Abstract

Based on Bethe’s theory, light is hard to transmit through sub-wavelength apertures. However, a special designed sub-wavelength bowtie aperture is found to be able to transmit light with high efficiency. In this letter, modal analysis is used to study the hybridized plasmonic modes and Fabry-Perot effect of the nanoscale bowtie aperture waveguide. High frequency structure simulator (HFSS) simulations in perfect electrically conductor (PEC) and real metals are performed to calculate the fundamental mode, higher order mode, as well as their own cutoff wavelength. Mode analysis can give a better understanding of the intrinsic link between the plasmonic effects and Fabry-Perot effect. The TE10 and TE30 modes hybridize with channel plasmon polaritons (CPPs) modes and surface plasmon polaritons (SPPs) modes respectively. Experiments are carried out to verify the numerical results. These results are of great significance for understanding the internal mechanism of the bowtie aperture for coupling light to a sub-diffraction limited spot with high transmission efficiency.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures

Edward C. Kinzel and Xianfan Xu
Opt. Express 17(10) 8036-8045 (2009)

Waveguiding in nanoscale metallic apertures

Stéphane Collin, Fabrice Pardo, and Jean-Luc Pelouard
Opt. Express 15(7) 4310-4320 (2007)

Surface plasmon mode analysis of nanoscale metallic rectangular waveguide

Fanmin Kong, Bae-Ian Wu, Hongsheng Chen, and Jin Au Kong
Opt. Express 15(19) 12331-12337 (2007)

References

  • View by:
  • |
  • |
  • |

  1. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
    [Crossref]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [Crossref] [PubMed]
  4. J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
    [Crossref] [PubMed]
  5. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref] [PubMed]
  6. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
    [Crossref] [PubMed]
  7. S. Davy and M. Spajer, “Near field optics: Snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69(22), 3306–3308 (1996).
    [Crossref]
  8. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
    [Crossref] [PubMed]
  9. X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
    [Crossref]
  10. X. L. Shi, and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Japanese Journal Of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 41, 1632–1635 (2002).
  11. E. X. Jin and X. F. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
    [Crossref]
  12. L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
    [Crossref] [PubMed]
  13. L. Wang and X. F. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
    [Crossref]
  14. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
    [Crossref] [PubMed]
  15. L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(Pt 3), 483–489 (2008).
    [Crossref] [PubMed]
  16. L. Ding and L. Wang, “Numerical and experimental study of nanolithography using nanoscale C-shaped aperture,” Appl. Phys., A Mater. Sci. Process. 119(3), 1133–1141 (2015).
    [Crossref]
  17. L. Wang and X. Xu, “Spectral resonance of nanoscale bowtie apertures in visible wavelength,” Appl. Phys., A Mater. Sci. Process. 89(2), 293–297 (2007).
    [Crossref]
  18. T. Coenen and A. Polman, “Optical properties of single plasmonic holes probed with local electron beam excitation,” ACS Nano 8(7), 7350–7358 (2014).
    [Crossref] [PubMed]
  19. D. Rossouw and G. A. Botton, “Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding,” Phys. Rev. Lett. 110(6), 066801 (2013).
    [Crossref] [PubMed]
  20. A. Teulle, M. Bosman, C. Girard, K. L. Gurunatha, M. Li, S. Mann, and E. Dujardin, “Multimodal plasmonics in fused colloidal networks,” Nat. Mater. 14(1), 87–94 (2015).
    [Crossref] [PubMed]
  21. Q. M. Ngo, Y.-L. D. Ho, J. R. Pugh, A. Sarua, and M. J. Cryan, “Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays,” Curr. Appl. Phys. 18(7), 793–798 (2018).
    [Crossref]
  22. X. Y. He, G. N. Xiao, F. Liu, F. T. Lin, and W. Z. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9(1), 44–55 (2019).
    [Crossref]
  23. J. Zheng, W. D. Chen, X. C. Liu, Y. R. Huang, Y. Y. Liu, L. Li, and Z. W. Xie, “Forming sub-45-nm high-aspect circle-symmetric spots with double bowtie aperture combined with metal-insulator-metal structure,” Appl. Surf. Sci. 447, 300–306 (2018).
    [Crossref]

2019 (1)

2018 (2)

J. Zheng, W. D. Chen, X. C. Liu, Y. R. Huang, Y. Y. Liu, L. Li, and Z. W. Xie, “Forming sub-45-nm high-aspect circle-symmetric spots with double bowtie aperture combined with metal-insulator-metal structure,” Appl. Surf. Sci. 447, 300–306 (2018).
[Crossref]

Q. M. Ngo, Y.-L. D. Ho, J. R. Pugh, A. Sarua, and M. J. Cryan, “Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays,” Curr. Appl. Phys. 18(7), 793–798 (2018).
[Crossref]

2015 (2)

A. Teulle, M. Bosman, C. Girard, K. L. Gurunatha, M. Li, S. Mann, and E. Dujardin, “Multimodal plasmonics in fused colloidal networks,” Nat. Mater. 14(1), 87–94 (2015).
[Crossref] [PubMed]

L. Ding and L. Wang, “Numerical and experimental study of nanolithography using nanoscale C-shaped aperture,” Appl. Phys., A Mater. Sci. Process. 119(3), 1133–1141 (2015).
[Crossref]

2014 (1)

T. Coenen and A. Polman, “Optical properties of single plasmonic holes probed with local electron beam excitation,” ACS Nano 8(7), 7350–7358 (2014).
[Crossref] [PubMed]

2013 (1)

D. Rossouw and G. A. Botton, “Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding,” Phys. Rev. Lett. 110(6), 066801 (2013).
[Crossref] [PubMed]

2009 (1)

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

2008 (3)

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
[Crossref] [PubMed]

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(Pt 3), 483–489 (2008).
[Crossref] [PubMed]

2007 (2)

L. Wang and X. Xu, “Spectral resonance of nanoscale bowtie apertures in visible wavelength,” Appl. Phys., A Mater. Sci. Process. 89(2), 293–297 (2007).
[Crossref]

L. Wang and X. F. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[Crossref]

2006 (2)

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
[Crossref] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

2005 (2)

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

E. X. Jin and X. F. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

2004 (1)

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

1999 (1)

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1996 (1)

S. Davy and M. Spajer, “Near field optics: Snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69(22), 3306–3308 (1996).
[Crossref]

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Blaikie, R. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

Bosman, M.

A. Teulle, M. Bosman, C. Girard, K. L. Gurunatha, M. Li, S. Mann, and E. Dujardin, “Multimodal plasmonics in fused colloidal networks,” Nat. Mater. 14(1), 87–94 (2015).
[Crossref] [PubMed]

Botton, G. A.

D. Rossouw and G. A. Botton, “Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding,” Phys. Rev. Lett. 110(6), 066801 (2013).
[Crossref] [PubMed]

Chen, W. D.

J. Zheng, W. D. Chen, X. C. Liu, Y. R. Huang, Y. Y. Liu, L. Li, and Z. W. Xie, “Forming sub-45-nm high-aspect circle-symmetric spots with double bowtie aperture combined with metal-insulator-metal structure,” Appl. Surf. Sci. 447, 300–306 (2018).
[Crossref]

Cheung, R.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

Coenen, T.

T. Coenen and A. Polman, “Optical properties of single plasmonic holes probed with local electron beam excitation,” ACS Nano 8(7), 7350–7358 (2014).
[Crossref] [PubMed]

Cryan, M. J.

Q. M. Ngo, Y.-L. D. Ho, J. R. Pugh, A. Sarua, and M. J. Cryan, “Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays,” Curr. Appl. Phys. 18(7), 793–798 (2018).
[Crossref]

Cumming, D. R. S.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

Davy, S.

S. Davy and M. Spajer, “Near field optics: Snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69(22), 3306–3308 (1996).
[Crossref]

Ding, L.

L. Ding and L. Wang, “Numerical and experimental study of nanolithography using nanoscale C-shaped aperture,” Appl. Phys., A Mater. Sci. Process. 119(3), 1133–1141 (2015).
[Crossref]

Dujardin, E.

A. Teulle, M. Bosman, C. Girard, K. L. Gurunatha, M. Li, S. Mann, and E. Dujardin, “Multimodal plasmonics in fused colloidal networks,” Nat. Mater. 14(1), 87–94 (2015).
[Crossref] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Freeman, R. G.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Girard, C.

A. Teulle, M. Bosman, C. Girard, K. L. Gurunatha, M. Li, S. Mann, and E. Dujardin, “Multimodal plasmonics in fused colloidal networks,” Nat. Mater. 14(1), 87–94 (2015).
[Crossref] [PubMed]

Gurunatha, K. L.

A. Teulle, M. Bosman, C. Girard, K. L. Gurunatha, M. Li, S. Mann, and E. Dujardin, “Multimodal plasmonics in fused colloidal networks,” Nat. Mater. 14(1), 87–94 (2015).
[Crossref] [PubMed]

Halas, N. J.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hao, F.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

He, X. Y.

Henry, A. I.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Ho, Y.-L. D.

Q. M. Ngo, Y.-L. D. Ho, J. R. Pugh, A. Sarua, and M. J. Cryan, “Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays,” Curr. Appl. Phys. 18(7), 793–798 (2018).
[Crossref]

Huang, Y. R.

J. Zheng, W. D. Chen, X. C. Liu, Y. R. Huang, Y. Y. Liu, L. Li, and Z. W. Xie, “Forming sub-45-nm high-aspect circle-symmetric spots with double bowtie aperture combined with metal-insulator-metal structure,” Appl. Surf. Sci. 447, 300–306 (2018).
[Crossref]

Ishihara, T.

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Jin, E. X.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
[Crossref] [PubMed]

E. X. Jin and X. F. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Kinzel, E. C.

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Li, L.

J. Zheng, W. D. Chen, X. C. Liu, Y. R. Huang, Y. Y. Liu, L. Li, and Z. W. Xie, “Forming sub-45-nm high-aspect circle-symmetric spots with double bowtie aperture combined with metal-insulator-metal structure,” Appl. Surf. Sci. 447, 300–306 (2018).
[Crossref]

Li, M.

A. Teulle, M. Bosman, C. Girard, K. L. Gurunatha, M. Li, S. Mann, and E. Dujardin, “Multimodal plasmonics in fused colloidal networks,” Nat. Mater. 14(1), 87–94 (2015).
[Crossref] [PubMed]

Lin, F. T.

Liu, F.

Liu, X. C.

J. Zheng, W. D. Chen, X. C. Liu, Y. R. Huang, Y. Y. Liu, L. Li, and Z. W. Xie, “Forming sub-45-nm high-aspect circle-symmetric spots with double bowtie aperture combined with metal-insulator-metal structure,” Appl. Surf. Sci. 447, 300–306 (2018).
[Crossref]

Liu, Y. Y.

J. Zheng, W. D. Chen, X. C. Liu, Y. R. Huang, Y. Y. Liu, L. Li, and Z. W. Xie, “Forming sub-45-nm high-aspect circle-symmetric spots with double bowtie aperture combined with metal-insulator-metal structure,” Appl. Surf. Sci. 447, 300–306 (2018).
[Crossref]

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Luo, X. G.

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

Maier, S. A.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Mann, S.

A. Teulle, M. Bosman, C. Girard, K. L. Gurunatha, M. Li, S. Mann, and E. Dujardin, “Multimodal plasmonics in fused colloidal networks,” Nat. Mater. 14(1), 87–94 (2015).
[Crossref] [PubMed]

McMahon, J. M.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

McNab, S. J.

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Murphy-DuBay, N.

Natan, M. J.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Ngo, Q. M.

Q. M. Ngo, Y.-L. D. Ho, J. R. Pugh, A. Sarua, and M. J. Cryan, “Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays,” Curr. Appl. Phys. 18(7), 793–798 (2018).
[Crossref]

Nordlander, P.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Polman, A.

T. Coenen and A. Polman, “Optical properties of single plasmonic holes probed with local electron beam excitation,” ACS Nano 8(7), 7350–7358 (2014).
[Crossref] [PubMed]

Pugh, J. R.

Q. M. Ngo, Y.-L. D. Ho, J. R. Pugh, A. Sarua, and M. J. Cryan, “Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays,” Curr. Appl. Phys. 18(7), 793–798 (2018).
[Crossref]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

Rossouw, D.

D. Rossouw and G. A. Botton, “Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding,” Phys. Rev. Lett. 110(6), 066801 (2013).
[Crossref] [PubMed]

Sarua, A.

Q. M. Ngo, Y.-L. D. Ho, J. R. Pugh, A. Sarua, and M. J. Cryan, “Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays,” Curr. Appl. Phys. 18(7), 793–798 (2018).
[Crossref]

Schatz, G. C.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Shi, W. Z.

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Spajer, M.

S. Davy and M. Spajer, “Near field optics: Snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69(22), 3306–3308 (1996).
[Crossref]

Teulle, A.

A. Teulle, M. Bosman, C. Girard, K. L. Gurunatha, M. Li, S. Mann, and E. Dujardin, “Multimodal plasmonics in fused colloidal networks,” Nat. Mater. 14(1), 87–94 (2015).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Uppuluri, S. M.

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
[Crossref] [PubMed]

Uppuluri, S. M. V.

Van Dorpe, P.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Van Duyne, R. P.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Wang, L.

L. Ding and L. Wang, “Numerical and experimental study of nanolithography using nanoscale C-shaped aperture,” Appl. Phys., A Mater. Sci. Process. 119(3), 1133–1141 (2015).
[Crossref]

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(Pt 3), 483–489 (2008).
[Crossref] [PubMed]

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
[Crossref] [PubMed]

L. Wang and X. Xu, “Spectral resonance of nanoscale bowtie apertures in visible wavelength,” Appl. Phys., A Mater. Sci. Process. 89(2), 293–297 (2007).
[Crossref]

L. Wang and X. F. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[Crossref]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
[Crossref] [PubMed]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wustholz, K. L.

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Xiao, G. N.

Xie, Z. W.

J. Zheng, W. D. Chen, X. C. Liu, Y. R. Huang, Y. Y. Liu, L. Li, and Z. W. Xie, “Forming sub-45-nm high-aspect circle-symmetric spots with double bowtie aperture combined with metal-insulator-metal structure,” Appl. Surf. Sci. 447, 300–306 (2018).
[Crossref]

Xu, X.

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(Pt 3), 483–489 (2008).
[Crossref] [PubMed]

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
[Crossref] [PubMed]

L. Wang and X. Xu, “Spectral resonance of nanoscale bowtie apertures in visible wavelength,” Appl. Phys., A Mater. Sci. Process. 89(2), 293–297 (2007).
[Crossref]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
[Crossref] [PubMed]

Xu, X. F.

L. Wang and X. F. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[Crossref]

E. X. Jin and X. F. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

Zhang, X.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

Zheng, J.

J. Zheng, W. D. Chen, X. C. Liu, Y. R. Huang, Y. Y. Liu, L. Li, and Z. W. Xie, “Forming sub-45-nm high-aspect circle-symmetric spots with double bowtie aperture combined with metal-insulator-metal structure,” Appl. Surf. Sci. 447, 300–306 (2018).
[Crossref]

ACS Nano (1)

T. Coenen and A. Polman, “Optical properties of single plasmonic holes probed with local electron beam excitation,” ACS Nano 8(7), 7350–7358 (2014).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

J. M. McMahon, A. I. Henry, K. L. Wustholz, M. J. Natan, R. G. Freeman, R. P. Van Duyne, and G. C. Schatz, “Gold nanoparticle dimer plasmonics: finite element method calculations of the electromagnetic enhancement to surface-enhanced Raman spectroscopy,” Anal. Bioanal. Chem. 394(7), 1819–1825 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75(22), 3560–3562 (1999).
[Crossref]

S. Davy and M. Spajer, “Near field optics: Snapshot of the field emitted by a nanosource using a photosensitive polymer,” Appl. Phys. Lett. 69(22), 3306–3308 (1996).
[Crossref]

X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84(23), 4780–4782 (2004).
[Crossref]

E. X. Jin and X. F. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[Crossref]

L. Wang and X. F. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90(26), 261105 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

L. Ding and L. Wang, “Numerical and experimental study of nanolithography using nanoscale C-shaped aperture,” Appl. Phys., A Mater. Sci. Process. 119(3), 1133–1141 (2015).
[Crossref]

L. Wang and X. Xu, “Spectral resonance of nanoscale bowtie apertures in visible wavelength,” Appl. Phys., A Mater. Sci. Process. 89(2), 293–297 (2007).
[Crossref]

Appl. Surf. Sci. (1)

J. Zheng, W. D. Chen, X. C. Liu, Y. R. Huang, Y. Y. Liu, L. Li, and Z. W. Xie, “Forming sub-45-nm high-aspect circle-symmetric spots with double bowtie aperture combined with metal-insulator-metal structure,” Appl. Surf. Sci. 447, 300–306 (2018).
[Crossref]

Curr. Appl. Phys. (1)

Q. M. Ngo, Y.-L. D. Ho, J. R. Pugh, A. Sarua, and M. J. Cryan, “Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays,” Curr. Appl. Phys. 18(7), 793–798 (2018).
[Crossref]

J. Microsc. (1)

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(Pt 3), 483–489 (2008).
[Crossref] [PubMed]

Nano Lett. (3)

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5(5), 957–961 (2005).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[Crossref] [PubMed]

Nat. Mater. (2)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[Crossref] [PubMed]

A. Teulle, M. Bosman, C. Girard, K. L. Gurunatha, M. Li, S. Mann, and E. Dujardin, “Multimodal plasmonics in fused colloidal networks,” Nat. Mater. 14(1), 87–94 (2015).
[Crossref] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

D. Rossouw and G. A. Botton, “Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding,” Phys. Rev. Lett. 110(6), 066801 (2013).
[Crossref] [PubMed]

Other (1)

X. L. Shi, and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Japanese Journal Of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 41, 1632–1635 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Bowtie waveguide geometry.
Fig. 2
Fig. 2 Lowest five modes of a bowtie waveguide modified by electric field vector .Bowtie waveguide in PEC defined by a = b = 200nm, f = 10 nm, and r = 25 nm. While λc represents cutoff wavelength.
Fig. 3
Fig. 3 Dispersion curves for bowtie waveguide defined in PEC.
Fig. 4
Fig. 4 Transmission spectra for a bowtie aperture defined in an Ag film Eigen-mode analysis resolving first four Fabry-Pérot modes of TE10.
Fig. 5
Fig. 5 Transmission spectra for a 200 nm bowtie waveguide defined in free standing 200 nm thick Au /Al films supported in the air.
Fig. 6
Fig. 6 Measured system for bowtie apertures (a = b = 200 nm) formed on a 200 nm thick silver film, with a gap about 15 nm.
Fig. 7
Fig. 7 Measured transmission spectra for bowtie apertures with a = b = 200 nm g = 15 nm formed on 200 nm thick silver film.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

gap size: g=2r( 1 a a 2 + b 2 1)
C(θ) A z ^ × E m E i dA
η(λ)= S t (λ) S d (λ) S i (λ) S d (λ)

Metrics