Abstract

We report on 4x20 silicon photonic MEMS switch that is capable of multicasting. The switch is built on passive optical crossbar network with gap-adjustable directional couplers. The switch has high on-off extinction ratio (59 dB), low insertion loss (< 4.0 dB), small footprint (1.2x4.5 mm2), and fast response (9.8 µs). The switching voltage is 9.6 V and 20 dB bandwidth is 31.5 nm. One-to-two and one-to-four multicast operations are demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large-scale silicon photonic switches with movable directional couplers

Sangyoon Han, Tae Joon Seok, Niels Quack, Byung-Wook Yoo, and Ming C. Wu
Optica 2(4) 370-375 (2015)

Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers

Tae Joon Seok, Niels Quack, Sangyoon Han, Richard S. Muller, and Ming C. Wu
Optica 3(1) 64-70 (2016)

Ultra-small silicon waveguide coupler switch using gap-variable mechanism

Yuta Akihama, Yoshiaki Kanamori, and Kazuhiro Hane
Opt. Express 19(24) 23658-23663 (2011)

References

  • View by:
  • |
  • |
  • |

  1. G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-Through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM 2010 Conference (ACM, 2010), 327–338 (2010).
    [Crossref]
  2. N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
    [Crossref]
  3. G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), 447–458 (2013).
    [Crossref]
  4. J. Bowers, A. Raza, D. Tardent, and J. Miglani, “Advantages and control of hybrid packet optical-circuit-switched data center networks,” in Advanced Photonics for Communications (Optical Society of America, 2014), paper PM2C.4.
  5. B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
    [Crossref]
  6. L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
    [Crossref]
  7. L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
    [Crossref] [PubMed]
  8. K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
    [Crossref] [PubMed]
  9. K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
    [Crossref] [PubMed]
  10. S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, and J. Chen, “16 × 16 silicon Mach-Zehnder interferometer switch actuated with waveguide microheaters,” Photon. Res. 4(5), 202–207 (2016).
    [Crossref]
  11. L. Lu, S. Zhao, L. Zhou, D. Li, Z. Li, M. Wang, X. Li, and J. Chen, “16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers,” Opt. Express 24(9), 9295–9307 (2016).
    [Crossref] [PubMed]
  12. K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).
  13. K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
    [Crossref]
  14. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
    [Crossref]
  15. S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
    [Crossref]
  16. C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
    [Crossref]
  17. K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.
  18. T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” in OFC/NFOEC Technical Digest (2012), paper OTh3D.1.
  19. T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
    [Crossref]
  20. S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
    [Crossref]
  21. Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6e16), e16 (2012).
    [Crossref]
  22. H. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonic. Tech. L. 26(14), 1411–1413 (2014).
    [Crossref]
  23. Z. Zhou, Z. Wang, and L. Lin, Microsystems and Nanotechnology, 1st ed. (Springer-Verlag, 2012).
  24. S. D. Senturia, Microsystem Design, 1st ed. (Springer, 2001).
  25. R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
    [Crossref]
  26. T. K. Chan, M. Megens, B.-W. Yoo, J. Wyras, C. J. Chang-Hasnain, M. C. Wu, and D. A. Horsley, “Optical beamsteering using an 8 × 8 MEMS phased array with closed-loop interferometric phase control,” Opt. Express 21(3), 2807–2815 (2013).
    [Crossref] [PubMed]

2019 (1)

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

2018 (1)

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

2017 (1)

2016 (4)

2015 (2)

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
[Crossref]

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

2014 (2)

2013 (2)

T. K. Chan, M. Megens, B.-W. Yoo, J. Wyras, C. J. Chang-Hasnain, M. C. Wu, and D. A. Horsley, “Optical beamsteering using an 8 × 8 MEMS phased array with closed-loop interferometric phase control,” Opt. Express 21(3), 2807–2815 (2013).
[Crossref] [PubMed]

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

2012 (2)

L. Chen and Y. K. Chen, “Compact, low-loss and low-power 8×8 broadband silicon optical switch,” Opt. Express 20(17), 18977–18985 (2012).
[Crossref] [PubMed]

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6e16), e16 (2012).
[Crossref]

1996 (1)

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[Crossref]

Akihama, Y.

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6e16), e16 (2012).
[Crossref]

Anthur, A.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

Barry, L. P.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

Bergman, K.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

Bickford, J. R.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

Browning, C.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

Budd, R.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

Chan, T. K.

Chang, S. P.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Chang-Hasnain, C. J.

Chen, J.

Chen, L.

Chen, Y. K.

Chiba, T.

Chu, H.

H. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonic. Tech. L. 26(14), 1411–1413 (2014).
[Crossref]

Cong, G.

Dupuis, N.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

Elwenspoek, M.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[Crossref]

Fainman, Y.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Farrington, N.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Ford, J. E.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Forencich, A.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Gazman, A.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

Giles, J.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Groeneveld, A. W.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[Crossref]

Guo, Z.

Han, S.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
[Crossref]

Hane, K.

H. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonic. Tech. L. 26(14), 1411–1413 (2014).
[Crossref]

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6e16), e16 (2012).
[Crossref]

Hasegawa, H.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Hasegawa, J.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

Henriksson, J.

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Hildrum, K.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Horsley, D. A.

Igarashi, Y.

Ikeda, K.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Inoue, T.

Jacobs, J.

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Kawashima, H.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Kim, S. H.

Konoike, R.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

Kuchta, D.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Kwon, K.

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Lee, B. G.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

Legtenberg, R.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[Crossref]

Li, D.

Li, X.

Li, Z.

Lu, L.

Luo, J.

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Masahara, M.

Matsukawa, T.

Matsuura, H.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Megens, M.

Mori, Y.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Muller, R. S.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Nakamura, S.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Namiki, S.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Ochikubo, L.

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Ohno, M.

Papen, G. C.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Pepeljugoski, P.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

Porter, G.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Quack, N.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
[Crossref]

Rajan, D.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Sato, K.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Schares, L.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Schenfeld, E.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Schow, C. L.

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

Selo, P.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Seok, T. J.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
[Crossref]

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Suda, S.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Sun, P. C.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Suzuki, K.

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Tadokoro, H.

Tajima, A.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Tanizawa, K.

K. Suzuki, K. Tanizawa, S. Suda, H. Matsuura, T. Inoue, K. Ikeda, S. Namiki, and H. Kawashima, “Broadband silicon photonics 8 × 8 switch based on double-Mach-Zehnder element switches,” Opt. Express 25(7), 7538–7546 (2017).
[Crossref] [PubMed]

K. Suzuki, K. Tanizawa, T. Matsukawa, G. Cong, S. H. Kim, S. Suda, M. Ohno, T. Chiba, H. Tadokoro, M. Yanagihara, Y. Igarashi, M. Masahara, S. Namiki, and H. Kawashima, “Ultra-compact 8 × 8 strictly-non-blocking Si-wire PILOSS switch,” Opt. Express 22(4), 3887–3894 (2014).
[Crossref] [PubMed]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Ueda, K.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Vahdat, A.

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

Vujicic, V.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

Wagle, R.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Wang, M.

Wolf, J.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Wu, M. C.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers,” Optica 3(1), 64–70 (2016).
[Crossref]

S. Han, T. J. Seok, N. Quack, B.-W. Yoo, and M. C. Wu, “Large-scale silicon photonic switches with movable directional couplers,” Optica 2(4), 370–375 (2015).
[Crossref]

T. K. Chan, M. Megens, B.-W. Yoo, J. Wyras, C. J. Chang-Hasnain, M. C. Wu, and D. A. Horsley, “Optical beamsteering using an 8 × 8 MEMS phased array with closed-loop interferometric phase control,” Opt. Express 21(3), 2807–2815 (2013).
[Crossref] [PubMed]

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

Wyras, J.

Yanagihara, M.

Yanagimachi, S.

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

Yoo, B.-W.

Yu, K.

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

Zhang, X. J.

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

Zhao, S.

Zhou, L.

Zhu, Z.

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

IEEE Photonic. Tech. L. (1)

H. Chu and K. Hane, “A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides,” IEEE Photonic. Tech. L. 26(14), 1411–1413 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

N. Farrington, A. Forencich, G. Porter, P. C. Sun, J. E. Ford, Y. Fainman, G. C. Papen, and A. Vahdat, “A multiport microsecond optical circuit switch for data center networking,” IEEE Photonics Technol. Lett. 25(16), 1589–1592 (2013).
[Crossref]

J. Light. Technol (1)

K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, “Low-insertion-loss and power-efficient 32 x 32 silicon photonics switch with extremely high-Δ silica PLC connector,” J. Light. Technol. 37 (1), 116-122 (2019).

J. Lit. Technol. (3)

S. Han, T. J. Seok, K. Yu, N. Quack, R. S. Muller, and M. C. Wu, “Large-scale polarization-insensitive silicon photonic MEMS switches,” J. Lit. Technol. 36(10), 1824–1830 (2018).
[Crossref]

B. G. Lee, N. Dupuis, P. Pepeljugoski, L. Schares, R. Budd, J. R. Bickford, and C. L. Schow, “Silicon photonic switch fabrics in computer communications systems,” J. Lit. Technol. 33(4), 768–777 (2015).
[Crossref]

T. J. Seok, N. Quack, S. Han, R. S. Muller, and M. C. Wu, “Highly scalable digital silicon photonic MEMS switches,” J. Lit. Technol. 34(2), 365–371 (2016).
[Crossref]

J. Micromech. Microeng. (1)

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[Crossref]

Light Sci. Appl. (1)

Y. Akihama and K. Hane, “Single and multiple optical switches that use freestanding silicon nanowire waveguide couplers,” Light Sci. Appl. 1(6e16), e16 (2012).
[Crossref]

Opt. Express (5)

Optica (2)

Photon. Res. (1)

Other (10)

L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S. P. Chang, J. Giles, K. Hildrum, D. Kuchta, J. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with optical circuit switch and software optimizer for stream computing systems,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference (Optical Society of America, 2009), paper OTuA1.
[Crossref]

G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating microsecond circuit switching into the data center,” in Proceedings of the ACM SIGCOMM 2013 Conference (ACM, 2013), 447–458 (2013).
[Crossref]

J. Bowers, A. Raza, D. Tardent, and J. Miglani, “Advantages and control of hybrid packet optical-circuit-switched data center networks,” in Advanced Photonics for Communications (Optical Society of America, 2014), paper PM2C.4.

G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. S. E. Ng, M. Kozuch, and M. Ryan, “c-Through: part-time optics in data centers,” in Proceedings of the ACM SIGCOMM 2010 Conference (ACM, 2010), 327–338 (2010).
[Crossref]

K. Kwon, T. J. Seok, J. Henriksson, J. Luo, L. Ochikubo, J. Jacobs, R. S. Muller, and M. C. Wu, “128x128 silicon photonic MEMS switch with scalable row/column addressing,” in Conference on Lasers and Electro-Optics (2018), paper SF1A.4.
[Crossref]

C. Browning, A. Gazman, V. Vujicic, A. Anthur, Z. Zhu, K. Bergman, and L. P. Barry, “Optical circuit switching/multicasting of burst mode PAM-4 using a programmable silicon photonic chip,” in Optical Fiber Communications Conference (2017), paper Th1B.6.
[Crossref]

K. Ueda, Y. Mori, H. Hasegawa, K. Suzuki, H. Matsuura, K. Tanizawa, S. Suda, K. Ikeda, S. Namiki, H. Kawashima, S. Nakamura, S. Yanagimachi, A. Tajima, and K. Sato, “Large-scale optical circuit switch for intra-datacenter networking using silicon-photonic multicast switch and tunable filter,” in 42nd European Conference and Exhibition on Optical Communications (2016), pp. 610–612.

T. Watanabe, K. Suzuki, and T. Takahashi, “Silica-based PLC transponder aggregators for colorless, directionless, and contentionless ROADM,” in OFC/NFOEC Technical Digest (2012), paper OTh3D.1.

Z. Zhou, Z. Wang, and L. Lin, Microsystems and Nanotechnology, 1st ed. (Springer-Verlag, 2012).

S. D. Senturia, Microsystem Design, 1st ed. (Springer, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) The architecture of multicast silicon photonic switch. Light from the in-port can be divided into multiple ports. (b) The structure of the unit-cell of the switch. The actuator attached to the gap-adjustable directional couplers adjusts the gap to control the amount of light transmitted to the drop-port and the through-port. At large gaps, all input light goes to the through-port (left). By moving the actuator to make the gap smaller, input light is divided between the through-port and the drop-port (middle). By reducing the gap further, one can switch all the light to the drop-port (right).
Fig. 2
Fig. 2 Optical and SEM images of fabricated 4x20 silicon photonic MEMS switch. (a) The optical image of the 4x20 silicon photonic MEMS switch with grating couplers and an actuator test structure. The entire switch is integrated on a 1.2mm x 4.5mm area. (b) Optical image of the unit-cell. There are two pairs of gap-adjustable directional couplers, four folded spring, 44 pairs of comb-fingers, and one waveguide crossing. (c) SEM image of the comb-fingers. The width and the gap of the comb-fingers are 300 and 400 nm, respectively.
Fig. 3
Fig. 3 Optical simulation results of the gap-adjustable directional coupler. (a) Optical field profile of the coupler at 500 nm gap. All light goes to the through-port. (b) Optical field profile of the coupler at 95 nm gap. All light goes to the drop-port. (c) Simulated transmission of the coupler versus the gap spacing. We can control the transmission to through- and drop-ports by changing the gap spacing.
Fig. 4
Fig. 4 Measured optical transfer characteristics of the switch unit-cell. At 9.6 V, optical power transmitted to drop-port is maximum and optical power transmitted to through-port is minimum.
Fig. 5
Fig. 5 Spectral responses of the switch unit-cell. (a) Measured and simulated spectral response of the switch unit-cell for maximum transmission at 1550 nm wavelength. (b) Measured spectral response of the switch unit-cell when the switch is optimized for operation at 1530, 1550, and 1570 nm.
Fig. 6
Fig. 6 Measured temporal response of the switch unit-cell in. (a) Optical response for a single-step bias voltage. Long switching time (36.2 µs) is observed due to ringing. (b) Optical response for a two-step feed-forward bias voltage. Ringing of the optical power is greatly reduced, and the on-time is reduced to 9.8 µs. (c) Optical response for turning-off with a two-step feed-forward voltage similar to (b). The off-time is 4.8 µs.
Fig. 7
Fig. 7 (a) Measured on-chip loss of the 4x20 switch versus the number of unit cells in the light path. Optical loss per cell and switching loss are extracted as 0.087 dB and 1.38 dB, respectively. (b) Measured transmission with various number of cascaded waveguide crossings. Optical loss per waveguide crossing is extracted as 0.021 dB.
Fig. 8
Fig. 8 Experimental demonstrations of multicast operation with the 4x20 switch. The applied voltages to each unit-cell are marked with arrows and unit-cell coordinates. (a) 1-to-2 multicast operation. Optical power from 4th input-port is divided equally between the 19th and 20th drop-ports. (b) 1-to-4 multicast operation. Optical power from 4th input-port is divided equally among the 17th, 18th, 19th, and 20th drop-ports.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k =  1 2 Et w 3 L 3
f =  1 2π k m
F spring  = kx
F comb  = n ε 0 V 2 t g
V =  kgx ε 0 tn