Abstract

We describe a method for effectively distinguishing the radiation endowed with optical angular momentum, also known as optical vortex, from ordinary light. We show that by detecting the inversion of the transverse intrinsic curvature sign (ITICS) an optical vortex can be locally recognized. The method is effective under conditions of huge importance for the exploitation of optical vortices, such as the far field of the source and access to a small fraction of the wavefront only. The validity of the method has been verified with table-top experiments with visible light, and the results show that a measurement performed over a transverse distance smaller than 4% of the beam diameter distinguishes a vortex from a Gaussian beam with a significance of 93.4%. New perspectives are considered for the characterization of vortices, with potential impact on the detection of extra-terrestrial radiation as well as on broadcast communication techniques.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor

Kevin Murphy, Daniel Burke, Nicholas Devaney, and Chris Dainty
Opt. Express 18(15) 15448-15460 (2010)

Detecting the topological charge of optical vortex beams using a sectorial screen

Ruishan Chen, Xiaoqiang Zhang, Yong Zhou, Hai Ming, Anting Wang, and Qiwen Zhan
Appl. Opt. 56(16) 4868-4872 (2017)

Local Curvature of Wavefronts in an Optical System

John A. Kneisly
J. Opt. Soc. Am. 54(2) 229-235 (1964)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref] [PubMed]
  2. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [Crossref] [PubMed]
  3. M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 010401 (2016).
    [Crossref]
  4. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97, 163903 (2006).
    [Crossref] [PubMed]
  5. G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with star light,” Astron. Astrophys. 488, 1159–1165 (2008).
    [Crossref]
  6. F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7, 195–197 (2011).
    [Crossref]
  7. F. Tamburini, B. Thidé, and M. Della Valle, “Measurement of the spin of the M87 black hole from its observed twisted light,” arXiv:1904.07923 [astro-ph.HE] (2019).
  8. R. Inoue, T. Yonehara, Y. Miyamoto, M. Koashi, and M. Kozuma, “Measuring Qutrit-Qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon,” Phys. Rev. Lett. 103, 110503 (2009).
    [Crossref] [PubMed]
  9. S. J. Tempone-Wiltshire, S. P. Johnstone, and K. Helmerson, “Optical vortex knots - one photon at a time,” Sci. Rep. 6, 24463 (2016).
    [Crossref] [PubMed]
  10. Z. Wang, N. Zhang, and X.-C. Yuan, “High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication,” Opt. Express 19, 482–492 (2011).
    [Crossref] [PubMed]
  11. Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
    [Crossref] [PubMed]
  12. C. Zhang and L. Ma, “Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna,” Sci. Rep. 7, 4585 (2017).
    [Crossref] [PubMed]
  13. F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
    [Crossref]
  14. M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
    [Crossref]
  15. J. Vickers, M. Burch, and R. Vyas, and Surendra Singh, “Phase and interference properties of optical vortex beams,” J. Opt. Soc. Am. A 25, 823–827 (2008).
    [Crossref]
  16. V. Carpentier, H. Michinel, and J. R. Salgueiro, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
    [Crossref]
  17. Y. Shen, G.T. Campbell, B. Hage, H. Zou, B.C. Buchler, and P.K. Lam, “Generation and interferometric analysis of high charge optical vortices,” J. Opt. 15, 044005 (2013).
    [Crossref]
  18. H. Zhou, S. Yan, J. Dong, and X. Zhang, “Double metal subwavelength slit arrays interference to measure the orbital angular momentum and the polarization of light,” Opt. Lett. 39, 3173–3176 (2014).
    [Crossref] [PubMed]
  19. J. Zhu, P. Zhang, D. Fu, D. Chen, R. Liu, Y. Zhou, H. Gao, and F. Li, “Probing the fractional topological charge of a vortex light beam by using dynamic angular double slits,” Photon. Res. 4, 187–190 (2016).
    [Crossref]
  20. B. Paroli, A. Cirella, I. Drebot, V. Petrillo, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence of OAM radiation reveals topological charge and local curvature,” J. Opt. 20, 075605 (2018).
    [Crossref]
  21. M. P. J. Lavery, D. J. Robertson, G. C. G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20, 2110–2115(2012).
    [Crossref] [PubMed]
  22. M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
    [Crossref] [PubMed]
  23. C. Li and S. Zhao, “Efficient separating orbital angular momentum mode with radial varying phase,” Opt. Express 5, 267–270 (2017).
  24. G.C.G. Berkhout, M.P.J. Lavery, J. Courtial, M.W. Beijersbergen, and M.J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
    [Crossref]
  25. B. Paroli, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence allows precise wavefront characterization,” Europhys. Lett. 122, 44001 (2018).
    [Crossref]
  26. B. Paroli, E. Chiadroni, M. Ferrario, A. Mostacci, V. Petrillo, M.A.C. Potenza, A.R. Rossi, and L. Serafini, “Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel,” Nucl. Instrum. Meth. Phys. Res. B 355, 217–220 (2015).
    [Crossref]
  27. B. Paroli, E. Chiadroni, M. Ferrario, V. Petrillo, M.A.C. Potenza, A.R. Rossi, L. Serafini, and V. Shpakov, “Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources,” Europhys. Lett. 111, 44003 (2015).
    [Crossref]
  28. B. Paroli, E. Chiadroni, M. Ferrario, and M.A.C. Potenza, “Analogical optical modeling of the asymmetric lateral coherence of betatron radiation,” Opt. Express 23, 29912–29920 (2015).
    [Crossref] [PubMed]
  29. B. Paroli, E. Bravin, S. Mazzoni, G. Trad, and M.A.C. Potenza, “A modified two-slit interferometer for characterizing the asymmetric lateral coherence of undulator radiation,” Europhys. Lett. 115, 14004 (2016).
    [Crossref]
  30. B. Paroli and M.A.C. Potenza, “Two dimensional mapping of the asymmetric lateral coherence of thermal light,” Opt. Express 24, 25676–25683 (2016).
    [Crossref] [PubMed]
  31. B. Paroli, E. Chiadroni, M. Ferrario, and M.A.C. Potenza, “A systematic study of the asymmetric lateral coherence of radiation emitted by ultra-relativistic particles in laser-driven accelerators,” Nucl. Instrum. Meth. Phys. Res. A 839, 1–5 (2016).
    [Crossref]

2018 (2)

B. Paroli, A. Cirella, I. Drebot, V. Petrillo, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence of OAM radiation reveals topological charge and local curvature,” J. Opt. 20, 075605 (2018).
[Crossref]

B. Paroli, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence allows precise wavefront characterization,” Europhys. Lett. 122, 44001 (2018).
[Crossref]

2017 (2)

C. Li and S. Zhao, “Efficient separating orbital angular momentum mode with radial varying phase,” Opt. Express 5, 267–270 (2017).

C. Zhang and L. Ma, “Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna,” Sci. Rep. 7, 4585 (2017).
[Crossref] [PubMed]

2016 (6)

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 010401 (2016).
[Crossref]

S. J. Tempone-Wiltshire, S. P. Johnstone, and K. Helmerson, “Optical vortex knots - one photon at a time,” Sci. Rep. 6, 24463 (2016).
[Crossref] [PubMed]

B. Paroli, E. Bravin, S. Mazzoni, G. Trad, and M.A.C. Potenza, “A modified two-slit interferometer for characterizing the asymmetric lateral coherence of undulator radiation,” Europhys. Lett. 115, 14004 (2016).
[Crossref]

B. Paroli and M.A.C. Potenza, “Two dimensional mapping of the asymmetric lateral coherence of thermal light,” Opt. Express 24, 25676–25683 (2016).
[Crossref] [PubMed]

B. Paroli, E. Chiadroni, M. Ferrario, and M.A.C. Potenza, “A systematic study of the asymmetric lateral coherence of radiation emitted by ultra-relativistic particles in laser-driven accelerators,” Nucl. Instrum. Meth. Phys. Res. A 839, 1–5 (2016).
[Crossref]

J. Zhu, P. Zhang, D. Fu, D. Chen, R. Liu, Y. Zhou, H. Gao, and F. Li, “Probing the fractional topological charge of a vortex light beam by using dynamic angular double slits,” Photon. Res. 4, 187–190 (2016).
[Crossref]

2015 (3)

B. Paroli, E. Chiadroni, M. Ferrario, A. Mostacci, V. Petrillo, M.A.C. Potenza, A.R. Rossi, and L. Serafini, “Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel,” Nucl. Instrum. Meth. Phys. Res. B 355, 217–220 (2015).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, V. Petrillo, M.A.C. Potenza, A.R. Rossi, L. Serafini, and V. Shpakov, “Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources,” Europhys. Lett. 111, 44003 (2015).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, and M.A.C. Potenza, “Analogical optical modeling of the asymmetric lateral coherence of betatron radiation,” Opt. Express 23, 29912–29920 (2015).
[Crossref] [PubMed]

2014 (3)

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

H. Zhou, S. Yan, J. Dong, and X. Zhang, “Double metal subwavelength slit arrays interference to measure the orbital angular momentum and the polarization of light,” Opt. Lett. 39, 3173–3176 (2014).
[Crossref] [PubMed]

2013 (2)

Y. Shen, G.T. Campbell, B. Hage, H. Zou, B.C. Buchler, and P.K. Lam, “Generation and interferometric analysis of high charge optical vortices,” J. Opt. 15, 044005 (2013).
[Crossref]

M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref] [PubMed]

2012 (2)

M. P. J. Lavery, D. J. Robertson, G. C. G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20, 2110–2115(2012).
[Crossref] [PubMed]

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

2011 (2)

Z. Wang, N. Zhang, and X.-C. Yuan, “High-volume optical vortex multiplexing and de-multiplexing for free-space optical communication,” Opt. Express 19, 482–492 (2011).
[Crossref] [PubMed]

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7, 195–197 (2011).
[Crossref]

2010 (1)

G.C.G. Berkhout, M.P.J. Lavery, J. Courtial, M.W. Beijersbergen, and M.J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

2009 (1)

R. Inoue, T. Yonehara, Y. Miyamoto, M. Koashi, and M. Kozuma, “Measuring Qutrit-Qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon,” Phys. Rev. Lett. 103, 110503 (2009).
[Crossref] [PubMed]

2008 (3)

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with star light,” Astron. Astrophys. 488, 1159–1165 (2008).
[Crossref]

J. Vickers, M. Burch, and R. Vyas, and Surendra Singh, “Phase and interference properties of optical vortex beams,” J. Opt. Soc. Am. A 25, 823–827 (2008).
[Crossref]

V. Carpentier, H. Michinel, and J. R. Salgueiro, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[Crossref]

2006 (1)

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97, 163903 (2006).
[Crossref] [PubMed]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Ahmed, N.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Anzolin, G.

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7, 195–197 (2011).
[Crossref]

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with star light,” Astron. Astrophys. 488, 1159–1165 (2008).
[Crossref]

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97, 163903 (2006).
[Crossref] [PubMed]

Bao, C.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Barbieri, C.

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with star light,” Astron. Astrophys. 488, 1159–1165 (2008).
[Crossref]

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97, 163903 (2006).
[Crossref] [PubMed]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Beijersbergen, M.W.

G.C.G. Berkhout, M.P.J. Lavery, J. Courtial, M.W. Beijersbergen, and M.J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Berkhout, G. C. G.

Berkhout, G.C.G.

G.C.G. Berkhout, M.P.J. Lavery, J. Courtial, M.W. Beijersbergen, and M.J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Bianchini, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with star light,” Astron. Astrophys. 488, 1159–1165 (2008).
[Crossref]

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97, 163903 (2006).
[Crossref] [PubMed]

Boriskina, S. V.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 010401 (2016).
[Crossref]

Boyd, R.W.

M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref] [PubMed]

Bravin, E.

B. Paroli, E. Bravin, S. Mazzoni, G. Trad, and M.A.C. Potenza, “A modified two-slit interferometer for characterizing the asymmetric lateral coherence of undulator radiation,” Europhys. Lett. 115, 14004 (2016).
[Crossref]

Buchler, B.C.

Y. Shen, G.T. Campbell, B. Hage, H. Zou, B.C. Buchler, and P.K. Lam, “Generation and interferometric analysis of high charge optical vortices,” J. Opt. 15, 044005 (2013).
[Crossref]

Burch, M.

Campbell, G.T.

Y. Shen, G.T. Campbell, B. Hage, H. Zou, B.C. Buchler, and P.K. Lam, “Generation and interferometric analysis of high charge optical vortices,” J. Opt. 15, 044005 (2013).
[Crossref]

Cao, Y.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Carpentier, V.

V. Carpentier, H. Michinel, and J. R. Salgueiro, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[Crossref]

Chen, D.

Chiadroni, E.

B. Paroli, E. Chiadroni, M. Ferrario, and M.A.C. Potenza, “A systematic study of the asymmetric lateral coherence of radiation emitted by ultra-relativistic particles in laser-driven accelerators,” Nucl. Instrum. Meth. Phys. Res. A 839, 1–5 (2016).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, and M.A.C. Potenza, “Analogical optical modeling of the asymmetric lateral coherence of betatron radiation,” Opt. Express 23, 29912–29920 (2015).
[Crossref] [PubMed]

B. Paroli, E. Chiadroni, M. Ferrario, A. Mostacci, V. Petrillo, M.A.C. Potenza, A.R. Rossi, and L. Serafini, “Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel,” Nucl. Instrum. Meth. Phys. Res. B 355, 217–220 (2015).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, V. Petrillo, M.A.C. Potenza, A.R. Rossi, L. Serafini, and V. Shpakov, “Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources,” Europhys. Lett. 111, 44003 (2015).
[Crossref]

Chong, Y.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 010401 (2016).
[Crossref]

Cirella, A.

B. Paroli, A. Cirella, I. Drebot, V. Petrillo, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence of OAM radiation reveals topological charge and local curvature,” J. Opt. 20, 075605 (2018).
[Crossref]

Courtial, J.

M. P. J. Lavery, D. J. Robertson, G. C. G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20, 2110–2115(2012).
[Crossref] [PubMed]

G.C.G. Berkhout, M.P.J. Lavery, J. Courtial, M.W. Beijersbergen, and M.J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Della Valle, M.

F. Tamburini, B. Thidé, and M. Della Valle, “Measurement of the spin of the M87 black hole from its observed twisted light,” arXiv:1904.07923 [astro-ph.HE] (2019).

Dennis, M. R.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 010401 (2016).
[Crossref]

Desyatnikov, A.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 010401 (2016).
[Crossref]

Dong, J.

Drebot, I.

B. Paroli, A. Cirella, I. Drebot, V. Petrillo, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence of OAM radiation reveals topological charge and local curvature,” J. Opt. 20, 075605 (2018).
[Crossref]

Ferrario, M.

B. Paroli, E. Chiadroni, M. Ferrario, and M.A.C. Potenza, “A systematic study of the asymmetric lateral coherence of radiation emitted by ultra-relativistic particles in laser-driven accelerators,” Nucl. Instrum. Meth. Phys. Res. A 839, 1–5 (2016).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, and M.A.C. Potenza, “Analogical optical modeling of the asymmetric lateral coherence of betatron radiation,” Opt. Express 23, 29912–29920 (2015).
[Crossref] [PubMed]

B. Paroli, E. Chiadroni, M. Ferrario, V. Petrillo, M.A.C. Potenza, A.R. Rossi, L. Serafini, and V. Shpakov, “Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources,” Europhys. Lett. 111, 44003 (2015).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, A. Mostacci, V. Petrillo, M.A.C. Potenza, A.R. Rossi, and L. Serafini, “Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel,” Nucl. Instrum. Meth. Phys. Res. B 355, 217–220 (2015).
[Crossref]

Fickler, R.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Fink, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Fu, D.

Gao, H.

Hage, B.

Y. Shen, G.T. Campbell, B. Hage, H. Zou, B.C. Buchler, and P.K. Lam, “Generation and interferometric analysis of high charge optical vortices,” J. Opt. 15, 044005 (2013).
[Crossref]

Handsteiner, J.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Helmerson, K.

S. J. Tempone-Wiltshire, S. P. Johnstone, and K. Helmerson, “Optical vortex knots - one photon at a time,” Sci. Rep. 6, 24463 (2016).
[Crossref] [PubMed]

Huang, H.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Inoue, R.

R. Inoue, T. Yonehara, Y. Miyamoto, M. Koashi, and M. Kozuma, “Measuring Qutrit-Qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon,” Phys. Rev. Lett. 103, 110503 (2009).
[Crossref] [PubMed]

Johnstone, S. P.

S. J. Tempone-Wiltshire, S. P. Johnstone, and K. Helmerson, “Optical vortex knots - one photon at a time,” Sci. Rep. 6, 24463 (2016).
[Crossref] [PubMed]

Koashi, M.

R. Inoue, T. Yonehara, Y. Miyamoto, M. Koashi, and M. Kozuma, “Measuring Qutrit-Qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon,” Phys. Rev. Lett. 103, 110503 (2009).
[Crossref] [PubMed]

Kozuma, M.

R. Inoue, T. Yonehara, Y. Miyamoto, M. Koashi, and M. Kozuma, “Measuring Qutrit-Qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon,” Phys. Rev. Lett. 103, 110503 (2009).
[Crossref] [PubMed]

Krenn, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Lam, P.K.

Y. Shen, G.T. Campbell, B. Hage, H. Zou, B.C. Buchler, and P.K. Lam, “Generation and interferometric analysis of high charge optical vortices,” J. Opt. 15, 044005 (2013).
[Crossref]

Lavery, M. P. J.

Lavery, M.P.J.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

G.C.G. Berkhout, M.P.J. Lavery, J. Courtial, M.W. Beijersbergen, and M.J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Li, C.

Li, F.

Li, L.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Liu, R.

Love, G. D.

Ma, L.

C. Zhang and L. Ma, “Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna,” Sci. Rep. 7, 4585 (2017).
[Crossref] [PubMed]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Malik, M.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref] [PubMed]

Mari, E.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

Mazzoni, S.

B. Paroli, E. Bravin, S. Mazzoni, G. Trad, and M.A.C. Potenza, “A modified two-slit interferometer for characterizing the asymmetric lateral coherence of undulator radiation,” Europhys. Lett. 115, 14004 (2016).
[Crossref]

Michinel, H.

V. Carpentier, H. Michinel, and J. R. Salgueiro, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[Crossref]

Mirhosseini, M.

M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref] [PubMed]

Miyamoto, Y.

R. Inoue, T. Yonehara, Y. Miyamoto, M. Koashi, and M. Kozuma, “Measuring Qutrit-Qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon,” Phys. Rev. Lett. 103, 110503 (2009).
[Crossref] [PubMed]

Molina-Terriza, G.

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7, 195–197 (2011).
[Crossref]

Molisch, A.F.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Mostacci, A.

B. Paroli, E. Chiadroni, M. Ferrario, A. Mostacci, V. Petrillo, M.A.C. Potenza, A.R. Rossi, and L. Serafini, “Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel,” Nucl. Instrum. Meth. Phys. Res. B 355, 217–220 (2015).
[Crossref]

Padgett, M. J.

Padgett, M.J.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

G.C.G. Berkhout, M.P.J. Lavery, J. Courtial, M.W. Beijersbergen, and M.J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Paroli, B.

B. Paroli, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence allows precise wavefront characterization,” Europhys. Lett. 122, 44001 (2018).
[Crossref]

B. Paroli, A. Cirella, I. Drebot, V. Petrillo, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence of OAM radiation reveals topological charge and local curvature,” J. Opt. 20, 075605 (2018).
[Crossref]

B. Paroli, E. Bravin, S. Mazzoni, G. Trad, and M.A.C. Potenza, “A modified two-slit interferometer for characterizing the asymmetric lateral coherence of undulator radiation,” Europhys. Lett. 115, 14004 (2016).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, and M.A.C. Potenza, “A systematic study of the asymmetric lateral coherence of radiation emitted by ultra-relativistic particles in laser-driven accelerators,” Nucl. Instrum. Meth. Phys. Res. A 839, 1–5 (2016).
[Crossref]

B. Paroli and M.A.C. Potenza, “Two dimensional mapping of the asymmetric lateral coherence of thermal light,” Opt. Express 24, 25676–25683 (2016).
[Crossref] [PubMed]

B. Paroli, E. Chiadroni, M. Ferrario, and M.A.C. Potenza, “Analogical optical modeling of the asymmetric lateral coherence of betatron radiation,” Opt. Express 23, 29912–29920 (2015).
[Crossref] [PubMed]

B. Paroli, E. Chiadroni, M. Ferrario, A. Mostacci, V. Petrillo, M.A.C. Potenza, A.R. Rossi, and L. Serafini, “Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel,” Nucl. Instrum. Meth. Phys. Res. B 355, 217–220 (2015).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, V. Petrillo, M.A.C. Potenza, A.R. Rossi, L. Serafini, and V. Shpakov, “Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources,” Europhys. Lett. 111, 44003 (2015).
[Crossref]

Petrillo, V.

B. Paroli, A. Cirella, I. Drebot, V. Petrillo, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence of OAM radiation reveals topological charge and local curvature,” J. Opt. 20, 075605 (2018).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, A. Mostacci, V. Petrillo, M.A.C. Potenza, A.R. Rossi, and L. Serafini, “Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel,” Nucl. Instrum. Meth. Phys. Res. B 355, 217–220 (2015).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, V. Petrillo, M.A.C. Potenza, A.R. Rossi, L. Serafini, and V. Shpakov, “Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources,” Europhys. Lett. 111, 44003 (2015).
[Crossref]

Potenza, M. A. C.

B. Paroli, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence allows precise wavefront characterization,” Europhys. Lett. 122, 44001 (2018).
[Crossref]

B. Paroli, A. Cirella, I. Drebot, V. Petrillo, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence of OAM radiation reveals topological charge and local curvature,” J. Opt. 20, 075605 (2018).
[Crossref]

Potenza, M.A.C.

B. Paroli, E. Bravin, S. Mazzoni, G. Trad, and M.A.C. Potenza, “A modified two-slit interferometer for characterizing the asymmetric lateral coherence of undulator radiation,” Europhys. Lett. 115, 14004 (2016).
[Crossref]

B. Paroli and M.A.C. Potenza, “Two dimensional mapping of the asymmetric lateral coherence of thermal light,” Opt. Express 24, 25676–25683 (2016).
[Crossref] [PubMed]

B. Paroli, E. Chiadroni, M. Ferrario, and M.A.C. Potenza, “A systematic study of the asymmetric lateral coherence of radiation emitted by ultra-relativistic particles in laser-driven accelerators,” Nucl. Instrum. Meth. Phys. Res. A 839, 1–5 (2016).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, and M.A.C. Potenza, “Analogical optical modeling of the asymmetric lateral coherence of betatron radiation,” Opt. Express 23, 29912–29920 (2015).
[Crossref] [PubMed]

B. Paroli, E. Chiadroni, M. Ferrario, V. Petrillo, M.A.C. Potenza, A.R. Rossi, L. Serafini, and V. Shpakov, “Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources,” Europhys. Lett. 111, 44003 (2015).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, A. Mostacci, V. Petrillo, M.A.C. Potenza, A.R. Rossi, and L. Serafini, “Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel,” Nucl. Instrum. Meth. Phys. Res. B 355, 217–220 (2015).
[Crossref]

Ren, Y.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Robertson, D. J.

Romanato, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

Rossi, A.R.

B. Paroli, E. Chiadroni, M. Ferrario, A. Mostacci, V. Petrillo, M.A.C. Potenza, A.R. Rossi, and L. Serafini, “Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel,” Nucl. Instrum. Meth. Phys. Res. B 355, 217–220 (2015).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, V. Petrillo, M.A.C. Potenza, A.R. Rossi, L. Serafini, and V. Shpakov, “Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources,” Europhys. Lett. 111, 44003 (2015).
[Crossref]

Salgueiro, J. R.

V. Carpentier, H. Michinel, and J. R. Salgueiro, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[Crossref]

Scheidl, T.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Serafini, L.

B. Paroli, E. Chiadroni, M. Ferrario, V. Petrillo, M.A.C. Potenza, A.R. Rossi, L. Serafini, and V. Shpakov, “Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources,” Europhys. Lett. 111, 44003 (2015).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, A. Mostacci, V. Petrillo, M.A.C. Potenza, A.R. Rossi, and L. Serafini, “Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel,” Nucl. Instrum. Meth. Phys. Res. B 355, 217–220 (2015).
[Crossref]

Shen, Y.

Y. Shen, G.T. Campbell, B. Hage, H. Zou, B.C. Buchler, and P.K. Lam, “Generation and interferometric analysis of high charge optical vortices,” J. Opt. 15, 044005 (2013).
[Crossref]

Shi, Z.

M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref] [PubMed]

Shpakov, V.

B. Paroli, E. Chiadroni, M. Ferrario, V. Petrillo, M.A.C. Potenza, A.R. Rossi, L. Serafini, and V. Shpakov, “Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources,” Europhys. Lett. 111, 44003 (2015).
[Crossref]

Siano, M.

B. Paroli, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence allows precise wavefront characterization,” Europhys. Lett. 122, 44001 (2018).
[Crossref]

B. Paroli, A. Cirella, I. Drebot, V. Petrillo, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence of OAM radiation reveals topological charge and local curvature,” J. Opt. 20, 075605 (2018).
[Crossref]

Soskin, M.

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 010401 (2016).
[Crossref]

Sponselli, A.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Tamburini, F.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7, 195–197 (2011).
[Crossref]

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with star light,” Astron. Astrophys. 488, 1159–1165 (2008).
[Crossref]

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97, 163903 (2006).
[Crossref] [PubMed]

F. Tamburini, B. Thidé, and M. Della Valle, “Measurement of the spin of the M87 black hole from its observed twisted light,” arXiv:1904.07923 [astro-ph.HE] (2019).

Tempone-Wiltshire, S. J.

S. J. Tempone-Wiltshire, S. P. Johnstone, and K. Helmerson, “Optical vortex knots - one photon at a time,” Sci. Rep. 6, 24463 (2016).
[Crossref] [PubMed]

Thidé, B.

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7, 195–197 (2011).
[Crossref]

F. Tamburini, B. Thidé, and M. Della Valle, “Measurement of the spin of the M87 black hole from its observed twisted light,” arXiv:1904.07923 [astro-ph.HE] (2019).

Trad, G.

B. Paroli, E. Bravin, S. Mazzoni, G. Trad, and M.A.C. Potenza, “A modified two-slit interferometer for characterizing the asymmetric lateral coherence of undulator radiation,” Europhys. Lett. 115, 14004 (2016).
[Crossref]

Tur, M.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Umbriaco, G.

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with star light,” Astron. Astrophys. 488, 1159–1165 (2008).
[Crossref]

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97, 163903 (2006).
[Crossref] [PubMed]

Ursin, R.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Vickers, J.

Vyas, R.

Wang, Z.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Willner, A.E.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Xie, G.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Yan, S.

Yan, Y.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Yonehara, T.

R. Inoue, T. Yonehara, Y. Miyamoto, M. Koashi, and M. Kozuma, “Measuring Qutrit-Qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon,” Phys. Rev. Lett. 103, 110503 (2009).
[Crossref] [PubMed]

Yuan, X.-C.

Zeilinger, A.

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

Zhang, C.

C. Zhang and L. Ma, “Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna,” Sci. Rep. 7, 4585 (2017).
[Crossref] [PubMed]

Zhang, N.

Zhang, P.

Zhang, X.

Zhao, S.

Zhao, Z.

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Zhou, H.

Zhou, Y.

Zhu, J.

Zou, H.

Y. Shen, G.T. Campbell, B. Hage, H. Zou, B.C. Buchler, and P.K. Lam, “Generation and interferometric analysis of high charge optical vortices,” J. Opt. 15, 044005 (2013).
[Crossref]

Am. J. Phys. (1)

V. Carpentier, H. Michinel, and J. R. Salgueiro, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008).
[Crossref]

Astron. Astrophys. (1)

G. Anzolin, F. Tamburini, A. Bianchini, G. Umbriaco, and C. Barbieri, “Optical vortices with star light,” Astron. Astrophys. 488, 1159–1165 (2008).
[Crossref]

Europhys. Lett. (3)

B. Paroli, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence allows precise wavefront characterization,” Europhys. Lett. 122, 44001 (2018).
[Crossref]

B. Paroli, E. Chiadroni, M. Ferrario, V. Petrillo, M.A.C. Potenza, A.R. Rossi, L. Serafini, and V. Shpakov, “Asymmetric lateral coherence of betatron radiation emitted in laser-driven light sources,” Europhys. Lett. 111, 44003 (2015).
[Crossref]

B. Paroli, E. Bravin, S. Mazzoni, G. Trad, and M.A.C. Potenza, “A modified two-slit interferometer for characterizing the asymmetric lateral coherence of undulator radiation,” Europhys. Lett. 115, 14004 (2016).
[Crossref]

J. Opt. (3)

B. Paroli, A. Cirella, I. Drebot, V. Petrillo, M. Siano, and M. A. C. Potenza, “Asymmetric lateral coherence of OAM radiation reveals topological charge and local curvature,” J. Opt. 20, 075605 (2018).
[Crossref]

M. Soskin, S. V. Boriskina, Y. Chong, M. R. Dennis, and A. Desyatnikov, “Singular optics and topological photonics,” J. Opt. 19, 010401 (2016).
[Crossref]

Y. Shen, G.T. Campbell, B. Hage, H. Zou, B.C. Buchler, and P.K. Lam, “Generation and interferometric analysis of high charge optical vortices,” J. Opt. 15, 044005 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Commun. (2)

M. Mirhosseini, M. Malik, Z. Shi, and R.W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref] [PubMed]

Y. Yan, G. Xie, M.P.J. Lavery, H. Huang, N. Ahmed, C. Bao, Y. Ren, Y. Cao, L. Li, Z. Zhao, A.F. Molisch, M. Tur, M.J. Padgett, and A.E. Willner, “High-capacity millimetre-wave communications with orbital angular momentum multiplexing,” Nat. Commun. 5, 4876 (2014).
[Crossref] [PubMed]

Nat. Phys. (1)

F. Tamburini, B. Thidé, G. Molina-Terriza, and G. Anzolin, “Twisting of light around rotating black holes,” Nat. Phys. 7, 195–197 (2011).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref] [PubMed]

New J. Phys. (2)

F. Tamburini, E. Mari, A. Sponselli, B. Thidé, A. Bianchini, and F. Romanato, “Encoding many channels on the same frequency through radio vorticity: first experimental test,” New J. Phys. 14, 033001 (2012).
[Crossref]

M. Krenn, R. Fickler, M. Fink, J. Handsteiner, M. Malik, T. Scheidl, R. Ursin, and A. Zeilinger, “Communication with spatially modulated light through turbulent air across Vienna,” New J. Phys. 16, 113028 (2014).
[Crossref]

Nucl. Instrum. Meth. Phys. Res. A (1)

B. Paroli, E. Chiadroni, M. Ferrario, and M.A.C. Potenza, “A systematic study of the asymmetric lateral coherence of radiation emitted by ultra-relativistic particles in laser-driven accelerators,” Nucl. Instrum. Meth. Phys. Res. A 839, 1–5 (2016).
[Crossref]

Nucl. Instrum. Meth. Phys. Res. B (1)

B. Paroli, E. Chiadroni, M. Ferrario, A. Mostacci, V. Petrillo, M.A.C. Potenza, A.R. Rossi, and L. Serafini, “Coherence properties and diagnostics of betatron radiation emitted by an externally-injected electron beam propagating in a plasma channel,” Nucl. Instrum. Meth. Phys. Res. B 355, 217–220 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Photon. Res. (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. Barbieri, “Overcoming the Rayleigh criterion limit with optical vortices,” Phys. Rev. Lett. 97, 163903 (2006).
[Crossref] [PubMed]

R. Inoue, T. Yonehara, Y. Miyamoto, M. Koashi, and M. Kozuma, “Measuring Qutrit-Qutrit entanglement of orbital angular momentum states of an atomic ensemble and a photon,” Phys. Rev. Lett. 103, 110503 (2009).
[Crossref] [PubMed]

G.C.G. Berkhout, M.P.J. Lavery, J. Courtial, M.W. Beijersbergen, and M.J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Sci. Rep. (2)

S. J. Tempone-Wiltshire, S. P. Johnstone, and K. Helmerson, “Optical vortex knots - one photon at a time,” Sci. Rep. 6, 24463 (2016).
[Crossref] [PubMed]

C. Zhang and L. Ma, “Detecting the orbital angular momentum of electro-magnetic waves using virtual rotational antenna,” Sci. Rep. 7, 4585 (2017).
[Crossref] [PubMed]

Other (1)

F. Tamburini, B. Thidé, and M. Della Valle, “Measurement of the spin of the M87 black hole from its observed twisted light,” arXiv:1904.07923 [astro-ph.HE] (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic representation of the experimental setup. Vortices are generated by diffraction from a holographic pattern imposed through a digital micromirror device (DMD). Intrinsic curvature is measured with the scanning interferometric technique detailed in [25] which uses an array of double-slits and a Charge Coupled Device (CCD) to perform measurements along linear profiles.
Fig. 2
Fig. 2 Left: Sketch of the helicoidal wavefront of OAM radiation and projection of the normal curvature (red line) on the detection plane. The local frame is given by the independent vectors (Pv, Pu). On the detection plane the reference system has coordinates (x, y). Right: Representation of the scan path (red) across the vortex cross-section and the subintervals (green and blue) used for the local analysis.
Fig. 3
Fig. 3 Experimental data (squares) of the shear displacements Δpϕ of the l = 1 (top) and l = 0 (bottom) beams measured with horizontal scans across the extended region. Dashed lines are the best fits to data. Solid linesare the difference between the fitted lines and the linear drifts due to the beam divergence. The green and blue regions in the plots evidence data used in the local analysis. Notice that the magnitude of Δpϕ of l = 1 and l = 0 are not at the same level since the curvatures due to the beam divergence are different.
Fig. 4
Fig. 4 Curvatures obtained from the fits shown in Fig. 3 for l = 1 and l = 0. The solid line is the difference between the curvature of the l = 1 beam and the curvature due to the beam divergence (0.26 m1). The inversion of the beam curvature is evident at x = 0 mm. The dashed line is the difference between the curvature of the l = 0 beam and the curvature due to the beam divergence (0.18 m1) which provides the curvature C = 0 of a collimated beam.
Fig. 5
Fig. 5 Experimental data of the shear displacements Δpϕ of the l = 1 beam measured with horizontal scans across the extended region. The shear displacement has been evaluated at different vertical distances from the singularity.
Fig. 6
Fig. 6 a) Representation of the spatial regions (red dashed lines) used in the experiment for the local analysis at different distances from the singularity. Each region has a horizontal range of ±160 μm and vertical range ±74 μm. b) Representation of other possible scan orientations. The ITICS is detected when the scan direction is orthogonal to the radial direction as in A and B. The scan along the radial direction as in C cannot be used to detect the ITICS.
Fig. 7
Fig. 7 Local analysis of the ITICS around x = −143 μm, y = −0.40 mm as in Fig. 3. p± are the probabilities that random fluctuations give correlation coefficients |r| ≥ |r±|.
Fig. 8
Fig. 8 Local analysis of the ITICS around the point at y = −0.55 mm and y = 0.41 mm as in Fig. 5. p± are the probabilities that random fluctuations give correlation coefficients |r| ≥ |r±|.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ p ϕ = ϕ z k d x + K
C = ϕ k = 1 z d Δ p ϕ d x .
p ± ( | r | | r 0 | ) = 2 Γ [ ( n 1 ) / 2 ] π Γ [ ( n 2 ) / 2 ] | r 0 | 1 ( 1 r 2 ) ( n 4 ) / 4 d r ,
ϕ P ( s ) = ϕ ( s ) + D ( s ) k ,
s = α q ,
ϕ P   '' ( q ) = ϕ ( s ) ( d s d q ) 2 + k D ( s ) ( d s d q ) 2   .
ϕ P   '' ( q ) = ϕ ( s ) α 2
C = C N α 2 ,
ϕ ( q ) = 1 q 2 q 2 + ρ h 2 q 2 + ρ h 2 .
Δ p ϕ ( x ) = A 1 ( x x 0 ) 2 ( x x 0 ) 2 + ρ h 2 ( x x 0 ) 2 + ρ h 2 + r d x + K