Abstract

We present a novel design of an exclusively electrically controlled adaptive optofluidic lens that allows for manipulating both focal length and asphericity. The device is totally encapsulated and contains an aqueous lens with a clear aperture of 2mm immersed in ambient oil. The design is based on the combination of an electrowetting-driven pressure regulation to control the average curvature of the lens and a Maxwell stress-based correction of the local curvature to control spherical aberration. The performance of the lens is evaluated by a dedicated setup for the characterization of optical wavefronts using a Shack Hartmann Wavefront Sensor. The focal length of the device can be varied between 10 and 27mm. At the same time, the Zernike coefficient Z40, characterising spherical aberration, can be tuned reversibly between 0.059waves and 0.003waves at a wavelength of λ=532nm. Several possible extensions and applications of the device are discussed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerical analysis of electrically tunable aspherical optofluidic lenses

Kartikeya Mishra and Frieder Mugele
Opt. Express 24(13) 14672-14681 (2016)

Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses

N. C. Lima, K. Mishra, and F. Mugele
Opt. Express 25(6) 6700-6711 (2017)

Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode

N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele
Opt. Express 24(4) 4210-4220 (2016)

References

  • View by:
  • |
  • |
  • |

  1. P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
    [Crossref]
  2. C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid Lenses and Driving Mechanisms: A Review,” J. Adhes. Sci. Technol. 26(12-17), 1773–1788 (2012).
    [Crossref]
  3. N. T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
    [Crossref] [PubMed]
  4. C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
    [Crossref]
  5. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [Crossref]
  6. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
    [Crossref]
  7. S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  8. P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light Sci. Appl. 2(9), e98 (2013).
    [Crossref]
  9. P. Zhao, Ç. Ataman, and H. Zappe, “Spherical aberration free liquid-filled tunable lens with variable thickness membrane,” Opt. Express 23(16), 21264–21278 (2015).
    [Crossref] [PubMed]
  10. D. Kopp and H. Zappe, “Tubular astigmatism-tunable fluidic lens,” Opt. Lett. 41(12), 2735–2738 (2016).
    [Crossref] [PubMed]
  11. M. Zohrabi, R. H. Cormack, C. Mccullough, O. D. Supekar, E. A. Gibson, V. M. Bright, and J. T. Gopinath, “Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices,” Opt. Express 25(25), 31451–31461 (2017).
    [Crossref] [PubMed]
  12. Z. Zhan, K. Wang, H. Yao, and Z. Cao, “Fabrication and characterization of aspherical lens manipulated by electrostatic field,” Appl. Opt. 48(22), 4375–4380 (2009).
    [Crossref] [PubMed]
  13. G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106(1), 014501 (2011).
    [Crossref] [PubMed]
  14. J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” EPL 93(5), 56001 (2011).
    [Crossref]
  15. K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
    [Crossref] [PubMed]
  16. N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
    [Crossref] [PubMed]
  17. N. C. Lima, K. Mishra, and F. Mugele, “Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses,” Opt. Express 25(6), 6700–6711 (2017).
    [Crossref] [PubMed]
  18. K. Mishra and F. Mugele, “Numerical analysis of electrically tunable aspherical optofluidic lenses,” Opt. Express 24(13), 14672–14681 (2016).
    [Crossref] [PubMed]
  19. C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20(16), 18180–18187 (2012).
    [Crossref] [PubMed]
  20. C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
    [Crossref] [PubMed]
  21. Y. T. Tung, C. Y. Hsu, J. A. Yeh, and P. J. Wang, “Measurement of Optical Characteristics in Dielectric Liquid Lens by Shack-Hartmann Wave Front Sensor,” in Novel Optical Systems Design and Optimization Xv, G. G. Gregory and A. J. Davis, eds. (2012).
  22. F. Mugele and J. Heikenfeld, Electrowetting: Fundamental Principles and Practical Applications (Wiley-VCH, Weinheim, Germany, 2019).
  23. R. Finn, Equilibrium capillary surfaces (New York [u.a.] Springer, 1986).
  24. I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
    [Crossref]

2017 (3)

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

N. C. Lima, K. Mishra, and F. Mugele, “Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses,” Opt. Express 25(6), 6700–6711 (2017).
[Crossref] [PubMed]

M. Zohrabi, R. H. Cormack, C. Mccullough, O. D. Supekar, E. A. Gibson, V. M. Bright, and J. T. Gopinath, “Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices,” Opt. Express 25(25), 31451–31461 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (2)

P. Zhao, Ç. Ataman, and H. Zappe, “Spherical aberration free liquid-filled tunable lens with variable thickness membrane,” Opt. Express 23(16), 21264–21278 (2015).
[Crossref] [PubMed]

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

2014 (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

2013 (1)

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light Sci. Appl. 2(9), e98 (2013).
[Crossref]

2012 (2)

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid Lenses and Driving Mechanisms: A Review,” J. Adhes. Sci. Technol. 26(12-17), 1773–1788 (2012).
[Crossref]

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20(16), 18180–18187 (2012).
[Crossref] [PubMed]

2011 (3)

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106(1), 014501 (2011).
[Crossref] [PubMed]

J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” EPL 93(5), 56001 (2011).
[Crossref]

2010 (1)

N. T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[Crossref]

2004 (1)

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

2003 (1)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Ataman, Ç.

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Berg-Sorensen, K.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Bernini, R.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Bright, V. M.

Cao, Z.

Carreel, B.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Cavalli, A.

Chang, F. C.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid Lenses and Driving Mechanisms: A Review,” J. Adhes. Sci. Technol. 26(12-17), 1773–1788 (2012).
[Crossref]

Chen, J.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Chen, J. K.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid Lenses and Driving Mechanisms: A Review,” J. Adhes. Sci. Technol. 26(12-17), 1773–1788 (2012).
[Crossref]

Chiang, T. J.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid Lenses and Driving Mechanisms: A Review,” J. Adhes. Sci. Technol. 26(12-17), 1773–1788 (2012).
[Crossref]

Chiu, C. P.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid Lenses and Driving Mechanisms: A Review,” J. Adhes. Sci. Technol. 26(12-17), 1773–1788 (2012).
[Crossref]

Chu, C. W.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid Lenses and Driving Mechanisms: A Review,” J. Adhes. Sci. Technol. 26(12-17), 1773–1788 (2012).
[Crossref]

Cormack, R. H.

Eliceiri, K.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Erickson, D.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Fan, S. K.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid Lenses and Driving Mechanisms: A Review,” J. Adhes. Sci. Technol. 26(12-17), 1773–1788 (2012).
[Crossref]

Gibson, E. A.

Gopinath, J. T.

Guck, J.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Gylfason, K. B.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Hall, G.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Haraldsson, T.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Hirsa, A. H.

C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[Crossref]

Jiang, H.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Kleijn, C. R.

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

Ko, F. H.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid Lenses and Driving Mechanisms: A Review,” J. Adhes. Sci. Technol. 26(12-17), 1773–1788 (2012).
[Crossref]

Kopp, D.

Kreutzer, M.

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Kuo, S. W.

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid Lenses and Driving Mechanisms: A Review,” J. Adhes. Sci. Technol. 26(12-17), 1773–1788 (2012).
[Crossref]

Lammertink, R. G. H.

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106(1), 014501 (2011).
[Crossref] [PubMed]

Li, C.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Liberale, C.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Liebeskind, J.

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light Sci. Appl. 2(9), e98 (2013).
[Crossref]

Liebetraut, P.

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light Sci. Appl. 2(9), e98 (2013).
[Crossref]

Lima, N. C.

Liu, A. Q.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Lopez, C. A.

C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[Crossref]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Manukyan, G.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106(1), 014501 (2011).
[Crossref] [PubMed]

J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” EPL 93(5), 56001 (2011).
[Crossref]

Mccullough, C.

Minzioni, P.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Mishra, K.

Mugele, F.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

N. C. Lima, K. Mishra, and F. Mugele, “Aberration control in adaptive optics: a numerical study of arbitrarily deformable liquid lenses,” Opt. Express 25(6), 6700–6711 (2017).
[Crossref] [PubMed]

K. Mishra and F. Mugele, “Numerical analysis of electrically tunable aspherical optofluidic lenses,” Opt. Express 24(13), 14672–14681 (2016).
[Crossref] [PubMed]

N. C. Lima, A. Cavalli, K. Mishra, and F. Mugele, “Numerical simulation of astigmatic liquid lenses tuned by a stripe electrode,” Opt. Express 24(4), 4210–4220 (2016).
[Crossref] [PubMed]

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

C. U. Murade, D. van der Ende, and F. Mugele, “High speed adaptive liquid microlens array,” Opt. Express 20(16), 18180–18187 (2012).
[Crossref] [PubMed]

J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” EPL 93(5), 56001 (2011).
[Crossref]

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106(1), 014501 (2011).
[Crossref] [PubMed]

Murade, C.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Murade, C. U.

Musterd, M.

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

Nguyen, N. T.

N. T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
[Crossref] [PubMed]

Oh, J. M.

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” EPL 93(5), 56001 (2011).
[Crossref]

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106(1), 014501 (2011).
[Crossref] [PubMed]

Omenetto, F. G.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Osellame, R.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Ozcan, A.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

Petsch, S.

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light Sci. Appl. 2(9), e98 (2013).
[Crossref]

Pollnau, M.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Roghair, I.

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Sada, C.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Schmidt, H.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Shiue, C. C.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Sinton, D.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Supekar, O. D.

Testa, G.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

van den Ende, D.

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106(1), 014501 (2011).
[Crossref] [PubMed]

J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” EPL 93(5), 56001 (2011).
[Crossref]

van der Ende, D.

Wang, K.

Wax, A.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Xiong, S.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

Yao, H.

Zappe, H.

Zeng, X.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Zhan, Z.

Zhang, Y. B.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Zhao, P.

Zhao, S.

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Zhu, D.

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Zohrabi, M.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82(3), 316–318 (2003).
[Crossref]

S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

C. Li, G. Hall, X. Zeng, D. Zhu, K. Eliceiri, and H. Jiang, “Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor,” Appl. Phys. Lett. 98(17), 171104 (2011).
[Crossref] [PubMed]

Biomicrofluidics (1)

N. T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics 4(3), 031501 (2010).
[Crossref] [PubMed]

EPL (1)

J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Electric-field-driven instabilities on superhydrophobic surfaces,” EPL 93(5), 56001 (2011).
[Crossref]

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: An application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[Crossref]

J. Adhes. Sci. Technol. (1)

C. P. Chiu, T. J. Chiang, J. K. Chen, F. C. Chang, F. H. Ko, C. W. Chu, S. W. Kuo, and S. K. Fan, “Liquid Lenses and Driving Mechanisms: A Review,” J. Adhes. Sci. Technol. 26(12-17), 1773–1788 (2012).
[Crossref]

J. Opt. (1)

P. Minzioni, R. Osellame, C. Sada, S. Zhao, F. G. Omenetto, K. B. Gylfason, T. Haraldsson, Y. B. Zhang, A. Ozcan, A. Wax, F. Mugele, H. Schmidt, G. Testa, R. Bernini, J. Guck, C. Liberale, K. Berg-Sorensen, J. Chen, M. Pollnau, S. Xiong, A. Q. Liu, C. C. Shiue, S. K. Fan, D. Erickson, and D. Sinton, “Roadmap for optofluidics,” J. Opt. 19(9), 093003 (2017).
[Crossref]

Light Sci. Appl. (1)

P. Liebetraut, S. Petsch, J. Liebeskind, and H. Zappe, “Elastomeric lenses with tunable astigmatism,” Light Sci. Appl. 2(9), e98 (2013).
[Crossref]

Microfluid. Nanofluidics (1)

I. Roghair, M. Musterd, D. van den Ende, C. R. Kleijn, M. Kreutzer, and F. Mugele, “A numerical technique to simulate display pixels based on electrowetting,” Microfluid. Nanofluidics 19(2), 465–482 (2015).
[Crossref]

Nat. Photonics (1)

C. A. Lopez and A. H. Hirsa, “Fast focusing using a pinned-contact oscillating liquid lens,” Nat. Photonics 2(10), 610–613 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

G. Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele, “Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions,” Phys. Rev. Lett. 106(1), 014501 (2011).
[Crossref] [PubMed]

Sci. Rep. (1)

K. Mishra, C. Murade, B. Carreel, I. Roghair, J. M. Oh, G. Manukyan, D. van den Ende, and F. Mugele, “Optofluidic lens with tunable focal length and asphericity,” Sci. Rep. 4(1), 6378 (2014).
[Crossref] [PubMed]

Other (3)

Y. T. Tung, C. Y. Hsu, J. A. Yeh, and P. J. Wang, “Measurement of Optical Characteristics in Dielectric Liquid Lens by Shack-Hartmann Wave Front Sensor,” in Novel Optical Systems Design and Optimization Xv, G. G. Gregory and A. J. Davis, eds. (2012).

F. Mugele and J. Heikenfeld, Electrowetting: Fundamental Principles and Practical Applications (Wiley-VCH, Weinheim, Germany, 2019).

R. Finn, Equilibrium capillary surfaces (New York [u.a.] Springer, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) Schematic view of the device consisting of three electrodes (top (1), middle (2), bottom (3); thick solid lines); voltages U AS and U P on the top and bottom plate w.r.t. the grounded middle electrode control pressure and asphericity. Dark grey: aqueous drop at zero voltage; light grey: at finite U P and U AS . Green arrows indicate contact line displacement due to electrowetting. Red dashed lines: schematic distribution of electric field lines controlling asphericity. Blue arrow: light path. b) photograph of the assembled device.
Fig. 2
Fig. 2 Schematic of the optical setup. BE: beam expander. The reference arm constitutes a laser beam passing through BS1, BS2, Relay lens system and finally falling on the CCD of Shack-Hartmann wavefront sensor (SHWS). Measurement arm consists of laser beam splitting by BS1, traversing vertically through mirrors (M) and M’, passing sequentially through Microscope objective (MO), lens device, Relay lens system and finally falling on SHWS. The CCD camera (C1) is used for the interferometric alignment. Shutter is used to block the reference beam, while carrying out measurements via measurement arm.
Fig. 3
Fig. 3 Focal length (a) and primary asphericity (Zernike coefficient Z 4 0 ) (b) vs. the pressure-controlling electrowetting voltage recorded for U AS =0. Red: increasing voltage. Black: decreasing voltage.
Fig. 4
Fig. 4 Wavefronts as observed for (a) spherical lens ( U AS =0) for various focal lengths with spherical aberration ( Z 4 0 ) values of 0.059waves (top; U P =0V,f=10.1mm), 0.051 (middle; U P =10V,f=13.4mm) and 0.043 (bottom; U P =20V,f=15.7mm). (b) conditions of minimum asphericity with U AS =1350V, 1100V, and 1000V (top to bottom), with Z 4 0 <0.005 in all cases. Same U P values as in (a). All measurements are done under minimum defocus conditions.
Fig. 5
Fig. 5 Variation of focal length (a) under zero defocus condition and primary asphericity ( Z 4 0 ) (b) vs. lens voltage U AS . Symbol colours indicate variable U P , increasing along the arrows: 0V(black squares), 10V(red circles), 20V(blue up triangles), 30V(pink down triangles), 40V(green diamonds), 50V(dark blue left triangles), 60V(purple right triangle), 70V(orange hexagon).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ p L ( r )= γκ( r ) 2 = ε ε o 2 E ( r ) 2 = Π el ( r )