “Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity,” Appl. Phys. Lett. 112(16), 161109 (2018).
[Crossref]

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

Y. Q. Kang, Y. J. Xiang, and C. Y. Luo, “Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials,” Appl. Phys. B 124(6), 115 (2018).
[Crossref]

T. T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos-Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

Y. P. Wong, Y. Miao, J. Skarda, and O. Solgaard, “Large negative and positive optical Goos-Hänchen shift in photonic crystals,” Opt. Lett. 43(12), 2803–2806 (2018).
[Crossref] [PubMed]

O. J. S. Santana and L. E. E. de Araujo, “Direct measurement of the composite Goos-Hänchen shift of an optical beam,” Opt. Lett. 43(16), 4037–4040 (2018).
[Crossref] [PubMed]

2017 (6)

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

J. Li, T. Tang, L. Luo, N. Li, and P. Zhang, “Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate,” Opt. Express 25(16), 19117–19128 (2017).
[Crossref] [PubMed]

X. Zeng, M. Al-Amri, and M. S. Zubairy, “Tunable Goos-Hänchen shift from graphene ribbon array,” Opt. Express 25(20), 23579–23588 (2017).
[Crossref] [PubMed]

W. J. Wu, S. Z. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A (Coll. Park) 96(4), 043814 (2017).
[Crossref]

Y. S. Dadoenkova, F. F. L. Bentivegna, V. V. Svetukhin, A. V. Zhukov, R. V. Petrov, and M. I. Bichurin, “Controlling optical beam shifts upon reflection from a magneto-electric liquid-crystal-based system for applications to chemical vapor sensing,” Appl. Phys. B 123(4), 107–109 (2017).

Y. S. Dadoenkova, N. N. Dadoenkova, J. W. Klos, M. Krawczyk, and I. L. Lyubchanskii, “Goos-Hänchen effect in light transmission through biperiodic photonic-magnonic crystals,” Phys. Rev. A (Coll. Park) 96(4), 043804 (2017).
[Crossref]

2016 (3)

Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, R. V. Petrov, I. L. Lyubchanskii, and M. I. Bichurin, “Controlling the Goos-Hänchen shift with external electric and magnetic fields in an electro-optic/magneto-electric heterostructure,” J. Appl. Phys. 119(20), 203101 (2016).
[Crossref]

T. T. Tang, C. Y. Li, L. Luo, Y. F. Zhang, and J. Li, “Goos–Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor,” Appl. Phys. B 122, 167 (2016).
[Crossref]

Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, I. L. Lyubchanskii, and Y. P. Lee, “Influence of misfit strain on the Goos–Hänchen shift upon reflection from a magnetic film on a nonmagnetic substrate,” J. Opt. Soc. Am. B 33(3), 393–404 (2016).
[Crossref]

2015 (1)

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4(1), 7388 (2015).
[Crossref] [PubMed]

2014 (3)

N. Goswami, A. Kar, and A. Saha, “Long range surface plasmon resonance enhanced electro-optically tunable Goos–Hänchen shift and Imbert–Fedorov shift in ZnSe prism,” Opt. Commun. 330, 169–174 (2014).
[Crossref]

X. D. Qiu, X. X. Zhou, D. J. Hu, J. L. Du, F. H. Gao, Z. Y. Zhang, and H. L. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

T. Tang, J. Qin, J. Xie, L. Deng, and L. Bi, “Magneto-optical Goos-Hänchen effect in a prism-waveguide coupling structure,” Opt. Express 22(22), 27042–27055 (2014).
[Crossref] [PubMed]

2013 (4)

G. Jayaswal, G. Mistura, and M. Merano, “Weak measurement of the Goos-Hänchen shift,” Opt. Lett. 38(8), 1232–1234 (2013).
[Crossref] [PubMed]

X. Wang, C. Yin, J. Sun, H. Li, Y. Wang, M. Ran, and Z. Cao, “High-sensitivity temperature sensor using the ultrahigh order mode-enhanced Goos-Hänchen effect,” Opt. Express 21(11), 13380–13385 (2013).
[Crossref] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

G. Strübi and C. Bruder, “Measuring ultrasmall time delays of light by joint weak measurements,” Phys. Rev. Lett. 110(8), 083605 (2013).
[Crossref] [PubMed]

2012 (2)

X. X. Zhou, Z. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

X. X. Zhou, Z. C. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

2011 (2)

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332(6034), 1170–1173 (2011).
[Crossref] [PubMed]

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474(7350), 188–191 (2011).
[Crossref] [PubMed]

2008 (1)

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

X. B. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
[Crossref]

1998 (1)

S. B. Borisov, N. N. Dadoenkova, I. Lyubchanskii, and M. I. Lyubchanskii, “Guse-Hanchen effect for the light reflected from the interface formed by bigyrotropic and nongyrotropic media,” Opt. Spectrosc. 85(2), 225–231 (1998).

1991 (1)

I. J. Singh and V. P. Nayyar, “Lateral displacement of a light beam at a ferrite interface,” J. Appl. Phys. 69(11), 7820–7824 (1991).
[Crossref]

1974 (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

1947 (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys. 436, 333–346 (1947).
[Crossref]

Al-Amri, M.

Armelles, G.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

Bamber, C.

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474(7350), 188–191 (2011).
[Crossref] [PubMed]

Bentivegna, F. F. L.

Y. S. Dadoenkova, F. F. L. Bentivegna, V. V. Svetukhin, A. V. Zhukov, R. V. Petrov, and M. I. Bichurin, “Controlling optical beam shifts upon reflection from a magneto-electric liquid-crystal-based system for applications to chemical vapor sensing,” Appl. Phys. B 123(4), 107–109 (2017).

Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, R. V. Petrov, I. L. Lyubchanskii, and M. I. Bichurin, “Controlling the Goos-Hänchen shift with external electric and magnetic fields in an electro-optic/magneto-electric heterostructure,” J. Appl. Phys. 119(20), 203101 (2016).
[Crossref]

Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, I. L. Lyubchanskii, and Y. P. Lee, “Influence of misfit strain on the Goos–Hänchen shift upon reflection from a magnetic film on a nonmagnetic substrate,” J. Opt. Soc. Am. B 33(3), 393–404 (2016).
[Crossref]

Bi, L.

Bichurin, M. I.

Y. S. Dadoenkova, F. F. L. Bentivegna, V. V. Svetukhin, A. V. Zhukov, R. V. Petrov, and M. I. Bichurin, “Controlling optical beam shifts upon reflection from a magneto-electric liquid-crystal-based system for applications to chemical vapor sensing,” Appl. Phys. B 123(4), 107–109 (2017).

Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, R. V. Petrov, I. L. Lyubchanskii, and M. I. Bichurin, “Controlling the Goos-Hänchen shift with external electric and magnetic fields in an electro-optic/magneto-electric heterostructure,” J. Appl. Phys. 119(20), 203101 (2016).
[Crossref]

Borisov, S. B.

S. B. Borisov, N. N. Dadoenkova, I. Lyubchanskii, and M. I. Lyubchanskii, “Guse-Hanchen effect for the light reflected from the interface formed by bigyrotropic and nongyrotropic media,” Opt. Spectrosc. 85(2), 225–231 (1998).

Braverman, B.

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332(6034), 1170–1173 (2011).
[Crossref] [PubMed]

Bruder, C.

G. Strübi and C. Bruder, “Measuring ultrasmall time delays of light by joint weak measurements,” Phys. Rev. Lett. 110(8), 083605 (2013).
[Crossref] [PubMed]

Cai, L.

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

Cao, Z.

Cebollada, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

Chen, C. F.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. U.S.A. 116(22), 11137–11140 (2019).

Chen, L.

Chen, S. Z.

W. J. Wu, S. Z. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A (Coll. Park) 96(4), 043814 (2017).
[Crossref]

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Dadoenkova, N. N.

Y. S. Dadoenkova, N. N. Dadoenkova, J. W. Klos, M. Krawczyk, and I. L. Lyubchanskii, “Goos-Hänchen effect in light transmission through biperiodic photonic-magnonic crystals,” Phys. Rev. A (Coll. Park) 96(4), 043804 (2017).
[Crossref]

Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, R. V. Petrov, I. L. Lyubchanskii, and M. I. Bichurin, “Controlling the Goos-Hänchen shift with external electric and magnetic fields in an electro-optic/magneto-electric heterostructure,” J. Appl. Phys. 119(20), 203101 (2016).
[Crossref]

Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, I. L. Lyubchanskii, and Y. P. Lee, “Influence of misfit strain on the Goos–Hänchen shift upon reflection from a magnetic film on a nonmagnetic substrate,” J. Opt. Soc. Am. B 33(3), 393–404 (2016).
[Crossref]

S. B. Borisov, N. N. Dadoenkova, I. Lyubchanskii, and M. I. Lyubchanskii, “Guse-Hanchen effect for the light reflected from the interface formed by bigyrotropic and nongyrotropic media,” Opt. Spectrosc. 85(2), 225–231 (1998).

Dadoenkova, Y. S.

Y. S. Dadoenkova, N. N. Dadoenkova, J. W. Klos, M. Krawczyk, and I. L. Lyubchanskii, “Goos-Hänchen effect in light transmission through biperiodic photonic-magnonic crystals,” Phys. Rev. A (Coll. Park) 96(4), 043804 (2017).
[Crossref]

Y. S. Dadoenkova, F. F. L. Bentivegna, V. V. Svetukhin, A. V. Zhukov, R. V. Petrov, and M. I. Bichurin, “Controlling optical beam shifts upon reflection from a magneto-electric liquid-crystal-based system for applications to chemical vapor sensing,” Appl. Phys. B 123(4), 107–109 (2017).

Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, R. V. Petrov, I. L. Lyubchanskii, and M. I. Bichurin, “Controlling the Goos-Hänchen shift with external electric and magnetic fields in an electro-optic/magneto-electric heterostructure,” J. Appl. Phys. 119(20), 203101 (2016).
[Crossref]

Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, I. L. Lyubchanskii, and Y. P. Lee, “Influence of misfit strain on the Goos–Hänchen shift upon reflection from a magnetic film on a nonmagnetic substrate,” J. Opt. Soc. Am. B 33(3), 393–404 (2016).
[Crossref]

de Araujo, L. E. E.

Deng, L.

Du, J. L.

X. D. Qiu, X. X. Zhou, D. J. Hu, J. L. Du, F. H. Gao, Z. Y. Zhang, and H. L. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

Gao, F. H.

X. D. Qiu, X. X. Zhou, D. J. Hu, J. L. Du, F. H. Gao, Z. Y. Zhang, and H. L. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

Gao, W. Q.

X. B. Jiao, Z. Qiao, W. Q. Gao, and S. H. Shen, “Tunable Goos–Hänchen and Imbert–Fedorov shifts,” Opt. Commun. 436, 239–242 (2019).
[Crossref]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

Gong, Q. H.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

Goos, F.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys. 436, 333–346 (1947).
[Crossref]

Goswami, N.

N. Goswami, A. Kar, and A. Saha, “Long range surface plasmon resonance enhanced electro-optically tunable Goos–Hänchen shift and Imbert–Fedorov shift in ZnSe prism,” Opt. Commun. 330, 169–174 (2014).
[Crossref]

Han, S.

K. V. Sreekanth, Q. L. Ouyang, S. Han, K.-T. Yong, and R. Singh, “Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity,” Appl. Phys. Lett. 112(16), 161109 (2018).
[Crossref]

Hänchen, H.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys. 436, 333–346 (1947).
[Crossref]

Hesselink, L.

X. B. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
[Crossref]

Hirai, Y.

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Hu, D. J.

X. D. Qiu, X. X. Zhou, D. J. Hu, J. L. Du, F. H. Gao, Z. Y. Zhang, and H. L. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

Huang, J. Y.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

Jayaswal, G.

Jiao, X. B.

X. B. Jiao, Z. Qiao, W. Q. Gao, and S. H. Shen, “Tunable Goos–Hänchen and Imbert–Fedorov shifts,” Opt. Commun. 436, 239–242 (2019).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Kang, Y. Q.

Y. Q. Kang, Y. J. Xiang, and C. Y. Luo, “Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials,” Appl. Phys. B 124(6), 115 (2018).
[Crossref]

Kar, A.

N. Goswami, A. Kar, and A. Saha, “Long range surface plasmon resonance enhanced electro-optically tunable Goos–Hänchen shift and Imbert–Fedorov shift in ZnSe prism,” Opt. Commun. 330, 169–174 (2014).
[Crossref]

Klos, J. W.

Y. S. Dadoenkova, N. N. Dadoenkova, J. W. Klos, M. Krawczyk, and I. L. Lyubchanskii, “Goos-Hänchen effect in light transmission through biperiodic photonic-magnonic crystals,” Phys. Rev. A (Coll. Park) 96(4), 043804 (2017).
[Crossref]

Kocsis, S.

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332(6034), 1170–1173 (2011).
[Crossref] [PubMed]

Krawczyk, M.

Y. S. Dadoenkova, N. N. Dadoenkova, J. W. Klos, M. Krawczyk, and I. L. Lyubchanskii, “Goos-Hänchen effect in light transmission through biperiodic photonic-magnonic crystals,” Phys. Rev. A (Coll. Park) 96(4), 043804 (2017).
[Crossref]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Lee, Y. P.

Li, C. Y.

T. T. Tang, C. Y. Li, L. Luo, Y. F. Zhang, and J. Li, “Goos–Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor,” Appl. Phys. B 122, 167 (2016).
[Crossref]

Li, G. R.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. U.S.A. 116(22), 11137–11140 (2019).

Li, H.

Li, J.

T. T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos-Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

J. Li, T. Tang, L. Luo, N. Li, and P. Zhang, “Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate,” Opt. Express 25(16), 19117–19128 (2017).
[Crossref] [PubMed]

T. T. Tang, C. Y. Li, L. Luo, Y. F. Zhang, and J. Li, “Goos–Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor,” Appl. Phys. B 122, 167 (2016).
[Crossref]

Li, L.

T. Shui, W. X. Yang, Q. Y. Zhang, X. Liu, and L. Li, “Squeezing-induced giant Goos-Hänchen shift and hypersensitized displacement sensor in a two-level atomic system,” Phys. Rev. A (Coll. Park) 99(1), 013806 (2019).
[Crossref]

Li, N.

T. T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos-Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

J. Li, T. Tang, L. Luo, N. Li, and P. Zhang, “Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate,” Opt. Express 25(16), 19117–19128 (2017).
[Crossref] [PubMed]

Li, Y.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

Ling, X.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4(1), 7388 (2015).
[Crossref] [PubMed]

Liu, M. X.

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

Liu, X.

T. Shui, W. X. Yang, Q. Y. Zhang, X. Liu, and L. Li, “Squeezing-induced giant Goos-Hänchen shift and hypersensitized displacement sensor in a two-level atomic system,” Phys. Rev. A (Coll. Park) 99(1), 013806 (2019).
[Crossref]

Liu, Z. W.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. U.S.A. 116(22), 11137–11140 (2019).

Lou, Y. J.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

Lundeen, J. S.

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474(7350), 188–191 (2011).
[Crossref] [PubMed]

Luo, C. Y.

Y. Q. Kang, Y. J. Xiang, and C. Y. Luo, “Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials,” Appl. Phys. B 124(6), 115 (2018).
[Crossref]

Luo, H.

W. J. Wu, S. Z. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A (Coll. Park) 96(4), 043814 (2017).
[Crossref]

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4(1), 7388 (2015).
[Crossref] [PubMed]

Luo, H. L.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. U.S.A. 116(22), 11137–11140 (2019).

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

G. Z. Ye, W. S. Zhang, and H. L. Luo, “Goos-Hänchen and Imbert-Fedorov effects in Weyl semimetals,” Phys. Rev. A (Coll. Park) 99(2), 023807 (2019).
[Crossref]

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

X. D. Qiu, X. X. Zhou, D. J. Hu, J. L. Du, F. H. Gao, Z. Y. Zhang, and H. L. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

X. X. Zhou, Z. C. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

X. X. Zhou, Z. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Luo, L.

T. T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos-Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

J. Li, T. Tang, L. Luo, N. Li, and P. Zhang, “Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate,” Opt. Express 25(16), 19117–19128 (2017).
[Crossref] [PubMed]

T. T. Tang, C. Y. Li, L. Luo, Y. F. Zhang, and J. Li, “Goos–Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor,” Appl. Phys. B 122, 167 (2016).
[Crossref]

Lyubchanskii, I.

S. B. Borisov, N. N. Dadoenkova, I. Lyubchanskii, and M. I. Lyubchanskii, “Guse-Hanchen effect for the light reflected from the interface formed by bigyrotropic and nongyrotropic media,” Opt. Spectrosc. 85(2), 225–231 (1998).

Lyubchanskii, I. L.

Y. S. Dadoenkova, N. N. Dadoenkova, J. W. Klos, M. Krawczyk, and I. L. Lyubchanskii, “Goos-Hänchen effect in light transmission through biperiodic photonic-magnonic crystals,” Phys. Rev. A (Coll. Park) 96(4), 043804 (2017).
[Crossref]

Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, R. V. Petrov, I. L. Lyubchanskii, and M. I. Bichurin, “Controlling the Goos-Hänchen shift with external electric and magnetic fields in an electro-optic/magneto-electric heterostructure,” J. Appl. Phys. 119(20), 203101 (2016).
[Crossref]

Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, I. L. Lyubchanskii, and Y. P. Lee, “Influence of misfit strain on the Goos–Hänchen shift upon reflection from a magnetic film on a nonmagnetic substrate,” J. Opt. Soc. Am. B 33(3), 393–404 (2016).
[Crossref]

Lyubchanskii, M. I.

S. B. Borisov, N. N. Dadoenkova, I. Lyubchanskii, and M. I. Lyubchanskii, “Guse-Hanchen effect for the light reflected from the interface formed by bigyrotropic and nongyrotropic media,” Opt. Spectrosc. 85(2), 225–231 (1998).

Matsumoto, T.

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

Matsunaga, K.

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

Merano, M.

Mi, C.

W. J. Wu, S. Z. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A (Coll. Park) 96(4), 043814 (2017).
[Crossref]

Mi, C. Q.

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

Miao, Y.

Mirin, R. P.

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332(6034), 1170–1173 (2011).
[Crossref] [PubMed]

Mistura, G.

Nayyar, V. P.

I. J. Singh and V. P. Nayyar, “Lateral displacement of a light beam at a ferrite interface,” J. Appl. Phys. 69(11), 7820–7824 (1991).
[Crossref]

Neo, Y.

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

Ou, F.

Ouyang, Q. L.

K. V. Sreekanth, Q. L. Ouyang, S. Han, K.-T. Yong, and R. Singh, “Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity,” Appl. Phys. Lett. 112(16), 161109 (2018).
[Crossref]

Patel, A.

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474(7350), 188–191 (2011).
[Crossref] [PubMed]

Petrov, R. V.

Y. S. Dadoenkova, F. F. L. Bentivegna, V. V. Svetukhin, A. V. Zhukov, R. V. Petrov, and M. I. Bichurin, “Controlling optical beam shifts upon reflection from a magneto-electric liquid-crystal-based system for applications to chemical vapor sensing,” Appl. Phys. B 123(4), 107–109 (2017).

Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, R. V. Petrov, I. L. Lyubchanskii, and M. I. Bichurin, “Controlling the Goos-Hänchen shift with external electric and magnetic fields in an electro-optic/magneto-electric heterostructure,” J. Appl. Phys. 119(20), 203101 (2016).
[Crossref]

Qian, H. L.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. U.S.A. 116(22), 11137–11140 (2019).

Qiao, H.

Qiao, Z.

X. B. Jiao, Z. Qiao, W. Q. Gao, and S. H. Shen, “Tunable Goos–Hänchen and Imbert–Fedorov shifts,” Opt. Commun. 436, 239–242 (2019).
[Crossref]

Qin, J.

Qiu, M.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

Qiu, X. D.

X. D. Qiu, X. X. Zhou, D. J. Hu, J. L. Du, F. H. Gao, Z. Y. Zhang, and H. L. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

Ran, M.

Ravets, S.

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332(6034), 1170–1173 (2011).
[Crossref] [PubMed]

Ruan, Z. C.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

Saha, A.

N. Goswami, A. Kar, and A. Saha, “Long range surface plasmon resonance enhanced electro-optically tunable Goos–Hänchen shift and Imbert–Fedorov shift in ZnSe prism,” Opt. Commun. 330, 169–174 (2014).
[Crossref]

Santana, O. J. S.

Shalm, L. K.

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332(6034), 1170–1173 (2011).
[Crossref] [PubMed]

Shen, Q.

Shen, S. H.

X. B. Jiao, Z. Qiao, W. Q. Gao, and S. H. Shen, “Tunable Goos–Hänchen and Imbert–Fedorov shifts,” Opt. Commun. 436, 239–242 (2019).
[Crossref]

Sheng, L.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

Shui, T.

T. Shui, W. X. Yang, Q. Y. Zhang, X. Liu, and L. Li, “Squeezing-induced giant Goos-Hänchen shift and hypersensitized displacement sensor in a two-level atomic system,” Phys. Rev. A (Coll. Park) 99(1), 013806 (2019).
[Crossref]

Singh, I. J.

I. J. Singh and V. P. Nayyar, “Lateral displacement of a light beam at a ferrite interface,” J. Appl. Phys. 69(11), 7820–7824 (1991).
[Crossref]

Singh, R.

K. V. Sreekanth, Q. L. Ouyang, S. Han, K.-T. Yong, and R. Singh, “Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity,” Appl. Phys. Lett. 112(16), 161109 (2018).
[Crossref]

Skarda, J.

Solgaard, O.

Sreekanth, K. V.

K. V. Sreekanth, Q. L. Ouyang, S. Han, K.-T. Yong, and R. Singh, “Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity,” Appl. Phys. Lett. 112(16), 161109 (2018).
[Crossref]

Steinberg, A. M.

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332(6034), 1170–1173 (2011).
[Crossref] [PubMed]

Stevens, M. J.

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332(6034), 1170–1173 (2011).
[Crossref] [PubMed]

Stewart, C.

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474(7350), 188–191 (2011).
[Crossref] [PubMed]

Strübi, G.

G. Strübi and C. Bruder, “Measuring ultrasmall time delays of light by joint weak measurements,” Phys. Rev. Lett. 110(8), 083605 (2013).
[Crossref] [PubMed]

Sun, J.

Sutherland, B.

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474(7350), 188–191 (2011).
[Crossref] [PubMed]

Svetukhin, V. V.

Y. S. Dadoenkova, F. F. L. Bentivegna, V. V. Svetukhin, A. V. Zhukov, R. V. Petrov, and M. I. Bichurin, “Controlling optical beam shifts upon reflection from a magneto-electric liquid-crystal-based system for applications to chemical vapor sensing,” Appl. Phys. B 123(4), 107–109 (2017).

Tang, T.

Tang, T. T.

T. T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos-Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

T. T. Tang, C. Y. Li, L. Luo, Y. F. Zhang, and J. Li, “Goos–Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor,” Appl. Phys. B 122, 167 (2016).
[Crossref]

Tomita, M.

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

Wang, X.

Wang, Y.

Wen, S.

W. J. Wu, S. Z. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A (Coll. Park) 96(4), 043814 (2017).
[Crossref]

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4(1), 7388 (2015).
[Crossref] [PubMed]

Wen, S. C.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. U.S.A. 116(22), 11137–11140 (2019).

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

X. X. Zhou, Z. C. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

X. X. Zhou, Z. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Wong, Y. P.

Wu, Q. Y.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. U.S.A. 116(22), 11137–11140 (2019).

Wu, W. J.

W. J. Wu, S. Z. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A (Coll. Park) 96(4), 043814 (2017).
[Crossref]

Xiang, Y. J.

Y. Q. Kang, Y. J. Xiang, and C. Y. Luo, “Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials,” Appl. Phys. B 124(6), 115 (2018).
[Crossref]

Xiao, Z.

X. X. Zhou, Z. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Xiao, Z. C.

X. X. Zhou, Z. C. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Xie, J.

Yang, W. X.

T. Shui, W. X. Yang, Q. Y. Zhang, X. Liu, and L. Li, “Squeezing-induced giant Goos-Hänchen shift and hypersensitized displacement sensor in a two-level atomic system,” Phys. Rev. A (Coll. Park) 99(1), 013806 (2019).
[Crossref]

Yao, J.

T. T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos-Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

Ye, G. Z.

G. Z. Ye, W. S. Zhang, and H. L. Luo, “Goos-Hänchen and Imbert-Fedorov effects in Weyl semimetals,” Phys. Rev. A (Coll. Park) 99(2), 023807 (2019).
[Crossref]

Yin, C.

Yin, X. B.

X. B. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
[Crossref]

Yong, K.-T.

K. V. Sreekanth, Q. L. Ouyang, S. Han, K.-T. Yong, and R. Singh, “Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity,” Appl. Phys. Lett. 112(16), 161109 (2018).
[Crossref]

Zeng, X.

Zhang, J. H.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

Zhang, P.

T. T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos-Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

J. Li, T. Tang, L. Luo, N. Li, and P. Zhang, “Spin Hall effect of reflected light in dielectric magneto-optical thin film with a double-negative metamaterial substrate,” Opt. Express 25(16), 19117–19128 (2017).
[Crossref] [PubMed]

Zhang, Q. Y.

T. Shui, W. X. Yang, Q. Y. Zhang, X. Liu, and L. Li, “Squeezing-induced giant Goos-Hänchen shift and hypersensitized displacement sensor in a two-level atomic system,” Phys. Rev. A (Coll. Park) 99(1), 013806 (2019).
[Crossref]

Zhang, W.

W. J. Wu, S. Z. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A (Coll. Park) 96(4), 043814 (2017).
[Crossref]

Zhang, W. S.

G. Z. Ye, W. S. Zhang, and H. L. Luo, “Goos-Hänchen and Imbert-Fedorov effects in Weyl semimetals,” Phys. Rev. A (Coll. Park) 99(2), 023807 (2019).
[Crossref]

Zhang, Y. F.

T. T. Tang, C. Y. Li, L. Luo, Y. F. Zhang, and J. Li, “Goos–Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor,” Appl. Phys. B 122, 167 (2016).
[Crossref]

Zhang, Z.

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4(1), 7388 (2015).
[Crossref] [PubMed]

Zhang, Z. Y.

X. D. Qiu, X. X. Zhou, D. J. Hu, J. L. Du, F. H. Gao, Z. Y. Zhang, and H. L. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

Zhao, J. X.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. U.S.A. 116(22), 11137–11140 (2019).

Zhou, J. X.

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. U.S.A. 116(22), 11137–11140 (2019).

Zhou, X.

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4(1), 7388 (2015).
[Crossref] [PubMed]

Zhou, X. X.

X. D. Qiu, X. X. Zhou, D. J. Hu, J. L. Du, F. H. Gao, Z. Y. Zhang, and H. L. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

X. X. Zhou, Z. C. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

X. X. Zhou, Z. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Zhou, Y. H.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

Zhu, M.

T. T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos-Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

Zhu, S. Y.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

Zhu, T. F.

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

Zhukov, A. V.

Y. S. Dadoenkova, F. F. L. Bentivegna, V. V. Svetukhin, A. V. Zhukov, R. V. Petrov, and M. I. Bichurin, “Controlling optical beam shifts upon reflection from a magneto-electric liquid-crystal-based system for applications to chemical vapor sensing,” Appl. Phys. B 123(4), 107–109 (2017).

Zubairy, M. S.

Adv. Opt. Mater. (1)

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013).
[Crossref]

Ann. Phys. (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler versuch zur totalreflexion,” Ann. Phys. 436, 333–346 (1947).
[Crossref]

Appl. Phys. B (3)

Y. Q. Kang, Y. J. Xiang, and C. Y. Luo, “Tunable enhanced Goos–Hänchen shift of light beam reflected from graphene-based hyperbolic metamaterials,” Appl. Phys. B 124(6), 115 (2018).
[Crossref]

T. T. Tang, C. Y. Li, L. Luo, Y. F. Zhang, and J. Li, “Goos–Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor,” Appl. Phys. B 122, 167 (2016).
[Crossref]

Y. S. Dadoenkova, F. F. L. Bentivegna, V. V. Svetukhin, A. V. Zhukov, R. V. Petrov, and M. I. Bichurin, “Controlling optical beam shifts upon reflection from a magneto-electric liquid-crystal-based system for applications to chemical vapor sensing,” Appl. Phys. B 123(4), 107–109 (2017).

Appl. Phys. Lett. (5)

X. B. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89(26), 261108 (2006).
[Crossref]

X. D. Qiu, X. X. Zhou, D. J. Hu, J. L. Du, F. H. Gao, Z. Y. Zhang, and H. L. Luo, “Determination of magneto-optical constant of Fe films with weak measurements,” Appl. Phys. Lett. 105(13), 131111 (2014).
[Crossref]

K. V. Sreekanth, Q. L. Ouyang, S. Han, K.-T. Yong, and R. Singh, “Giant enhancement in Goos-Hänchen shift at the singular phase of a nanophotonic cavity,” Appl. Phys. Lett. 112(16), 161109 (2018).
[Crossref]

Y. Hirai, K. Matsunaga, Y. Neo, T. Matsumoto, and M. Tomita, “Observation of Goos-Hänchen shift in plasmon-induced transparency,” Appl. Phys. Lett. 112(5), 051101 (2018).
[Crossref]

S. Z. Chen, C. Q. Mi, L. Cai, M. X. Liu, H. L. Luo, and S. C. Wen, “Observation of the Goos-Hänchen shift in graphene via weak measurements,” Appl. Phys. Lett. 110(3), 031105 (2017).
[Crossref]

Carbon (1)

T. T. Tang, J. Li, M. Zhu, L. Luo, J. Yao, N. Li, and P. Zhang, “Realization of tunable Goos-Hanchen effect with magneto-optical effect in graphene,” Carbon 135, 29–34 (2018).
[Crossref]

J. Appl. Phys. (2)

I. J. Singh and V. P. Nayyar, “Lateral displacement of a light beam at a ferrite interface,” J. Appl. Phys. 69(11), 7820–7824 (1991).
[Crossref]

Y. S. Dadoenkova, F. F. L. Bentivegna, N. N. Dadoenkova, R. V. Petrov, I. L. Lyubchanskii, and M. I. Bichurin, “Controlling the Goos-Hänchen shift with external electric and magnetic fields in an electro-optic/magneto-electric heterostructure,” J. Appl. Phys. 119(20), 203101 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

J. S. Lundeen, B. Sutherland, A. Patel, C. Stewart, and C. Bamber, “Direct measurement of the quantum wavefunction,” Nature 474(7350), 188–191 (2011).
[Crossref] [PubMed]

Opt. Commun. (2)

X. B. Jiao, Z. Qiao, W. Q. Gao, and S. H. Shen, “Tunable Goos–Hänchen and Imbert–Fedorov shifts,” Opt. Commun. 436, 239–242 (2019).
[Crossref]

N. Goswami, A. Kar, and A. Saha, “Long range surface plasmon resonance enhanced electro-optically tunable Goos–Hänchen shift and Imbert–Fedorov shift in ZnSe prism,” Opt. Commun. 330, 169–174 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Opt. Spectrosc. (1)

S. B. Borisov, N. N. Dadoenkova, I. Lyubchanskii, and M. I. Lyubchanskii, “Guse-Hanchen effect for the light reflected from the interface formed by bigyrotropic and nongyrotropic media,” Opt. Spectrosc. 85(2), 225–231 (1998).

Phys. Rev. A (2)

X. X. Zhou, Z. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

X. X. Zhou, Z. C. Xiao, H. L. Luo, and S. C. Wen, “Experimental observation of the spin Hall effect of light on a nano-metal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Phys. Rev. A (Coll. Park) (4)

G. Z. Ye, W. S. Zhang, and H. L. Luo, “Goos-Hänchen and Imbert-Fedorov effects in Weyl semimetals,” Phys. Rev. A (Coll. Park) 99(2), 023807 (2019).
[Crossref]

Y. S. Dadoenkova, N. N. Dadoenkova, J. W. Klos, M. Krawczyk, and I. L. Lyubchanskii, “Goos-Hänchen effect in light transmission through biperiodic photonic-magnonic crystals,” Phys. Rev. A (Coll. Park) 96(4), 043804 (2017).
[Crossref]

T. Shui, W. X. Yang, Q. Y. Zhang, X. Liu, and L. Li, “Squeezing-induced giant Goos-Hänchen shift and hypersensitized displacement sensor in a two-level atomic system,” Phys. Rev. A (Coll. Park) 99(1), 013806 (2019).
[Crossref]

W. J. Wu, S. Z. Chen, C. Mi, W. Zhang, H. Luo, and S. Wen, “Giant quantized Goos-Hänchen effect on the surface of graphene in the quantum Hall regime,” Phys. Rev. A (Coll. Park) 96(4), 043814 (2017).
[Crossref]

Phys. Rev. Appl. (1)

T. F. Zhu, Y. J. Lou, Y. H. Zhou, J. H. Zhang, J. Y. Huang, Y. Li, H. L. Luo, S. C. Wen, S. Y. Zhu, Q. H. Gong, M. Qiu, and Z. C. Ruan, “Generalized spatial differentiation from the spin Hall effect of light and Its application in image processing of edge detection,” Phys. Rev. Appl. 11(3), 034043 (2019).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[Crossref]

Phys. Rev. Lett. (1)

G. Strübi and C. Bruder, “Measuring ultrasmall time delays of light by joint weak measurements,” Phys. Rev. Lett. 110(8), 083605 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. X. Zhou, H. L. Qian, C. F. Chen, J. X. Zhao, G. R. Li, Q. Y. Wu, H. L. Luo, S. C. Wen, and Z. W. Liu, “Optical edge detection based on high-efficiency dielectric metasurface,” Proc. Natl. Acad. Sci. U.S.A. 116(22), 11137–11140 (2019).

Sci. Rep. (2)

X. Zhou, X. Ling, Z. Zhang, H. Luo, and S. Wen, “Observation of spin Hall effect in photon tunneling via weak measurements,” Sci. Rep. 4(1), 7388 (2015).
[Crossref] [PubMed]

X. Zhou, L. Sheng, and X. Ling, “Photonic spin Hall effect enabled refractive index sensor using weak measurements,” Sci. Rep. 8(1), 1221 (2018).
[Crossref] [PubMed]

Science (2)

S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, “Observing the average trajectories of single photons in a two-slit interferometer,” Science 332(6034), 1170–1173 (2011).
[Crossref] [PubMed]

O. Hosten and P. Kwiat, “Observation of the spin hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Other (2)

E. D. Palik, Handbook of optical constants of solids (Academic, 1998).

K. V. Sreekanth, Q. L. Ouyang, S. Sreejith, S. Zeng, W. Lishu, E. Ilker, W. Dong, M. ElKabbash, Y. Ting, C. T. Lim, M. Hinczewski, G. Strangi, K.-T. Yong, R. E. Simpson, and R. Singh, “Phase-change-material-based low-loss visible-frequency hyperbolic metamaterials for ultrasensitive label-free biosensing,” Adv. Opt. Mater. 1900081 (Epub 12 April 2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the BK7/Fe/Au waveguide. (b) Reflectance curves and field (magnetic field component, Hx) distribution of the structure.
Fig. 2
Fig. 2 Simulation results of GH shift (a) and MOGH shift (b) for different thickness of Fe and Au.
Fig. 3
Fig. 3 Experiment platform of the weak measurement for GH shift.
Fig. 4
Fig. 4 The crystallinity of the BK7/Fe/Au multilayer films by use of XRD.
Fig. 5
Fig. 5 Comparison between theoretical and experimental results of GH (a) and MOGH (b) shift for different amplification angle.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ε ^ = ε 0 ( ε 20 0 ε 21 0 ε 20 0 ε 21 0 ε 20 ).
D 11 =i ε 21 N x N z1 , D 13 =i ε 21 N x N z2 , D 21 =i ε 21 N x N z1 2 , D 23 =i ε 21 N x N z2 2 ,
D 31 =( ε 20 N x 2 )( ε 20 N x 2 N z1 2 )+ ε 21 2 , D 33 =( ε 20 N x 2 )( ε 20 N x 2 N z2 2 )+ ε 21 2 , D 41 = N z3 [ ε 20 ( ε 20 N x 2 N z1 2 )+ ε 21 2 ], D 43 = N z4 [ ε 20 ( ε 20 N x 2 N z2 2 )+ ε 21 2 ].
D (Fe) =[ D 11 D 11 D 13 D 13 D 21 D 21 D 23 D 23 D 31 D 31 D 33 D 33 D 41 D 41 D 43 D 43 ].
D =[ 1 1 0 0 N z0 μ N z0 μ 0 0 0 0 N z0 N N z0 N 0 0 N μ N μ ].
P (n) =[ e i(ω/c) N z1 (n) d (n) 0 0 0 0 e i(ω/c) N z2 (n) d (n) 0 0 0 0 e i(ω/c) N z3 (n) d (n) 0 0 0 0 e i(ω/c) N z4 (n) d (n) ],
Q= D (1) 1 D (2) P (2) D (2) 1 D (3) .
r ss = Q 21 Q 33 Q 23 Q 31 Q 11 Q 33 Q 13 Q 31 , r ps = Q 41 Q 33 Q 43 Q 31 Q 11 Q 33 Q 13 Q 31 , r sp = Q 11 Q 23 Q 21 Q 13 Q 11 Q 33 Q 13 Q 31 , r pp = Q 11 Q 43 Q 41 Q 13 Q 11 Q 33 Q 13 Q 31 .
L GH = 1 k 0 n 1 dφ dθ ,
β 0 y+ = β 0 +Δβ, β 0 y = β 0 Δβ,
L MOGH = L GH (+H) L GH (H)= 1 k 0 n 1 ( d φ y+ dθ d φ y- dθ ),
S GH = 2[ | r H | 2 ( zρ z r χ )+ | r V | 2 ( zσ z r τ )+ξ| r H || r V | ] 2 k 0 z r ( | r H | 2 + | r V | 2 )+ | r H | 2 ( χ 2 + ρ 2 )+ | r V | 2 ( σ 2 + τ 2 )ς ,
S MOGH = S GH ( +H ) S GH ( -H ).