Abstract

We report an experimental demonstration of the continuous-variable Einstein-Podolsky-Rosen (EPR) paradox and quantum steering using a pulsed light source and nonlinear optical waveguides. In this pulsed light source experiment, time-domain measurements were performed in which one measured value of the quadrature phase amplitude of the light field was independently obtained for each pulse. This independence is useful for application to quantum information processing and fundamental physics. To realize time-domain measurements, in-house built homodyne detectors were used to detect individual pulses. In addition, to improve the temporal-mode matching between the local oscillator (LO) and entangled pulse, the duration of the LO pulse was shortened by single-pass optical parametric amplification. The product of the conditional variances of the quadrature amplitudes was 0.82 ± 0.09 < 1, which satisfies the condition for realization of the EPR paradox and quantum steering.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Decoherence of Einstein–Podolsky–Rosen steering

L. Rosales-Zárate, R. Y. Teh, S. Kiesewetter, A. Brolis, K. Ng, and M. D. Reid
J. Opt. Soc. Am. B 32(4) A82-A91 (2015)

Demonstrating continuous variable Einstein–Podolsky–Rosen steering in spite of finite experimental capabilities using Fano steering bounds

James Schneeloch, Samuel H. Knarr, Gregory A. Howland, and John C. Howell
J. Opt. Soc. Am. B 32(4) A8-A14 (2015)

Experimental demonstration of two-color Einstein–Podolsky–Rosen entanglement in a hot vapor cell

Kai Wang, Shuai Shi, Wei Zhang, Yinghao Ye, Yichen Yu, Mingxin Dong, Yueyang Zhai, Dongsheng Ding, and Baosen Shi
OSA Continuum 2(7) 2260-2265 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [Crossref]
  2. E. Schrödinger, “Discussion of probability relations between separated systems,” Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
    [Crossref]
  3. M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
    [Crossref]
  4. H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen Paradox,” Phys. Rev. Lett. 98, 140402 (2007).
    [Crossref] [PubMed]
  5. Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
    [Crossref] [PubMed]
  6. W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental investigation of criteria for continuous variable entanglement,” Phys. Rev. Lett. 90, 043601 (2003).
    [Crossref] [PubMed]
  7. S. Ast, M. Ast, M. Mehmet, and R. Schnabel, “Gaussian entanglement distribution with gigahertz bandwidth,” Opt. Lett. 41, 5094–5097 (2016).
    [Crossref] [PubMed]
  8. J. Wegner, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D. 32, 391–396 (2005).
    [Crossref]
  9. N. Takei, N. Lee, D. Moriyama, J. S. Neergard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
    [Crossref]
  10. J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
    [Crossref] [PubMed]
  11. J. C. Lee, K. K. Park, T. M. Zhao, and Y. H. Kim, “Einstein-Podolsky-Rosen entanglement of narrow-band photons from cold atoms,” Phys. Rev. Lett. 117, 250501 (2016).
    [Crossref] [PubMed]
  12. J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
    [Crossref]
  13. Y. Zhang, R. Okubo, M. Hirano, Y. Eto, and T. Hirano, “Experimental realization of spatially separated entanglement with continuous variables using laser pulse trains,” Sci. Rep. 5, 13029 (2015).
    [Crossref] [PubMed]
  14. H. H. Adamyan and G. Yu. Kryuchkyan, “Time-modulated type-II optical parametric oscillator: Quantum dynamics and strong Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 74, 023810 (2006).
    [Crossref]
  15. Ch. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
    [Crossref] [PubMed]
  16. J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
    [Crossref]
  17. A. Zavatta, M. Bellini, P. L. Ramazza, F. Marin, and F. T. Arecchi, “Time-domain analysis of quantum states of light: noise characterization and homodyne tomography,” J. Opt. Soc. Am. B 19, 1189–1194 (2002).
    [Crossref]
  18. R. Okubo, M. Hirano, Y. Zhang, and T. Hirano, “Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz,” Opt. Lett. 33, 1458–1460 (2008).
    [Crossref] [PubMed]
  19. C. Kim, R. -D. Li, and P. Kumar, “Deamplification response of a traveling-wave phase-sensitive optical parametric amplifier,” Opt. Lett. 19, 132–134 (1994).
    [Crossref] [PubMed]
  20. M. E. Anderson, M. Beck, and M. G. Raymer, “Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides,” Opt. Lett. 20, 620–622 (1995).
    [Crossref] [PubMed]
  21. D. K. Serkland, M. M. Fejer, R. L. Byer, and Y. Yamamoto, “Squeezing in a quasi-phase-matched LiNbO3 waveguide,” Opt. Lett. 20, 1649–1651 (1995).
    [Crossref] [PubMed]
  22. G. D. Kanter and P. Kumar, “Squeezing in a LiNbO3 integrated optical waveguide circuit,” Opt. Express 10, 177–182 (2002).
    [Crossref] [PubMed]
  23. F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3, 362–365 (2016).
    [Crossref]
  24. M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide Cavity Resonater as a Source of Optical Squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
    [Crossref]
  25. O. Aytür and P. Kumar, “Squeezed-light generation with a mode-locked Q-switched laser and detection by using a matched local oscillator,” Opt. Lett. 17, 529–531 (1992).
    [Crossref] [PubMed]
  26. Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, “Observation of quadrature squeezing in a χ(2) nonlinear waveguide using a temporally shaped local oscillator pulse,” Opt. Express 16, 10650–10657 (2008).
    [Crossref] [PubMed]
  27. A. Shinjo, N. Hashiyama, A. Koshio, Y. Eto, and T. Hirano, “Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators,” Proc. SPIE 9996, 99960I (2016).
    [Crossref]
  28. E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
    [Crossref]
  29. W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
    [Crossref]
  30. Y. Eto, A. Nonaka, Y. Zhang, and T. Hirano, “Stable generation of quadrature entanglemet using a ring interferometer,” Phys. Rev. A 79, 050302 (2009).
    [Crossref]

2017 (1)

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide Cavity Resonater as a Source of Optical Squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

2016 (5)

F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3, 362–365 (2016).
[Crossref]

A. Shinjo, N. Hashiyama, A. Koshio, Y. Eto, and T. Hirano, “Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators,” Proc. SPIE 9996, 99960I (2016).
[Crossref]

S. Ast, M. Ast, M. Mehmet, and R. Schnabel, “Gaussian entanglement distribution with gigahertz bandwidth,” Opt. Lett. 41, 5094–5097 (2016).
[Crossref] [PubMed]

J. C. Lee, K. K. Park, T. M. Zhao, and Y. H. Kim, “Einstein-Podolsky-Rosen entanglement of narrow-band photons from cold atoms,” Phys. Rev. Lett. 117, 250501 (2016).
[Crossref] [PubMed]

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

2015 (2)

J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
[Crossref]

Y. Zhang, R. Okubo, M. Hirano, Y. Eto, and T. Hirano, “Experimental realization of spatially separated entanglement with continuous variables using laser pulse trains,” Sci. Rep. 5, 13029 (2015).
[Crossref] [PubMed]

2009 (3)

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
[Crossref]

Y. Eto, A. Nonaka, Y. Zhang, and T. Hirano, “Stable generation of quadrature entanglemet using a ring interferometer,” Phys. Rev. A 79, 050302 (2009).
[Crossref]

2008 (2)

2007 (1)

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen Paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref] [PubMed]

2006 (2)

N. Takei, N. Lee, D. Moriyama, J. S. Neergard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

H. H. Adamyan and G. Yu. Kryuchkyan, “Time-modulated type-II optical parametric oscillator: Quantum dynamics and strong Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 74, 023810 (2006).
[Crossref]

2005 (1)

J. Wegner, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D. 32, 391–396 (2005).
[Crossref]

2004 (2)

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref] [PubMed]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
[Crossref]

2003 (1)

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental investigation of criteria for continuous variable entanglement,” Phys. Rev. Lett. 90, 043601 (2003).
[Crossref] [PubMed]

2002 (2)

2001 (1)

Ch. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

1995 (2)

1994 (1)

1992 (2)

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
[Crossref] [PubMed]

O. Aytür and P. Kumar, “Squeezed-light generation with a mode-locked Q-switched laser and detection by using a matched local oscillator,” Opt. Lett. 17, 529–531 (1992).
[Crossref] [PubMed]

1935 (2)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

E. Schrödinger, “Discussion of probability relations between separated systems,” Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
[Crossref]

Adamyan, H. H.

H. H. Adamyan and G. Yu. Kryuchkyan, “Time-modulated type-II optical parametric oscillator: Quantum dynamics and strong Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 74, 023810 (2006).
[Crossref]

Andersen, U. L.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Anderson, M. E.

Arecchi, F. T.

Arlt, J.

J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
[Crossref]

Ast, M.

Ast, S.

Aytür, O.

Bachor, H. A.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Beck, M.

Bellini, M.

Bennink, R. S.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref] [PubMed]

Bentley, S. J.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref] [PubMed]

Bowen, W. P.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
[Crossref]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental investigation of criteria for continuous variable entanglement,” Phys. Rev. Lett. 90, 043601 (2003).
[Crossref] [PubMed]

Boyd, R. W.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref] [PubMed]

Byer, R. L.

Cavalcanti, E. G.

E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
[Crossref]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

D’Auria, V.

Doherty, A. C.

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen Paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref] [PubMed]

Drummond, P. D.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Eigner, C.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide Cavity Resonater as a Source of Optical Squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Ertmer, W.

J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
[Crossref]

Eto, Y.

A. Shinjo, N. Hashiyama, A. Koshio, Y. Eto, and T. Hirano, “Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators,” Proc. SPIE 9996, 99960I (2016).
[Crossref]

Y. Zhang, R. Okubo, M. Hirano, Y. Eto, and T. Hirano, “Experimental realization of spatially separated entanglement with continuous variables using laser pulse trains,” Sci. Rep. 5, 13029 (2015).
[Crossref] [PubMed]

Y. Eto, A. Nonaka, Y. Zhang, and T. Hirano, “Stable generation of quadrature entanglemet using a ring interferometer,” Phys. Rev. A 79, 050302 (2009).
[Crossref]

Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, “Observation of quadrature squeezing in a χ(2) nonlinear waveguide using a temporally shaped local oscillator pulse,” Opt. Express 16, 10650–10657 (2008).
[Crossref] [PubMed]

Fedrici, B.

Fejer, M. M.

Furusawa, A.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

N. Takei, N. Lee, D. Moriyama, J. S. Neergard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

Grangier, P.

J. Wegner, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D. 32, 391–396 (2005).
[Crossref]

Hammerer, K.

J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
[Crossref]

Hashiyama, N.

A. Shinjo, N. Hashiyama, A. Koshio, Y. Eto, and T. Hirano, “Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators,” Proc. SPIE 9996, 99960I (2016).
[Crossref]

Herrmann, H.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide Cavity Resonater as a Source of Optical Squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

Hirano, M.

Y. Zhang, R. Okubo, M. Hirano, Y. Eto, and T. Hirano, “Experimental realization of spatially separated entanglement with continuous variables using laser pulse trains,” Sci. Rep. 5, 13029 (2015).
[Crossref] [PubMed]

R. Okubo, M. Hirano, Y. Zhang, and T. Hirano, “Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz,” Opt. Lett. 33, 1458–1460 (2008).
[Crossref] [PubMed]

Hirano, T.

A. Shinjo, N. Hashiyama, A. Koshio, Y. Eto, and T. Hirano, “Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators,” Proc. SPIE 9996, 99960I (2016).
[Crossref]

Y. Zhang, R. Okubo, M. Hirano, Y. Eto, and T. Hirano, “Experimental realization of spatially separated entanglement with continuous variables using laser pulse trains,” Sci. Rep. 5, 13029 (2015).
[Crossref] [PubMed]

Y. Eto, A. Nonaka, Y. Zhang, and T. Hirano, “Stable generation of quadrature entanglemet using a ring interferometer,” Phys. Rev. A 79, 050302 (2009).
[Crossref]

Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, “Observation of quadrature squeezing in a χ(2) nonlinear waveguide using a temporally shaped local oscillator pulse,” Opt. Express 16, 10650–10657 (2008).
[Crossref] [PubMed]

R. Okubo, M. Hirano, Y. Zhang, and T. Hirano, “Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz,” Opt. Lett. 33, 1458–1460 (2008).
[Crossref] [PubMed]

Howell, J. C.

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref] [PubMed]

Jones, S. J.

E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
[Crossref]

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen Paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref] [PubMed]

Kaiser, F.

Kaji, T.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

Kanter, G. D.

Kim, C.

Kim, Y. H.

J. C. Lee, K. K. Park, T. M. Zhao, and Y. H. Kim, “Einstein-Podolsky-Rosen entanglement of narrow-band photons from cold atoms,” Phys. Rev. Lett. 117, 250501 (2016).
[Crossref] [PubMed]

Kimble, H. J.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
[Crossref] [PubMed]

Klempt, C.

J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
[Crossref]

König, F.

Ch. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Korolkova, N.

Ch. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Koshio, A.

A. Shinjo, N. Hashiyama, A. Koshio, Y. Eto, and T. Hirano, “Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators,” Proc. SPIE 9996, 99960I (2016).
[Crossref]

Kruse, I.

J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
[Crossref]

Kumar, P.

Lam, P. K.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
[Crossref]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental investigation of criteria for continuous variable entanglement,” Phys. Rev. Lett. 90, 043601 (2003).
[Crossref] [PubMed]

Ch. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Lange, K.

J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
[Crossref]

Lee, J. C.

J. C. Lee, K. K. Park, T. M. Zhao, and Y. H. Kim, “Einstein-Podolsky-Rosen entanglement of narrow-band photons from cold atoms,” Phys. Rev. Lett. 117, 250501 (2016).
[Crossref] [PubMed]

Lee, N.

N. Takei, N. Lee, D. Moriyama, J. S. Neergard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

Leuchs, G.

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Ch. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Li, R. -D.

Lücke, B.

J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
[Crossref]

Makino, K.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

Marin, F.

Mehmet, M.

Moriyama, D.

N. Takei, N. Lee, D. Moriyama, J. S. Neergard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

Neergard-Nielsen, J. S.

N. Takei, N. Lee, D. Moriyama, J. S. Neergard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

Nonaka, A.

Y. Eto, A. Nonaka, Y. Zhang, and T. Hirano, “Stable generation of quadrature entanglemet using a ring interferometer,” Phys. Rev. A 79, 050302 (2009).
[Crossref]

Okubo, R.

Y. Zhang, R. Okubo, M. Hirano, Y. Eto, and T. Hirano, “Experimental realization of spatially separated entanglement with continuous variables using laser pulse trains,” Sci. Rep. 5, 13029 (2015).
[Crossref] [PubMed]

R. Okubo, M. Hirano, Y. Zhang, and T. Hirano, “Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz,” Opt. Lett. 33, 1458–1460 (2008).
[Crossref] [PubMed]

Ou, Z. Y.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
[Crossref] [PubMed]

Ourjoumtsev, A.

J. Wegner, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D. 32, 391–396 (2005).
[Crossref]

Park, K. K.

J. C. Lee, K. K. Park, T. M. Zhao, and Y. H. Kim, “Einstein-Podolsky-Rosen entanglement of narrow-band photons from cold atoms,” Phys. Rev. Lett. 117, 250501 (2016).
[Crossref] [PubMed]

Peise, J.

J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
[Crossref]

Peng, K. C.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
[Crossref] [PubMed]

Pereira, S. F.

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
[Crossref] [PubMed]

Pezzè, L.

J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
[Crossref]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Quiring, V.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide Cavity Resonater as a Source of Optical Squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

Ralph, T. C.

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
[Crossref]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental investigation of criteria for continuous variable entanglement,” Phys. Rev. Lett. 90, 043601 (2003).
[Crossref] [PubMed]

Ramazza, P. L.

Raymer, M. G.

Reid, M. D.

E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
[Crossref]

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Ricken, R.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide Cavity Resonater as a Source of Optical Squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Santos, L.

J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
[Crossref]

Schnabel, R.

S. Ast, M. Ast, M. Mehmet, and R. Schnabel, “Gaussian entanglement distribution with gigahertz bandwidth,” Opt. Lett. 41, 5094–5097 (2016).
[Crossref] [PubMed]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
[Crossref]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental investigation of criteria for continuous variable entanglement,” Phys. Rev. Lett. 90, 043601 (2003).
[Crossref] [PubMed]

Schrödinger, E.

E. Schrödinger, “Discussion of probability relations between separated systems,” Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
[Crossref]

Serkland, D. K.

Shinjo, A.

A. Shinjo, N. Hashiyama, A. Koshio, Y. Eto, and T. Hirano, “Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators,” Proc. SPIE 9996, 99960I (2016).
[Crossref]

Shiozawa, Y.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

Silberhorn, C.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide Cavity Resonater as a Source of Optical Squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

Silberhorn, Ch.

Ch. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Smerzi, A.

J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
[Crossref]

Sornphiphatphong, C.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

Stefszky, M.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide Cavity Resonater as a Source of Optical Squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

Tajima, T.

Takei, N.

N. Takei, N. Lee, D. Moriyama, J. S. Neergard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

Tanzilli, S.

Tualle-Brouri, R.

J. Wegner, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D. 32, 391–396 (2005).
[Crossref]

Wegner, J.

J. Wegner, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D. 32, 391–396 (2005).
[Crossref]

Weiß, O.

Ch. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

Wiseman, H. M.

E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
[Crossref]

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen Paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref] [PubMed]

Yamamoto, Y.

Yokoyama, S.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

Yoshikawa, J.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

Yu. Kryuchkyan, G.

H. H. Adamyan and G. Yu. Kryuchkyan, “Time-modulated type-II optical parametric oscillator: Quantum dynamics and strong Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 74, 023810 (2006).
[Crossref]

Zavatta, A.

Zhang, Y.

Y. Zhang, R. Okubo, M. Hirano, Y. Eto, and T. Hirano, “Experimental realization of spatially separated entanglement with continuous variables using laser pulse trains,” Sci. Rep. 5, 13029 (2015).
[Crossref] [PubMed]

Y. Eto, A. Nonaka, Y. Zhang, and T. Hirano, “Stable generation of quadrature entanglemet using a ring interferometer,” Phys. Rev. A 79, 050302 (2009).
[Crossref]

Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, “Observation of quadrature squeezing in a χ(2) nonlinear waveguide using a temporally shaped local oscillator pulse,” Opt. Express 16, 10650–10657 (2008).
[Crossref] [PubMed]

R. Okubo, M. Hirano, Y. Zhang, and T. Hirano, “Pulse-resolved measurement of quadrature phase amplitudes of squeezed pulse trains at a repetition rate of 76 MHz,” Opt. Lett. 33, 1458–1460 (2008).
[Crossref] [PubMed]

Zhao, T. M.

J. C. Lee, K. K. Park, T. M. Zhao, and Y. H. Kim, “Einstein-Podolsky-Rosen entanglement of narrow-band photons from cold atoms,” Phys. Rev. Lett. 117, 250501 (2016).
[Crossref] [PubMed]

APL Photonics (1)

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

Eur. Phys. J. D. (1)

J. Wegner, A. Ourjoumtsev, R. Tualle-Brouri, and P. Grangier, “Time-resolved homodyne characterization of individual quadrature-entangled pulses,” Eur. Phys. J. D. 32, 391–396 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

J. Peise, I. Kruse, K. Lange, B. Lücke, L. Pezzè, J. Arlt, W. Ertmer, K. Hammerer, L. Santos, A. Smerzi, and C. Klempt, “Satisfying the Einstein-Podosky-Rosen criterion with massive particles,” Nat. Commun. 6, 8984 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (6)

Optica (1)

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Phys. Rev. A (5)

N. Takei, N. Lee, D. Moriyama, J. S. Neergard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

H. H. Adamyan and G. Yu. Kryuchkyan, “Time-modulated type-II optical parametric oscillator: Quantum dynamics and strong Einstein-Podolsky-Rosen entanglement,” Phys. Rev. A 74, 023810 (2006).
[Crossref]

E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
[Crossref]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental characterization of continuous-variable entanglement,” Phys. Rev. A 69, 012304 (2004).
[Crossref]

Y. Eto, A. Nonaka, Y. Zhang, and T. Hirano, “Stable generation of quadrature entanglemet using a ring interferometer,” Phys. Rev. A 79, 050302 (2009).
[Crossref]

Phys. Rev. Appl. (1)

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide Cavity Resonater as a Source of Optical Squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

Phys. Rev. Lett. (6)

Ch. Silberhorn, P. K. Lam, O. Weiß, F. König, N. Korolkova, and G. Leuchs, “Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber,” Phys. Rev. Lett. 86, 4267–4270 (2001).
[Crossref] [PubMed]

J. C. Howell, R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion,” Phys. Rev. Lett. 92, 210403 (2004).
[Crossref] [PubMed]

J. C. Lee, K. K. Park, T. M. Zhao, and Y. H. Kim, “Einstein-Podolsky-Rosen entanglement of narrow-band photons from cold atoms,” Phys. Rev. Lett. 117, 250501 (2016).
[Crossref] [PubMed]

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen Paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref] [PubMed]

Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng, “Realization of the Einstein-Podolsky-Rosen paradox for continuous variables,” Phys. Rev. Lett. 68, 3663–3666 (1992).
[Crossref] [PubMed]

W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph, “Experimental investigation of criteria for continuous variable entanglement,” Phys. Rev. Lett. 90, 043601 (2003).
[Crossref] [PubMed]

Proc. Cambridge Philos. Soc. (1)

E. Schrödinger, “Discussion of probability relations between separated systems,” Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
[Crossref]

Proc. SPIE (1)

A. Shinjo, N. Hashiyama, A. Koshio, Y. Eto, and T. Hirano, “Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators,” Proc. SPIE 9996, 99960I (2016).
[Crossref]

Rev. Mod. Phys. (1)

M. D. Reid, P. D. Drummond, W. P. Bowen, E. G. Cavalcanti, P. K. Lam, H. A. Bachor, U. L. Andersen, and G. Leuchs, “Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications,” Rev. Mod. Phys. 81, 1727–1751 (2009).
[Crossref]

Sci. Rep. (1)

Y. Zhang, R. Okubo, M. Hirano, Y. Eto, and T. Hirano, “Experimental realization of spatially separated entanglement with continuous variables using laser pulse trains,” Sci. Rep. 5, 13029 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup. HWP: half-wave plate; QWP: quarter-wave plate; PZT: piezoelectric transducer; PBS: polarizing beam splitter; HBS: half beam splitter; HD: homodyne detector. Two photodetectors (PDs) above the PBSs are used to measure the visibility. This scheme was surrounded with 5 mm thick acrylic plates to protect from air movement.
Fig. 2
Fig. 2 Evaluation of in-house built homodyne detectors in the time-domain measurement and in the frequency-domain measurement. (a) HDA. (b) HDB.
Fig. 3
Fig. 3 50 quadrature values picked up from the measured entangled pulse train. (a) Quadrature values XA and XB. (b) Quadrature values PA and PB.
Fig. 4
Fig. 4 Correlation diagrams of 8655 quadrature values obtained from individual measurements of the entangled pulse trains. The blue plots indicate the shot noise and the red plots indicate the entanglement. (a) Quadrature values XA and XB. (b) Quadrature values PA and PB. For this measurement, the output pump powers of PPLN, PPLN2 and PPLNLO were 2.0 mW, 2.0 mW, and 5.7 mW, respectively.
Fig. 5
Fig. 5 Measured noise variance of (a) X and (b) P quadrature values for the entangled beams and the LO beams from the spectrum analyzer. The traces were recorded with a center frequency of 5 MHz, a resolution bandwidth of 1 MHz and a video bandwidth of 100 Hz. The detector amplification noise (i.e. the dark noise) was 9.5 dB below the shot noise of X and 9.3 dB below the shot noise of P. It is conceivable that the difference of these shot noise levels is due to the incomplete symmetry of the RF power combiner.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( Δ 2 X A Δ X A Δ P A Δ X A Δ X B Δ X A Δ P B Δ P A Δ X A Δ 2 P A Δ P A Δ X B Δ P A Δ P B Δ X B Δ X A Δ X B Δ P A Δ 2 X B Δ X B Δ P B Δ P B Δ X A Δ P B Δ P A Δ P B Δ X B Δ 2 P B ) = ( 3.85 ± 0.18 0.02 ± 0.04 3.07 ± 0.24 0.01 ± 0.04 0.02 ± 0.04 3.97 ± 0.35 0.02 ± 0.04 3.12 ± 0.14 3.07 ± 0.24 0.02 ± 0.04 3.30 ± 0.44 0.01 ± 0.04 0.01 ± 0.04 3.12 ± 0.14 0.01 ± 0.04 3.41 ± 0.44 ) .
ε 2 = Δ B | A 2 X Δ B | A 2 P = min g X Δ 2 ( X B g X X A ) min g P Δ 2 ( P B g P P A ) < 1 ,
ε 2 = ( Δ 2 X B Δ X A Δ X B 2 Δ 2 X A ) ( Δ 2 P B Δ P A Δ P B 2 Δ 2 P A ) = 0.82 ± 0.09 < 1 ,
Δ 2 ( X A X B ) Δ 2 ( P A + P B ) = 0.93 ± 0.03 < 1 .
Δ 2 [ X ^ a ( ϕ a ) ± X ^ b ( ϕ b ) ] = 1 2 [ Δ 2 x ^ 1 A ± 2 + Δ 2 p ^ 1 B ± 2 + Δ 2 x ^ 2 C ± 2 + Δ 2 p ^ 2 D ± 2 ] + Δ 2 x ^ a v ( ϕ a ) ( 1 η a ) + Δ 2 x ^ b v ( ϕ b ) ( 1 η b ) ,

Metrics