Abstract

We present a red-diode-pumped Alexandrite laser with continuous wavelength tunability, dual wavelength and self-Q-switching in an ultra-compact resonator containing only the gain medium. Wavelength tuning is obtained by varying the geometrical path length and birefringence by tilting a Brewster-cut Alexandrite crystal. Two crystals from independent suppliers are used to demonstrate and compare the performance. Wavelength tuning between 750 and 764 nm is demonstrated in the first crystal and between 747 and 768 nm in the second crystal. Stable dual wavelength operation is also obtained in both crystals with wavelength separation determined by the crystal free spectral range. Temperature tuning was also demonstrated to provide finer wavelength tuning at a rate of −0.07 nm K 1. Over a narrow tuning range, stable self-Q-switching is observed with a pulse duration of 660 ns at 135 kHz, which we believe is the highest Q-switched pulse rate in Alexandrite to date. Theoretical modelling is performed showing good agreement with the wavelength tuning and dual wavelength results.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Damzen, G. Thomas, A. Teppitaksak, E. Arbabzadah, W. Kerridge-Johns, and A. Minassian, “Diode-pumped alexandrite laser - a new prospect for remote sensing,” in 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), vol. 1 (2015), pp. 1–2.
  2. S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490 (2015).
    [Crossref]
  3. C. Lefort, “A review of biomedical multiphoton microscopy and its laser sources,” J. Phys. D: Appl. Phys. 50, 423001 (2017).
    [Crossref]
  4. M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
    [Crossref]
  5. C. Chow, C. Wong, and H. Tsang, “All-optical nrz to rz format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329–334 (2002).
    [Crossref]
  6. J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
    [Crossref]
  7. J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers, (Optical Society of America, 1990), p. CL3.
  8. E. Beyatli, I. Baali, B. Sumpf, G. Erbert, A. Leitenstorfer, A. Sennaroglu, and U. Demirbas, “Tapered diode-pumped continuous-wave alexandrite laser,” J. Opt. Soc. Am. B 30, 3184–3192 (2013).
    [Crossref]
  9. A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 w diode end-pumped alexandrite laser,” Opt. Express 22, 16386–16392 (2014).
    [Crossref] [PubMed]
  10. I. Yorulmaz, E. Beyatli, A. Kurt, A. Sennaroglu, and U. Demirbas, “Efficient and low-threshold alexandrite laser pumped by a single-mode diode,” Opt. Mater. Express 4, 776–789 (2014).
    [Crossref]
  11. W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable cw alexandrite lasers under diode end-pumping,” Opt. Express 26, 7771–7785 (2018).
    [Crossref] [PubMed]
  12. M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped alexandrite slab lasers,” Opt. Express 25, 11622–11636 (2017).
    [Crossref] [PubMed]
  13. G. M. Thomas, A. Minassian, and M. J. Damzen, “Optical vortex generation from a diode-pumped alexandrite laser,” Laser Phys. Lett. 15, 045804 (2018).
    [Crossref]
  14. G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped alexandrite lasers in q-switched and cavity-dumped q-switched operation,” Opt. Express 24, 27212–27224 (2016).
    [Crossref] [PubMed]
  15. U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped alexandrite laser with passive sesam q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
    [Crossref]
  16. A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26, 14928–14935 (2018).
    [Crossref] [PubMed]
  17. A. Munk, M. Strotkamp, M. Walochnik, B. Jungbluth, M. Traub, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped q-switched alexandrite laser in single longitudinal mode operation with watt-level output power,” Opt. Lett. 43, 5492–5495 (2018).
    [Crossref] [PubMed]
  18. X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave alexandrite ring laser with wavelength tunability,” Opt. Express 26, 31129–31136 (2018).
    [Crossref]
  19. W. R. Kerridge-Johns and M. J. Damzen, “Analytical model of tunable alexandrite lasing under diode end-pumping with experimental comparison,” J. Opt. Soc. Am. B 33, 2525–2534 (2016).
    [Crossref]
  20. S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14, 105001 (2017).
    [Crossref]
  21. S. Manjooran, P. Loiko, and A. Major, “A discretely tunable dual-wavelength multi-watt yb:calgo laser,” Appl. Phys. B 124, 13 (2017).
    [Crossref]
  22. T. Waritanant and A. Major, “Dual-wavelength operation of a diode-pumped nd:yvo4 laser at the 1064.1 & 1073.1nm and 1064.1 & 1085.3nm wavelength pairs,” Appl. Phys. B 124, 87 (2018).
    [Crossref]
  23. E. Beyatli and U. Demirbas, “Widely tunable dual-wavelength operation of tm:ylf, tm:luag, and tm:yag lasers using off-surface optic axis birefringent filters,” Appl. Opt. 57, 6679–6686 (2018).
    [Crossref] [PubMed]
  24. U. Demirbas, “Optimized birefringent filter design for broadly tunable multicolor laser operation of nd-based lasers: Nd:yag example,” J. Opt. Soc. Am. B 35, 2994–3003 (2018).
    [Crossref]
  25. E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped alexandrite tem00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13, 065002 (2016).
    [Crossref]
  26. P. Loiko and A. Major, “Dispersive properties of alexandrite and beryllium hexaaluminate crystals,” Opt. Mater. Express 6, 2177–2183 (2016).
    [Crossref]
  27. M. Born and E. Wolf, Principles of Optics(Pergamon Press, 1980, VI ed.).
  28. S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 5642–5644 (1983).
    [Crossref]
  29. W. Gadomski and B. Ratajska-Gadomska, “Self-pulsations in phonon-assisted lasers,” J. Opt. Soc. Am. B 15, 2681–2688 (1998).
    [Crossref]
  30. J. W. Kuper and D. C. Brown, “High-efficiency cw green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
    [Crossref]
  31. S. Ghanbari, R. Akbari, and A. Major, “Femtosecond kerr-lens mode-locked alexandrite laser,” Opt. Express 24, 14836–14840 (2016).
    [Crossref] [PubMed]
  32. S. Ghanbari, K. A. Fedorova, A. B. Krysa, E. U. Rafailov, and A. Major, “Femtosecond alexandrite laser passively mode-locked by an inp/ingap quantum-dot saturable absorber,” Opt. Lett. 43, 232–234 (2018).
    [Crossref] [PubMed]
  33. C. Cihan, A. Muti, I. Baylam, A. Kocabas, U. Demirbas, and A. Sennaroglu, “70 femtosecond kerr-lens mode-locked multipass-cavity alexandrite laser,” Opt. Lett. 43, 1315–1318 (2018).
    [Crossref] [PubMed]
  34. C. Cihan, C. Kocabas, U. Demirbas, and A. Sennaroglu, “Graphene mode-locked femtosecond alexandrite laser,” Opt. Lett. 43, 3969–3972 (2018).
    [Crossref] [PubMed]
  35. D. Skrabelj, I. Drevensek-Olenik, and M. Marincek, “Influence of the population lens on the em field evolution in chromium-doped laser materials,” IEEE J. Quantum Electron. 46, 361–367 (2010).
    [Crossref]
  36. E. Beyatli, A. Sennaroglu, and U. Demirbas, “Self-q-switched cr:licaf laser,” J. Opt. Soc. Am. B 30, 914–921 (2013).
    [Crossref]
  37. R. C. Powell and S. A. Payne, “Dispersion effects in four-wave mixing measurements of ions in solids,” Opt. Lett. 15, 1233–1235 (1990).
    [Crossref] [PubMed]
  38. J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
    [Crossref]
  39. P. Loiko, S. Ghanbari, V. Matrosov, K. Yumashev, and A. Major, “Dispersion and anisotropy of thermo-optical properties of alexandrite laser crystal,” Opt. Mater. Express 8, 3000–3006 (2018).
    [Crossref]

2018 (13)

G. M. Thomas, A. Minassian, and M. J. Damzen, “Optical vortex generation from a diode-pumped alexandrite laser,” Laser Phys. Lett. 15, 045804 (2018).
[Crossref]

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped alexandrite laser with passive sesam q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

T. Waritanant and A. Major, “Dual-wavelength operation of a diode-pumped nd:yvo4 laser at the 1064.1 & 1073.1nm and 1064.1 & 1085.3nm wavelength pairs,” Appl. Phys. B 124, 87 (2018).
[Crossref]

S. Ghanbari, K. A. Fedorova, A. B. Krysa, E. U. Rafailov, and A. Major, “Femtosecond alexandrite laser passively mode-locked by an inp/ingap quantum-dot saturable absorber,” Opt. Lett. 43, 232–234 (2018).
[Crossref] [PubMed]

C. Cihan, A. Muti, I. Baylam, A. Kocabas, U. Demirbas, and A. Sennaroglu, “70 femtosecond kerr-lens mode-locked multipass-cavity alexandrite laser,” Opt. Lett. 43, 1315–1318 (2018).
[Crossref] [PubMed]

W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable cw alexandrite lasers under diode end-pumping,” Opt. Express 26, 7771–7785 (2018).
[Crossref] [PubMed]

A. Munk, B. Jungbluth, M. Strotkamp, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped alexandrite ring laser in single-longitudinal mode operation for atmospheric lidar measurements,” Opt. Express 26, 14928–14935 (2018).
[Crossref] [PubMed]

E. Beyatli and U. Demirbas, “Widely tunable dual-wavelength operation of tm:ylf, tm:luag, and tm:yag lasers using off-surface optic axis birefringent filters,” Appl. Opt. 57, 6679–6686 (2018).
[Crossref] [PubMed]

C. Cihan, C. Kocabas, U. Demirbas, and A. Sennaroglu, “Graphene mode-locked femtosecond alexandrite laser,” Opt. Lett. 43, 3969–3972 (2018).
[Crossref] [PubMed]

P. Loiko, S. Ghanbari, V. Matrosov, K. Yumashev, and A. Major, “Dispersion and anisotropy of thermo-optical properties of alexandrite laser crystal,” Opt. Mater. Express 8, 3000–3006 (2018).
[Crossref]

A. Munk, M. Strotkamp, M. Walochnik, B. Jungbluth, M. Traub, H.-D. Hoffmann, R. Poprawe, J. Höffner, and F.-J. Lübken, “Diode-pumped q-switched alexandrite laser in single longitudinal mode operation with watt-level output power,” Opt. Lett. 43, 5492–5495 (2018).
[Crossref] [PubMed]

X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave alexandrite ring laser with wavelength tunability,” Opt. Express 26, 31129–31136 (2018).
[Crossref]

U. Demirbas, “Optimized birefringent filter design for broadly tunable multicolor laser operation of nd-based lasers: Nd:yag example,” J. Opt. Soc. Am. B 35, 2994–3003 (2018).
[Crossref]

2017 (4)

S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14, 105001 (2017).
[Crossref]

S. Manjooran, P. Loiko, and A. Major, “A discretely tunable dual-wavelength multi-watt yb:calgo laser,” Appl. Phys. B 124, 13 (2017).
[Crossref]

C. Lefort, “A review of biomedical multiphoton microscopy and its laser sources,” J. Phys. D: Appl. Phys. 50, 423001 (2017).
[Crossref]

M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped alexandrite slab lasers,” Opt. Express 25, 11622–11636 (2017).
[Crossref] [PubMed]

2016 (5)

2015 (1)

S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490 (2015).
[Crossref]

2014 (2)

2013 (2)

2010 (1)

D. Skrabelj, I. Drevensek-Olenik, and M. Marincek, “Influence of the population lens on the em field evolution in chromium-doped laser materials,” IEEE J. Quantum Electron. 46, 361–367 (2010).
[Crossref]

2006 (1)

J. W. Kuper and D. C. Brown, “High-efficiency cw green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[Crossref]

2002 (1)

C. Chow, C. Wong, and H. Tsang, “All-optical nrz to rz format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329–334 (2002).
[Crossref]

2000 (1)

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[Crossref]

1998 (1)

1990 (1)

1985 (1)

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

1983 (1)

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 5642–5644 (1983).
[Crossref]

1980 (1)

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Akbari, R.

Arbabzadah, E.

M. Damzen, G. Thomas, A. Teppitaksak, E. Arbabzadah, W. Kerridge-Johns, and A. Minassian, “Diode-pumped alexandrite laser - a new prospect for remote sensing,” in 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), vol. 1 (2015), pp. 1–2.

Arbabzadah, E. A.

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped alexandrite tem00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13, 065002 (2016).
[Crossref]

Aschoff, H. E.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers, (Optical Society of America, 1990), p. CL3.

Baali, I.

Baylam, I.

Beyatli, E.

Born, M.

M. Born and E. Wolf, Principles of Optics(Pergamon Press, 1980, VI ed.).

Brown, D. C.

J. W. Kuper and D. C. Brown, “High-efficiency cw green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[Crossref]

Burd, S.

S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490 (2015).
[Crossref]

Chin, T.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers, (Optical Society of America, 1990), p. CL3.

Chow, C.

C. Chow, C. Wong, and H. Tsang, “All-optical nrz to rz format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329–334 (2002).
[Crossref]

Cihan, C.

Damzen, M.

M. Damzen, G. Thomas, A. Teppitaksak, E. Arbabzadah, W. Kerridge-Johns, and A. Minassian, “Diode-pumped alexandrite laser - a new prospect for remote sensing,” in 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), vol. 1 (2015), pp. 1–2.

Damzen, M. J.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped alexandrite laser with passive sesam q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

G. M. Thomas, A. Minassian, and M. J. Damzen, “Optical vortex generation from a diode-pumped alexandrite laser,” Laser Phys. Lett. 15, 045804 (2018).
[Crossref]

W. R. Kerridge-Johns and M. J. Damzen, “Temperature effects on tunable cw alexandrite lasers under diode end-pumping,” Opt. Express 26, 7771–7785 (2018).
[Crossref] [PubMed]

X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave alexandrite ring laser with wavelength tunability,” Opt. Express 26, 31129–31136 (2018).
[Crossref]

M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped alexandrite slab lasers,” Opt. Express 25, 11622–11636 (2017).
[Crossref] [PubMed]

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped alexandrite lasers in q-switched and cavity-dumped q-switched operation,” Opt. Express 24, 27212–27224 (2016).
[Crossref] [PubMed]

W. R. Kerridge-Johns and M. J. Damzen, “Analytical model of tunable alexandrite lasing under diode end-pumping with experimental comparison,” J. Opt. Soc. Am. B 33, 2525–2534 (2016).
[Crossref]

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped alexandrite tem00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13, 065002 (2016).
[Crossref]

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 w diode end-pumped alexandrite laser,” Opt. Express 22, 16386–16392 (2014).
[Crossref] [PubMed]

Demirbas, U.

Drevensek-Olenik, I.

D. Skrabelj, I. Drevensek-Olenik, and M. Marincek, “Influence of the population lens on the em field evolution in chromium-doped laser materials,” IEEE J. Quantum Electron. 46, 361–367 (2010).
[Crossref]

Erbert, G.

Fedorova, K. A.

Gadomski, W.

Ghanbari, S.

Gu, P.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[Crossref]

Harter, D.

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

Heller, D.

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

Hidaka, T.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[Crossref]

Hoffmann, H.-D.

Höffner, J.

Hyodo, M.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[Crossref]

Jenssen, H.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Jungbluth, B.

Kerridge-Johns, W.

M. Damzen, G. Thomas, A. Teppitaksak, E. Arbabzadah, W. Kerridge-Johns, and A. Minassian, “Diode-pumped alexandrite laser - a new prospect for remote sensing,” in 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), vol. 1 (2015), pp. 1–2.

Kerridge-Johns, W. R.

Kocabas, A.

Kocabas, C.

Krysa, A. B.

Kuper, J. W.

J. W. Kuper and D. C. Brown, “High-efficiency cw green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[Crossref]

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers, (Optical Society of America, 1990), p. CL3.

Kurt, A.

Lai, S. T.

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 5642–5644 (1983).
[Crossref]

Lefort, C.

C. Lefort, “A review of biomedical multiphoton microscopy and its laser sources,” J. Phys. D: Appl. Phys. 50, 423001 (2017).
[Crossref]

Leibfried, D.

S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490 (2015).
[Crossref]

Leitenstorfer, A.

Loiko, P.

Lübken, F.-J.

Major, A.

Manjooran, S.

S. Manjooran, P. Loiko, and A. Major, “A discretely tunable dual-wavelength multi-watt yb:calgo laser,” Appl. Phys. B 124, 13 (2017).
[Crossref]

Marincek, M.

D. Skrabelj, I. Drevensek-Olenik, and M. Marincek, “Influence of the population lens on the em field evolution in chromium-doped laser materials,” IEEE J. Quantum Electron. 46, 361–367 (2010).
[Crossref]

Matrosov, V.

Minassian, A.

G. M. Thomas, A. Minassian, and M. J. Damzen, “Optical vortex generation from a diode-pumped alexandrite laser,” Laser Phys. Lett. 15, 045804 (2018).
[Crossref]

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped alexandrite laser with passive sesam q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave alexandrite ring laser with wavelength tunability,” Opt. Express 26, 31129–31136 (2018).
[Crossref]

M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped alexandrite slab lasers,” Opt. Express 25, 11622–11636 (2017).
[Crossref] [PubMed]

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped alexandrite lasers in q-switched and cavity-dumped q-switched operation,” Opt. Express 24, 27212–27224 (2016).
[Crossref] [PubMed]

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 w diode end-pumped alexandrite laser,” Opt. Express 22, 16386–16392 (2014).
[Crossref] [PubMed]

M. Damzen, G. Thomas, A. Teppitaksak, E. Arbabzadah, W. Kerridge-Johns, and A. Minassian, “Diode-pumped alexandrite laser - a new prospect for remote sensing,” in 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), vol. 1 (2015), pp. 1–2.

Morris, R.

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Munk, A.

Muti, A.

O’Dell, E.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Parali, U.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped alexandrite laser with passive sesam q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

Payne, S. A.

Pete, J.

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

Peterson, O.

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Poprawe, R.

Powell, R. C.

Rafailov, E. U.

Ratajska-Gadomska, B.

Sakai, K.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[Crossref]

Samelson, H.

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

Sathian, J.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped alexandrite laser with passive sesam q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave alexandrite ring laser with wavelength tunability,” Opt. Express 26, 31129–31136 (2018).
[Crossref]

Sennaroglu, A.

Shand, M. L.

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 5642–5644 (1983).
[Crossref]

Sheng, X.

Skrabelj, D.

D. Skrabelj, I. Drevensek-Olenik, and M. Marincek, “Influence of the population lens on the em field evolution in chromium-doped laser materials,” IEEE J. Quantum Electron. 46, 361–367 (2010).
[Crossref]

Strotkamp, M.

Sumpf, B.

Tani, M.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[Crossref]

Tawy, G.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped alexandrite laser with passive sesam q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

X. Sheng, G. Tawy, J. Sathian, A. Minassian, and M. J. Damzen, “Unidirectional single-frequency operation of a continuous-wave alexandrite ring laser with wavelength tunability,” Opt. Express 26, 31129–31136 (2018).
[Crossref]

Teppitaksak, A.

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 w diode end-pumped alexandrite laser,” Opt. Express 22, 16386–16392 (2014).
[Crossref] [PubMed]

M. Damzen, G. Thomas, A. Teppitaksak, E. Arbabzadah, W. Kerridge-Johns, and A. Minassian, “Diode-pumped alexandrite laser - a new prospect for remote sensing,” in 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), vol. 1 (2015), pp. 1–2.

Thomas, G.

M. Damzen, G. Thomas, A. Teppitaksak, E. Arbabzadah, W. Kerridge-Johns, and A. Minassian, “Diode-pumped alexandrite laser - a new prospect for remote sensing,” in 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), vol. 1 (2015), pp. 1–2.

Thomas, G. M.

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped alexandrite laser with passive sesam q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

G. M. Thomas, A. Minassian, and M. J. Damzen, “Optical vortex generation from a diode-pumped alexandrite laser,” Laser Phys. Lett. 15, 045804 (2018).
[Crossref]

M. J. Damzen, G. M. Thomas, and A. Minassian, “Diode-side-pumped alexandrite slab lasers,” Opt. Express 25, 11622–11636 (2017).
[Crossref] [PubMed]

G. M. Thomas, A. Minassian, X. Sheng, and M. J. Damzen, “Diode-pumped alexandrite lasers in q-switched and cavity-dumped q-switched operation,” Opt. Express 24, 27212–27224 (2016).
[Crossref] [PubMed]

A. Teppitaksak, A. Minassian, G. M. Thomas, and M. J. Damzen, “High efficiency >26 w diode end-pumped alexandrite laser,” Opt. Express 22, 16386–16392 (2014).
[Crossref] [PubMed]

Traub, M.

Tsang, H.

C. Chow, C. Wong, and H. Tsang, “All-optical nrz to rz format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329–334 (2002).
[Crossref]

Walling, J.

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

Walochnik, M.

Waritanant, T.

T. Waritanant and A. Major, “Dual-wavelength operation of a diode-pumped nd:yvo4 laser at the 1064.1 & 1073.1nm and 1064.1 & 1085.3nm wavelength pairs,” Appl. Phys. B 124, 87 (2018).
[Crossref]

Wilson, A. C.

S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490 (2015).
[Crossref]

Wineland, D. J.

S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490 (2015).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics(Pergamon Press, 1980, VI ed.).

Wong, C.

C. Chow, C. Wong, and H. Tsang, “All-optical nrz to rz format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329–334 (2002).
[Crossref]

Yorulmaz, I.

Yumashev, K.

Appl. Opt. (1)

Appl. Phys. B (2)

S. Manjooran, P. Loiko, and A. Major, “A discretely tunable dual-wavelength multi-watt yb:calgo laser,” Appl. Phys. B 124, 13 (2017).
[Crossref]

T. Waritanant and A. Major, “Dual-wavelength operation of a diode-pumped nd:yvo4 laser at the 1064.1 & 1073.1nm and 1064.1 & 1085.3nm wavelength pairs,” Appl. Phys. B 124, 87 (2018).
[Crossref]

IEEE J. Quantum Electron. (3)

D. Skrabelj, I. Drevensek-Olenik, and M. Marincek, “Influence of the population lens on the em field evolution in chromium-doped laser materials,” IEEE J. Quantum Electron. 46, 361–367 (2010).
[Crossref]

J. Walling, O. Peterson, H. Jenssen, R. Morris, and E. O’Dell, “Tunable Alexandrite lasers,” IEEE J. Quantum Electron. 16, 1302–1315 (1980).
[Crossref]

J. Walling, D. Heller, H. Samelson, D. Harter, J. Pete, and R. Morris, “Tunable alexandrite lasers: Development and performance,” IEEE J. Quantum Electron. 21, 1568–1581 (1985).
[Crossref]

J. Appl. Phys. (1)

S. T. Lai and M. L. Shand, “High efficiency cw laser-pumped tunable alexandrite laser,” J. Appl. Phys. 54, 5642–5644 (1983).
[Crossref]

J. Opt. Soc. Am. B (5)

J. Phys. D: Appl. Phys. (1)

C. Lefort, “A review of biomedical multiphoton microscopy and its laser sources,” J. Phys. D: Appl. Phys. 50, 423001 (2017).
[Crossref]

Laser Phys. Lett. (3)

G. M. Thomas, A. Minassian, and M. J. Damzen, “Optical vortex generation from a diode-pumped alexandrite laser,” Laser Phys. Lett. 15, 045804 (2018).
[Crossref]

E. A. Arbabzadah and M. J. Damzen, “Fibre-coupled red diode-pumped alexandrite tem00 laser with single and double-pass end-pumping,” Laser Phys. Lett. 13, 065002 (2016).
[Crossref]

S. Ghanbari and A. Major, “High power continuous-wave dual-wavelength alexandrite laser,” Laser Phys. Lett. 14, 105001 (2017).
[Crossref]

Opt. Commun. (2)

U. Parali, X. Sheng, A. Minassian, G. Tawy, J. Sathian, G. M. Thomas, and M. J. Damzen, “Diode-pumped alexandrite laser with passive sesam q-switching and wavelength tunability,” Opt. Commun. 410, 970–976 (2018).
[Crossref]

C. Chow, C. Wong, and H. Tsang, “All-optical nrz to rz format and wavelength converter by dual-wavelength injection locking,” Opt. Commun. 209, 329–334 (2002).
[Crossref]

Opt. Express (7)

Opt. Lett. (5)

Opt. Mater. Express (3)

Opt. Quantum Electron. (1)

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32, 503–520 (2000).
[Crossref]

Proc. SPIE (2)

S. Burd, D. Leibfried, A. C. Wilson, and D. J. Wineland, “Optically pumped semiconductor lasers for atomic and molecular physics,” Proc. SPIE 9349, 93490 (2015).
[Crossref]

J. W. Kuper and D. C. Brown, “High-efficiency cw green-pumped alexandrite lasers,” Proc. SPIE 6100, 61000T (2006).
[Crossref]

Other (3)

M. Born and E. Wolf, Principles of Optics(Pergamon Press, 1980, VI ed.).

M. Damzen, G. Thomas, A. Teppitaksak, E. Arbabzadah, W. Kerridge-Johns, and A. Minassian, “Diode-pumped alexandrite laser - a new prospect for remote sensing,” in 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), vol. 1 (2015), pp. 1–2.

J. W. Kuper, T. Chin, and H. E. Aschoff, “Extended tuning range of alexandrite at elevated temperatures,” in Advanced Solid State Lasers, (Optical Society of America, 1990), p. CL3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Index ellipsoid of Alexandrite. Optic axes, O1 and O2, lie in the bc-plane (shown shaded). (b) Refractive index for light polarised to the a, b and c crystal axes as a function of wavelength. Inset shows refractive index in the lasing band of Alexandrite between 700 nm and 850 nm. Data taken from [6] with Sellmeier fit applied.
Fig. 2
Fig. 2 Alexandrite compact laser cavity with crystal axes shown.
Fig. 3
Fig. 3 Laser power as a function of absorbed pump power with linear fit. Inset shows laser wavelength spectrum and beam profile at maximum power for (a) crystal 1 and (b) crystal 2.
Fig. 4
Fig. 4 Frequency spectrum for crystal 2 with Fabry-Perot interference pattern shown in inset.
Fig. 5
Fig. 5 (a) Top-view showing beam propagation in the crystal bc-plane. (b) Side-view showing beam propagation in the crystal ac-plane. (c) Angular position of the optic axes (O1, O2) with respect to the crystal b and c axes (γb, γc) and to the beam path (γ1, γ2).
Fig. 6
Fig. 6 Wavelength as a function of vertical angle of incidence for (a) crystal 1 and (b) crystal 2, and as a function of horizontal angle of incidence for (c) crystal 1 and (d) crystal 2. Yellow region indicates dual wavelength operation with ∼12nm separation. Grey region is where spectrum was highly modulated. Laser power and single surface loss for crystal 1 as a function of (e) vertical angle of incidence and (f) horizontal angle of incidence with theoretical Fresnel loss shown as dashed line.
Fig. 7
Fig. 7 Laser spectrum for crystal 1 at θV = 8.3° and θH = θB where dual wavelength operation was observed at wavelengths of 750.1 nm and 762.1 nm (12 nm separation).
Fig. 8
Fig. 8 Wavelength as a function of water temperature for (a) crystal 1 (b) crystal 2 with yellow region indicating dual wavelength operation.
Fig. 9
Fig. 9 (a) Average laser power as a function of absorbed power for SQS laser. Inset shows modulated spectrum and spatial beam profile at maximum power. (b) Temporal output showing 980 ns Q-switched pulse at 1.46 W of average power. Inset shows long-capture of stable Q-switched pulse train.
Fig. 10
Fig. 10 (a) Measured and theoretical wavelength (blue) as a function of the vertical angle of incidence with m + 1 order shifted +12 nm. (b) Measured and theoretical wavelength (blue) as a function of the horizontal angle of incidence with m + 1 order shifted +12 nm and m − 1 order shifted −12 nm.

Tables (1)

Tables Icon

Table 1 Refractive index along the a, b and c crystal axes and refractive index difference at 700, 750 and 800 nm determined from Sellmeier fit in Fig. 1(b).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

sin  γ b = n b n a n a 2 n c 2 n b 2 n c 2 .
Δ ϕ = 2 π λ Δ n L
λ m = Δ n L m .
Δ λ FSR = λ m λ m 1 λ m 2 Δ n L
L = L 0 cos  θ H ' cos  θ V ' ,
Δ n = ( n b n c ) sin  γ 1 sin  γ 2 = Δ n b c sin  γ 1 sin  γ 2 ,
λ m = Δ n b c L 0 m sin  γ 1 sin  γ 2 cos  θ H ' cos  θ V ' .
λ m 0 = Δ n b c L 0 m cos 2 γ b cos  θ B ' .
λ m ( θ H ' , θ V ' ) = λ m 0 ( cos  θ B ' cos  θ H ' cos  θ V ' ) ( sin  γ 1 sin  γ 2 cos 2 γ b ) .
λ m ( θ V ' ) = λ m 0 ( 1 cos  θ V ' ) ( 1 cos 2 θ V ' cos 2 γ c cos 2 γ b ) .
λ m ( θ H ' ) = λ m 0 ( cos  θ B ' cos  θ H ' ) ( cos  ( γ b + ϕ c ) cos  ( γ b ϕ c ) cos 2 γ b ) .
Δ λ FSR = λ m 2 Δ n L = λ m 2 c o s   θ H ' c o s   θ V ' Δ n b c L 0 s i n   γ 1 s i n   γ 2 .
d λ m d T = Δ n b c sin  γ 1 sin  γ 2 m d L d T + L m d d T ( Δ n b c sin  γ 1 sin  γ 2 ) .
d Δ n b a d T = Δ n b a λ m d λ m d T .
d Δ n b a d T = d n b d T d n a d T = 0.5 × 10 6 K 1 .