Abstract

Quantum photon-catalysis operations can be utilized for improving the performance of continuous-variable quantum key distribution (CVQKD) systems. Motivated by characteristics of quantum photon-catalysis operations that can be implemented by the existing technologies, we consider the performance improvement of self-referenced (SR) CVQKD involving zero-photon catalysis operation. We find that the zero-photon catalysis can be regarded as a noiseless attenuation, and the numerical simulations show that the zero-photon catalysis (ZPC)-based SR-CVQKD scheme outperforms the original SR-CVQKD scheme. In addition, to highlight the advantage of applying zero-photon catalysis operation into SR-CVQKD systems, we make a comparison about the performances between the ZPC-based SR-CVQKD scheme and the previous single-photon subtraction (SPS)-based SR-CVQKD scheme. Numerical simulations show that the ZPC-based SR-CVQKD is superior to the single-photon subtraction case with respect to the transmission distance and the tolerable excess noise. Especially, the ZPC-based SR-CVQKD allows the lower quantum detection efficiency and the higher electronic noise to achieve the same performance. These results show that the proposed protocol is expected to provide theoretical reference for the practical application of SR-CVQKD in metropolitan areas.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution

Qin Liao, Yijun Wang, Duan Huang, and Ying Guo
Opt. Express 26(16) 19907-19920 (2018)

Continuous-variable quantum key distribution with 1 Mbps secure key rate

Duan Huang, Dakai Lin, Chao Wang, Weiqi Liu, Shuanghong Fang, Jinye Peng, Peng Huang, and Guihua Zeng
Opt. Express 23(13) 17511-17519 (2015)

Practical security of the continuous-variable quantum key distribution with real local oscillators under phase attack

Biao Huang, Yongmei Huang, and Zhenming Peng
Opt. Express 27(15) 20621-20631 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers Systems, and Signal Processing, Bangalore, India, (1984), pp. 175–179.
  2. N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [Crossref]
  3. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
    [Crossref]
  4. E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous variables: Principle, security and implementations,” Entropy 17, 6072–6092 (2015).
    [Crossref]
  5. H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photon. 8, 595 (2014).
    [Crossref]
  6. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
    [Crossref]
  7. J. Y. Bang and M. S. Berger, “Quantum mechanics and the generalized uncertainty principle,” Phys. Rev. D 74, 125012 (2006).
    [Crossref]
  8. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
    [Crossref]
  9. T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A 61, 010303 (1999).
    [Crossref]
  10. P. Huang, J. Z. Huang, T. Wang, H. S. Li, D. Huang, and G. H. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A 95, 052302 (2017).
    [Crossref]
  11. Y. Guo, Q. Liao, Y. J. Wang, D. Huang, P. Huang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction,” Phys. Rev. A 95, 032304 (2017).
    [Crossref]
  12. Z. Y. Li, Y. C. Zhang, X. Y. Wang, B. J. Xu, X. Peng, and H. Guo, “Non-gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution,” Phys. Rev. A 93, 012310 (2016).
    [Crossref]
  13. Y. Guo, R. J. Li, Q. Liao, J. Zhou, and D. Huang, “Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier,” Phys. Lett. A 382, 372–381 (2018).
    [Crossref]
  14. Q. Liao, Y. J. Wang, D. Huang, and Y. Guo, “Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution,” Opt. Express 26, 19907–19920 (2018).
    [Crossref] [PubMed]
  15. Y. Guo, W. Ye, H. Zhong, and Q. Liao, “Continuous-variable quantum key distribution with non-Gaussian quantum catalysis,” arXiv e-prints arXiv:1811.06698 (2018).
  16. F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
    [Crossref] [PubMed]
  17. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
    [Crossref] [PubMed]
  18. D. Huang, D. K. Lin, C. Wang, W. Q. Liu, S. H. Fang, J. Y. Peng, P. Huang, and G. H. Zeng, “Continuous-variable quantum key distribution with 1 mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
    [Crossref] [PubMed]
  19. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photon. 7, 378–381 (2013).
    [Crossref]
  20. B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
    [Crossref]
  21. X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
    [Crossref]
  22. P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
    [Crossref]
  23. H. Zhong, Y. J. Wang, X. D. Wang, Q. Liao, X. D. Wu, and Y. Guo, “Enhancing of self-referenced continuous-variable quantum key distribution with virtual photon subtraction,” Entropy 20, 578 (2018).
    [Crossref]
  24. D. B. S. Soh, C. Brif, P. J. Coles, N. Lutkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).
  25. B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5, 041009 (2015).
  26. M. Koashi, “Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse,” Phys. Rev. Lett. 93, 120501 (2004).
    [Crossref] [PubMed]
  27. T. Wang, P. Huang, Y. M. Zhou, W. Q. Liu, H. X. Ma, S. Y. Wang, and G. H. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26, 2794–2806 (2018).
    [Crossref] [PubMed]
  28. A. Marie and R. Alleaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95, 012316 (2017).
    [Crossref]
  29. M. Li and M. Cvijetic, “Continuous-variable quantum key distribution with self-reference detection and discrete modulation,” IEEE J. Quantum Electron. 54, 1–8 (2018).
  30. Q. Liao, Y. Guo, D. Huang, P. Huang, and G. H. Zeng, “Long-distance continuous-variable quantum key distribution using non-gaussian state-discrimination detection,” New J. Phys. 20, 023015 (2018).
    [Crossref]
  31. P. Huang, G. Q. He, J. Fang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution via photon subtraction,” Phys. Rev. A 87, 012317 (2013).
    [Crossref]
  32. Y. J. Zhao, Y. C. Zhang, Z. Y. Li, S. Yu, and H. Guo, “Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction,” Quantum Inf. Process 16, 184 (2017).
    [Crossref]
  33. H. X. Ma, P. Huang, D. Y. Bai, S. Y. Wang, W. S. Bao, and G. H. Zeng, “Continuous-variable measurement-device-independent quantum key distribution with photon subtraction,” Phys. Rev. A 97, 042329 (2018).
    [Crossref]
  34. A. I. Lvovsky and J. Mlynek, “Quantum-optical catalysis: Generating nonclassical states of light by means of linear optics,” Phys. Rev. Lett. 88, 250401 (2002).
    [Crossref] [PubMed]
  35. L. Y. Hu, J. N. Wu, Z. Y. Liao, and M. S. Zubairy, “Multiphoton catalysis with coherent state input: nonclassicality and decoherence,” J. Phys. B: At. Mol. Opt. Phys. 49, 175504 (2016).
    [Crossref]
  36. W. D. Zhou, W. Ye, C. J. Liu, L. Y. Hui, and S. Q. Liu, “Entanglement improvement of entangled coherent state via multiphoton catalysis,” Laser Phys. Lett. 15, 065203 (2018).
    [Crossref]
  37. L. Y. Hu, Z. Y. Liao, and M. S. Zubairy, “Continuous-variable entanglement via multiphoton catalysis,” Phys. Rev. A 95, 012310 (2017).
    [Crossref]
  38. M. Navascues, F. Grosshans, and A. Acin, “Optimality of gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
    [Crossref] [PubMed]
  39. R. Garcia-Patron and N. J. Cerf, “Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
    [Crossref] [PubMed]
  40. M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of gaussian quantum states,” Phys. Rev. Lett. 96, 080502 (2006).
    [Crossref] [PubMed]

2018 (8)

Y. Guo, R. J. Li, Q. Liao, J. Zhou, and D. Huang, “Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier,” Phys. Lett. A 382, 372–381 (2018).
[Crossref]

Q. Liao, Y. J. Wang, D. Huang, and Y. Guo, “Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution,” Opt. Express 26, 19907–19920 (2018).
[Crossref] [PubMed]

H. Zhong, Y. J. Wang, X. D. Wang, Q. Liao, X. D. Wu, and Y. Guo, “Enhancing of self-referenced continuous-variable quantum key distribution with virtual photon subtraction,” Entropy 20, 578 (2018).
[Crossref]

T. Wang, P. Huang, Y. M. Zhou, W. Q. Liu, H. X. Ma, S. Y. Wang, and G. H. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26, 2794–2806 (2018).
[Crossref] [PubMed]

M. Li and M. Cvijetic, “Continuous-variable quantum key distribution with self-reference detection and discrete modulation,” IEEE J. Quantum Electron. 54, 1–8 (2018).

Q. Liao, Y. Guo, D. Huang, P. Huang, and G. H. Zeng, “Long-distance continuous-variable quantum key distribution using non-gaussian state-discrimination detection,” New J. Phys. 20, 023015 (2018).
[Crossref]

H. X. Ma, P. Huang, D. Y. Bai, S. Y. Wang, W. S. Bao, and G. H. Zeng, “Continuous-variable measurement-device-independent quantum key distribution with photon subtraction,” Phys. Rev. A 97, 042329 (2018).
[Crossref]

W. D. Zhou, W. Ye, C. J. Liu, L. Y. Hui, and S. Q. Liu, “Entanglement improvement of entangled coherent state via multiphoton catalysis,” Laser Phys. Lett. 15, 065203 (2018).
[Crossref]

2017 (5)

L. Y. Hu, Z. Y. Liao, and M. S. Zubairy, “Continuous-variable entanglement via multiphoton catalysis,” Phys. Rev. A 95, 012310 (2017).
[Crossref]

Y. J. Zhao, Y. C. Zhang, Z. Y. Li, S. Yu, and H. Guo, “Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction,” Quantum Inf. Process 16, 184 (2017).
[Crossref]

A. Marie and R. Alleaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95, 012316 (2017).
[Crossref]

P. Huang, J. Z. Huang, T. Wang, H. S. Li, D. Huang, and G. H. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A 95, 052302 (2017).
[Crossref]

Y. Guo, Q. Liao, Y. J. Wang, D. Huang, P. Huang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction,” Phys. Rev. A 95, 032304 (2017).
[Crossref]

2016 (2)

Z. Y. Li, Y. C. Zhang, X. Y. Wang, B. J. Xu, X. Peng, and H. Guo, “Non-gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution,” Phys. Rev. A 93, 012310 (2016).
[Crossref]

L. Y. Hu, J. N. Wu, Z. Y. Liao, and M. S. Zubairy, “Multiphoton catalysis with coherent state input: nonclassicality and decoherence,” J. Phys. B: At. Mol. Opt. Phys. 49, 175504 (2016).
[Crossref]

2015 (4)

D. B. S. Soh, C. Brif, P. J. Coles, N. Lutkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5, 041009 (2015).

E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous variables: Principle, security and implementations,” Entropy 17, 6072–6092 (2015).
[Crossref]

D. Huang, D. K. Lin, C. Wang, W. Q. Liu, S. H. Fang, J. Y. Peng, P. Huang, and G. H. Zeng, “Continuous-variable quantum key distribution with 1 mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

2014 (1)

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photon. 8, 595 (2014).
[Crossref]

2013 (4)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photon. 7, 378–381 (2013).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

P. Huang, G. Q. He, J. Fang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution via photon subtraction,” Phys. Rev. A 87, 012317 (2013).
[Crossref]

2009 (1)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

2007 (1)

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

2006 (4)

J. Y. Bang and M. S. Berger, “Quantum mechanics and the generalized uncertainty principle,” Phys. Rev. D 74, 125012 (2006).
[Crossref]

M. Navascues, F. Grosshans, and A. Acin, “Optimality of gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

R. Garcia-Patron and N. J. Cerf, “Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of gaussian quantum states,” Phys. Rev. Lett. 96, 080502 (2006).
[Crossref] [PubMed]

2005 (1)

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

2004 (1)

M. Koashi, “Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse,” Phys. Rev. Lett. 93, 120501 (2004).
[Crossref] [PubMed]

2003 (1)

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

2002 (3)

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

A. I. Lvovsky and J. Mlynek, “Quantum-optical catalysis: Generating nonclassical states of light by means of linear optics,” Phys. Rev. Lett. 88, 250401 (2002).
[Crossref] [PubMed]

1999 (1)

T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A 61, 010303 (1999).
[Crossref]

1982 (1)

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[Crossref]

Acin, A.

M. Navascues, F. Grosshans, and A. Acin, “Optimality of gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

Alleaume, R.

A. Marie and R. Alleaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95, 012316 (2017).
[Crossref]

Bai, D. Y.

H. X. Ma, P. Huang, D. Y. Bai, S. Y. Wang, W. S. Bao, and G. H. Zeng, “Continuous-variable measurement-device-independent quantum key distribution with photon subtraction,” Phys. Rev. A 97, 042329 (2018).
[Crossref]

Bang, J. Y.

J. Y. Bang and M. S. Berger, “Quantum mechanics and the generalized uncertainty principle,” Phys. Rev. D 74, 125012 (2006).
[Crossref]

Bao, W. S.

H. X. Ma, P. Huang, D. Y. Bai, S. Y. Wang, W. S. Bao, and G. H. Zeng, “Continuous-variable measurement-device-independent quantum key distribution with photon subtraction,” Phys. Rev. A 97, 042329 (2018).
[Crossref]

Bechmann-Pasquinucci, H.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers Systems, and Signal Processing, Bangalore, India, (1984), pp. 175–179.

Berger, M. S.

J. Y. Bang and M. S. Berger, “Quantum mechanics and the generalized uncertainty principle,” Phys. Rev. D 74, 125012 (2006).
[Crossref]

Bobrek, M.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5, 041009 (2015).

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers Systems, and Signal Processing, Bangalore, India, (1984), pp. 175–179.

Braunstein, S. L.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Brif, C.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lutkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

Brouri, R.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

Camacho, R. M.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lutkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

Cerf, N. J.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

R. Garcia-Patron and N. J. Cerf, “Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

Cirac, J. I.

M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of gaussian quantum states,” Phys. Rev. Lett. 96, 080502 (2006).
[Crossref] [PubMed]

Coles, P. J.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lutkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

Curty, M.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photon. 8, 595 (2014).
[Crossref]

Cvijetic, M.

M. Li and M. Cvijetic, “Continuous-variable quantum key distribution with self-reference detection and discrete modulation,” IEEE J. Quantum Electron. 54, 1–8 (2018).

Diamanti, E.

E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous variables: Principle, security and implementations,” Entropy 17, 6072–6092 (2015).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photon. 7, 378–381 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

Dusek, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

Fang, J.

P. Huang, G. Q. He, J. Fang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution via photon subtraction,” Phys. Rev. A 87, 012317 (2013).
[Crossref]

Fang, S. H.

Garcia-Patron, R.

R. Garcia-Patron and N. J. Cerf, “Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

Giedke, G.

M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of gaussian quantum states,” Phys. Rev. Lett. 96, 080502 (2006).
[Crossref] [PubMed]

Gisin, N.

N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Grangier, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photon. 7, 378–381 (2013).
[Crossref]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Grice, W.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5, 041009 (2015).

Grosshans, F.

M. Navascues, F. Grosshans, and A. Acin, “Optimality of gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

Guo, H.

Y. J. Zhao, Y. C. Zhang, Z. Y. Li, S. Yu, and H. Guo, “Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction,” Quantum Inf. Process 16, 184 (2017).
[Crossref]

Z. Y. Li, Y. C. Zhang, X. Y. Wang, B. J. Xu, X. Peng, and H. Guo, “Non-gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution,” Phys. Rev. A 93, 012310 (2016).
[Crossref]

Guo, Y.

Y. Guo, R. J. Li, Q. Liao, J. Zhou, and D. Huang, “Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier,” Phys. Lett. A 382, 372–381 (2018).
[Crossref]

Q. Liao, Y. J. Wang, D. Huang, and Y. Guo, “Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution,” Opt. Express 26, 19907–19920 (2018).
[Crossref] [PubMed]

Q. Liao, Y. Guo, D. Huang, P. Huang, and G. H. Zeng, “Long-distance continuous-variable quantum key distribution using non-gaussian state-discrimination detection,” New J. Phys. 20, 023015 (2018).
[Crossref]

H. Zhong, Y. J. Wang, X. D. Wang, Q. Liao, X. D. Wu, and Y. Guo, “Enhancing of self-referenced continuous-variable quantum key distribution with virtual photon subtraction,” Entropy 20, 578 (2018).
[Crossref]

Y. Guo, Q. Liao, Y. J. Wang, D. Huang, P. Huang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction,” Phys. Rev. A 95, 032304 (2017).
[Crossref]

Y. Guo, W. Ye, H. Zhong, and Q. Liao, “Continuous-variable quantum key distribution with non-Gaussian quantum catalysis,” arXiv e-prints arXiv:1811.06698 (2018).

He, G. Q.

P. Huang, G. Q. He, J. Fang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution via photon subtraction,” Phys. Rev. A 87, 012317 (2013).
[Crossref]

Hu, L. Y.

L. Y. Hu, Z. Y. Liao, and M. S. Zubairy, “Continuous-variable entanglement via multiphoton catalysis,” Phys. Rev. A 95, 012310 (2017).
[Crossref]

L. Y. Hu, J. N. Wu, Z. Y. Liao, and M. S. Zubairy, “Multiphoton catalysis with coherent state input: nonclassicality and decoherence,” J. Phys. B: At. Mol. Opt. Phys. 49, 175504 (2016).
[Crossref]

Huang, D.

Q. Liao, Y. Guo, D. Huang, P. Huang, and G. H. Zeng, “Long-distance continuous-variable quantum key distribution using non-gaussian state-discrimination detection,” New J. Phys. 20, 023015 (2018).
[Crossref]

Q. Liao, Y. J. Wang, D. Huang, and Y. Guo, “Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution,” Opt. Express 26, 19907–19920 (2018).
[Crossref] [PubMed]

Y. Guo, R. J. Li, Q. Liao, J. Zhou, and D. Huang, “Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier,” Phys. Lett. A 382, 372–381 (2018).
[Crossref]

P. Huang, J. Z. Huang, T. Wang, H. S. Li, D. Huang, and G. H. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A 95, 052302 (2017).
[Crossref]

Y. Guo, Q. Liao, Y. J. Wang, D. Huang, P. Huang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction,” Phys. Rev. A 95, 032304 (2017).
[Crossref]

D. Huang, D. K. Lin, C. Wang, W. Q. Liu, S. H. Fang, J. Y. Peng, P. Huang, and G. H. Zeng, “Continuous-variable quantum key distribution with 1 mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

Huang, J. Z.

P. Huang, J. Z. Huang, T. Wang, H. S. Li, D. Huang, and G. H. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A 95, 052302 (2017).
[Crossref]

Huang, L. L.

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

Huang, P.

Q. Liao, Y. Guo, D. Huang, P. Huang, and G. H. Zeng, “Long-distance continuous-variable quantum key distribution using non-gaussian state-discrimination detection,” New J. Phys. 20, 023015 (2018).
[Crossref]

T. Wang, P. Huang, Y. M. Zhou, W. Q. Liu, H. X. Ma, S. Y. Wang, and G. H. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26, 2794–2806 (2018).
[Crossref] [PubMed]

H. X. Ma, P. Huang, D. Y. Bai, S. Y. Wang, W. S. Bao, and G. H. Zeng, “Continuous-variable measurement-device-independent quantum key distribution with photon subtraction,” Phys. Rev. A 97, 042329 (2018).
[Crossref]

P. Huang, J. Z. Huang, T. Wang, H. S. Li, D. Huang, and G. H. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A 95, 052302 (2017).
[Crossref]

Y. Guo, Q. Liao, Y. J. Wang, D. Huang, P. Huang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction,” Phys. Rev. A 95, 032304 (2017).
[Crossref]

D. Huang, D. K. Lin, C. Wang, W. Q. Liu, S. H. Fang, J. Y. Peng, P. Huang, and G. H. Zeng, “Continuous-variable quantum key distribution with 1 mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

P. Huang, G. Q. He, J. Fang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution via photon subtraction,” Phys. Rev. A 87, 012317 (2013).
[Crossref]

Hui, L. Y.

W. D. Zhou, W. Ye, C. J. Liu, L. Y. Hui, and S. Q. Liu, “Entanglement improvement of entangled coherent state via multiphoton catalysis,” Laser Phys. Lett. 15, 065203 (2018).
[Crossref]

Jiang, M. S.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

Jouguet, P.

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photon. 7, 378–381 (2013).
[Crossref]

Koashi, M.

M. Koashi, “Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse,” Phys. Rev. Lett. 93, 120501 (2004).
[Crossref] [PubMed]

Kunz-Jacques, S.

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photon. 7, 378–381 (2013).
[Crossref]

Leverrier, A.

E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous variables: Principle, security and implementations,” Entropy 17, 6072–6092 (2015).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photon. 7, 378–381 (2013).
[Crossref]

Li, H. S.

P. Huang, J. Z. Huang, T. Wang, H. S. Li, D. Huang, and G. H. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A 95, 052302 (2017).
[Crossref]

Li, M.

M. Li and M. Cvijetic, “Continuous-variable quantum key distribution with self-reference detection and discrete modulation,” IEEE J. Quantum Electron. 54, 1–8 (2018).

Li, R. J.

Y. Guo, R. J. Li, Q. Liao, J. Zhou, and D. Huang, “Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier,” Phys. Lett. A 382, 372–381 (2018).
[Crossref]

Li, Z. Y.

Y. J. Zhao, Y. C. Zhang, Z. Y. Li, S. Yu, and H. Guo, “Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction,” Quantum Inf. Process 16, 184 (2017).
[Crossref]

Z. Y. Li, Y. C. Zhang, X. Y. Wang, B. J. Xu, X. Peng, and H. Guo, “Non-gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution,” Phys. Rev. A 93, 012310 (2016).
[Crossref]

Liang, L. M.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

Liao, Q.

H. Zhong, Y. J. Wang, X. D. Wang, Q. Liao, X. D. Wu, and Y. Guo, “Enhancing of self-referenced continuous-variable quantum key distribution with virtual photon subtraction,” Entropy 20, 578 (2018).
[Crossref]

Q. Liao, Y. Guo, D. Huang, P. Huang, and G. H. Zeng, “Long-distance continuous-variable quantum key distribution using non-gaussian state-discrimination detection,” New J. Phys. 20, 023015 (2018).
[Crossref]

Y. Guo, R. J. Li, Q. Liao, J. Zhou, and D. Huang, “Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier,” Phys. Lett. A 382, 372–381 (2018).
[Crossref]

Q. Liao, Y. J. Wang, D. Huang, and Y. Guo, “Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution,” Opt. Express 26, 19907–19920 (2018).
[Crossref] [PubMed]

Y. Guo, Q. Liao, Y. J. Wang, D. Huang, P. Huang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction,” Phys. Rev. A 95, 032304 (2017).
[Crossref]

Y. Guo, W. Ye, H. Zhong, and Q. Liao, “Continuous-variable quantum key distribution with non-Gaussian quantum catalysis,” arXiv e-prints arXiv:1811.06698 (2018).

Liao, Z. Y.

L. Y. Hu, Z. Y. Liao, and M. S. Zubairy, “Continuous-variable entanglement via multiphoton catalysis,” Phys. Rev. A 95, 012310 (2017).
[Crossref]

L. Y. Hu, J. N. Wu, Z. Y. Liao, and M. S. Zubairy, “Multiphoton catalysis with coherent state input: nonclassicality and decoherence,” J. Phys. B: At. Mol. Opt. Phys. 49, 175504 (2016).
[Crossref]

Lin, D. K.

Liu, C. J.

W. D. Zhou, W. Ye, C. J. Liu, L. Y. Hui, and S. Q. Liu, “Entanglement improvement of entangled coherent state via multiphoton catalysis,” Laser Phys. Lett. 15, 065203 (2018).
[Crossref]

Liu, S. Q.

W. D. Zhou, W. Ye, C. J. Liu, L. Y. Hui, and S. Q. Liu, “Entanglement improvement of entangled coherent state via multiphoton catalysis,” Laser Phys. Lett. 15, 065203 (2018).
[Crossref]

Liu, W. Q.

Lo, H. K.

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

Lo, H.-K.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photon. 8, 595 (2014).
[Crossref]

Lougovski, P.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5, 041009 (2015).

Lutkenhaus, N.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lutkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

Lvovsky, A. I.

A. I. Lvovsky and J. Mlynek, “Quantum-optical catalysis: Generating nonclassical states of light by means of linear optics,” Phys. Rev. Lett. 88, 250401 (2002).
[Crossref] [PubMed]

Ma, H. X.

H. X. Ma, P. Huang, D. Y. Bai, S. Y. Wang, W. S. Bao, and G. H. Zeng, “Continuous-variable measurement-device-independent quantum key distribution with photon subtraction,” Phys. Rev. A 97, 042329 (2018).
[Crossref]

T. Wang, P. Huang, Y. M. Zhou, W. Q. Liu, H. X. Ma, S. Y. Wang, and G. H. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26, 2794–2806 (2018).
[Crossref] [PubMed]

Ma, X. C.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

Marie, A.

A. Marie and R. Alleaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95, 012316 (2017).
[Crossref]

Mlynek, J.

A. I. Lvovsky and J. Mlynek, “Quantum-optical catalysis: Generating nonclassical states of light by means of linear optics,” Phys. Rev. Lett. 88, 250401 (2002).
[Crossref] [PubMed]

Navascues, M.

M. Navascues, F. Grosshans, and A. Acin, “Optimality of gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

Peev, M.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

Peng, J. Y.

Peng, X.

Z. Y. Li, Y. C. Zhang, X. Y. Wang, B. J. Xu, X. Peng, and H. Guo, “Non-gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution,” Phys. Rev. A 93, 012310 (2016).
[Crossref]

Pooser, R.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5, 041009 (2015).

Qi, B.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5, 041009 (2015).

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

Qian, L.

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

Ralph, T. C.

T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A 61, 010303 (1999).
[Crossref]

Ribordy, G. G.

N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Sarovar, M.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lutkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

Scarani, V.

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

Soh, D. B. S.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lutkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

Sun, S. H.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

Tamaki, K.

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photon. 8, 595 (2014).
[Crossref]

Tittel, W.

N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Urayama, J.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lutkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

Van Assche, G.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

van Loock, P.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Wang, C.

Wang, S. Y.

T. Wang, P. Huang, Y. M. Zhou, W. Q. Liu, H. X. Ma, S. Y. Wang, and G. H. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26, 2794–2806 (2018).
[Crossref] [PubMed]

H. X. Ma, P. Huang, D. Y. Bai, S. Y. Wang, W. S. Bao, and G. H. Zeng, “Continuous-variable measurement-device-independent quantum key distribution with photon subtraction,” Phys. Rev. A 97, 042329 (2018).
[Crossref]

Wang, T.

T. Wang, P. Huang, Y. M. Zhou, W. Q. Liu, H. X. Ma, S. Y. Wang, and G. H. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26, 2794–2806 (2018).
[Crossref] [PubMed]

P. Huang, J. Z. Huang, T. Wang, H. S. Li, D. Huang, and G. H. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A 95, 052302 (2017).
[Crossref]

Wang, X. D.

H. Zhong, Y. J. Wang, X. D. Wang, Q. Liao, X. D. Wu, and Y. Guo, “Enhancing of self-referenced continuous-variable quantum key distribution with virtual photon subtraction,” Entropy 20, 578 (2018).
[Crossref]

Wang, X. Y.

Z. Y. Li, Y. C. Zhang, X. Y. Wang, B. J. Xu, X. Peng, and H. Guo, “Non-gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution,” Phys. Rev. A 93, 012310 (2016).
[Crossref]

Wang, Y. J.

Q. Liao, Y. J. Wang, D. Huang, and Y. Guo, “Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution,” Opt. Express 26, 19907–19920 (2018).
[Crossref] [PubMed]

H. Zhong, Y. J. Wang, X. D. Wang, Q. Liao, X. D. Wu, and Y. Guo, “Enhancing of self-referenced continuous-variable quantum key distribution with virtual photon subtraction,” Entropy 20, 578 (2018).
[Crossref]

Y. Guo, Q. Liao, Y. J. Wang, D. Huang, P. Huang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction,” Phys. Rev. A 95, 032304 (2017).
[Crossref]

Wenger, J.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

Wolf, M. M.

M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of gaussian quantum states,” Phys. Rev. Lett. 96, 080502 (2006).
[Crossref] [PubMed]

Wootters, W. K.

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[Crossref]

Wu, J. N.

L. Y. Hu, J. N. Wu, Z. Y. Liao, and M. S. Zubairy, “Multiphoton catalysis with coherent state input: nonclassicality and decoherence,” J. Phys. B: At. Mol. Opt. Phys. 49, 175504 (2016).
[Crossref]

Wu, X. D.

H. Zhong, Y. J. Wang, X. D. Wang, Q. Liao, X. D. Wu, and Y. Guo, “Enhancing of self-referenced continuous-variable quantum key distribution with virtual photon subtraction,” Entropy 20, 578 (2018).
[Crossref]

Xu, B. J.

Z. Y. Li, Y. C. Zhang, X. Y. Wang, B. J. Xu, X. Peng, and H. Guo, “Non-gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution,” Phys. Rev. A 93, 012310 (2016).
[Crossref]

Ye, W.

W. D. Zhou, W. Ye, C. J. Liu, L. Y. Hui, and S. Q. Liu, “Entanglement improvement of entangled coherent state via multiphoton catalysis,” Laser Phys. Lett. 15, 065203 (2018).
[Crossref]

Y. Guo, W. Ye, H. Zhong, and Q. Liao, “Continuous-variable quantum key distribution with non-Gaussian quantum catalysis,” arXiv e-prints arXiv:1811.06698 (2018).

Yu, S.

Y. J. Zhao, Y. C. Zhang, Z. Y. Li, S. Yu, and H. Guo, “Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction,” Quantum Inf. Process 16, 184 (2017).
[Crossref]

Zbinden, H.

N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

Zeng, G. H.

H. X. Ma, P. Huang, D. Y. Bai, S. Y. Wang, W. S. Bao, and G. H. Zeng, “Continuous-variable measurement-device-independent quantum key distribution with photon subtraction,” Phys. Rev. A 97, 042329 (2018).
[Crossref]

Q. Liao, Y. Guo, D. Huang, P. Huang, and G. H. Zeng, “Long-distance continuous-variable quantum key distribution using non-gaussian state-discrimination detection,” New J. Phys. 20, 023015 (2018).
[Crossref]

T. Wang, P. Huang, Y. M. Zhou, W. Q. Liu, H. X. Ma, S. Y. Wang, and G. H. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26, 2794–2806 (2018).
[Crossref] [PubMed]

P. Huang, J. Z. Huang, T. Wang, H. S. Li, D. Huang, and G. H. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A 95, 052302 (2017).
[Crossref]

Y. Guo, Q. Liao, Y. J. Wang, D. Huang, P. Huang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction,” Phys. Rev. A 95, 032304 (2017).
[Crossref]

D. Huang, D. K. Lin, C. Wang, W. Q. Liu, S. H. Fang, J. Y. Peng, P. Huang, and G. H. Zeng, “Continuous-variable quantum key distribution with 1 mbps secure key rate,” Opt. Express 23, 17511–17519 (2015).
[Crossref] [PubMed]

P. Huang, G. Q. He, J. Fang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution via photon subtraction,” Phys. Rev. A 87, 012317 (2013).
[Crossref]

Zhang, Y. C.

Y. J. Zhao, Y. C. Zhang, Z. Y. Li, S. Yu, and H. Guo, “Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction,” Quantum Inf. Process 16, 184 (2017).
[Crossref]

Z. Y. Li, Y. C. Zhang, X. Y. Wang, B. J. Xu, X. Peng, and H. Guo, “Non-gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution,” Phys. Rev. A 93, 012310 (2016).
[Crossref]

Zhao, Y. J.

Y. J. Zhao, Y. C. Zhang, Z. Y. Li, S. Yu, and H. Guo, “Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction,” Quantum Inf. Process 16, 184 (2017).
[Crossref]

Zhong, H.

H. Zhong, Y. J. Wang, X. D. Wang, Q. Liao, X. D. Wu, and Y. Guo, “Enhancing of self-referenced continuous-variable quantum key distribution with virtual photon subtraction,” Entropy 20, 578 (2018).
[Crossref]

Y. Guo, W. Ye, H. Zhong, and Q. Liao, “Continuous-variable quantum key distribution with non-Gaussian quantum catalysis,” arXiv e-prints arXiv:1811.06698 (2018).

Zhou, J.

Y. Guo, R. J. Li, Q. Liao, J. Zhou, and D. Huang, “Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier,” Phys. Lett. A 382, 372–381 (2018).
[Crossref]

Zhou, W. D.

W. D. Zhou, W. Ye, C. J. Liu, L. Y. Hui, and S. Q. Liu, “Entanglement improvement of entangled coherent state via multiphoton catalysis,” Laser Phys. Lett. 15, 065203 (2018).
[Crossref]

Zhou, Y. M.

Zubairy, M. S.

L. Y. Hu, Z. Y. Liao, and M. S. Zubairy, “Continuous-variable entanglement via multiphoton catalysis,” Phys. Rev. A 95, 012310 (2017).
[Crossref]

L. Y. Hu, J. N. Wu, Z. Y. Liao, and M. S. Zubairy, “Multiphoton catalysis with coherent state input: nonclassicality and decoherence,” J. Phys. B: At. Mol. Opt. Phys. 49, 175504 (2016).
[Crossref]

Zurek, W. H.

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[Crossref]

Entropy (2)

E. Diamanti and A. Leverrier, “Distributing secret keys with quantum continuous variables: Principle, security and implementations,” Entropy 17, 6072–6092 (2015).
[Crossref]

H. Zhong, Y. J. Wang, X. D. Wang, Q. Liao, X. D. Wu, and Y. Guo, “Enhancing of self-referenced continuous-variable quantum key distribution with virtual photon subtraction,” Entropy 20, 578 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Li and M. Cvijetic, “Continuous-variable quantum key distribution with self-reference detection and discrete modulation,” IEEE J. Quantum Electron. 54, 1–8 (2018).

J. Phys. B: At. Mol. Opt. Phys. (1)

L. Y. Hu, J. N. Wu, Z. Y. Liao, and M. S. Zubairy, “Multiphoton catalysis with coherent state input: nonclassicality and decoherence,” J. Phys. B: At. Mol. Opt. Phys. 49, 175504 (2016).
[Crossref]

Laser Phys. Lett. (1)

W. D. Zhou, W. Ye, C. J. Liu, L. Y. Hui, and S. Q. Liu, “Entanglement improvement of entangled coherent state via multiphoton catalysis,” Laser Phys. Lett. 15, 065203 (2018).
[Crossref]

Nat. Photon. (2)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photon. 7, 378–381 (2013).
[Crossref]

H.-K. Lo, M. Curty, and K. Tamaki, “Secure quantum key distribution,” Nat. Photon. 8, 595 (2014).
[Crossref]

Nature (2)

W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982).
[Crossref]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[Crossref] [PubMed]

New J. Phys. (1)

Q. Liao, Y. Guo, D. Huang, P. Huang, and G. H. Zeng, “Long-distance continuous-variable quantum key distribution using non-gaussian state-discrimination detection,” New J. Phys. 20, 023015 (2018).
[Crossref]

Opt. Express (3)

Phys. Lett. A (1)

Y. Guo, R. J. Li, Q. Liao, J. Zhou, and D. Huang, “Performance improvement of eight-state continuous-variable quantum key distribution with an optical amplifier,” Phys. Lett. A 382, 372–381 (2018).
[Crossref]

Phys. Rev. A (11)

T. C. Ralph, “Continuous variable quantum cryptography,” Phys. Rev. A 61, 010303 (1999).
[Crossref]

P. Huang, J. Z. Huang, T. Wang, H. S. Li, D. Huang, and G. H. Zeng, “Robust continuous-variable quantum key distribution against practical attacks,” Phys. Rev. A 95, 052302 (2017).
[Crossref]

Y. Guo, Q. Liao, Y. J. Wang, D. Huang, P. Huang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution with an entangled source in the middle via photon subtraction,” Phys. Rev. A 95, 032304 (2017).
[Crossref]

Z. Y. Li, Y. C. Zhang, X. Y. Wang, B. J. Xu, X. Peng, and H. Guo, “Non-gaussian postselection and virtual photon subtraction in continuous-variable quantum key distribution,” Phys. Rev. A 93, 012310 (2016).
[Crossref]

A. Marie and R. Alleaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95, 012316 (2017).
[Crossref]

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88, 022339 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87, 062313 (2013).
[Crossref]

P. Huang, G. Q. He, J. Fang, and G. H. Zeng, “Performance improvement of continuous-variable quantum key distribution via photon subtraction,” Phys. Rev. A 87, 012317 (2013).
[Crossref]

L. Y. Hu, Z. Y. Liao, and M. S. Zubairy, “Continuous-variable entanglement via multiphoton catalysis,” Phys. Rev. A 95, 012310 (2017).
[Crossref]

H. X. Ma, P. Huang, D. Y. Bai, S. Y. Wang, W. S. Bao, and G. H. Zeng, “Continuous-variable measurement-device-independent quantum key distribution with photon subtraction,” Phys. Rev. A 97, 042329 (2018).
[Crossref]

Phys. Rev. D (1)

J. Y. Bang and M. S. Berger, “Quantum mechanics and the generalized uncertainty principle,” Phys. Rev. D 74, 125012 (2006).
[Crossref]

Phys. Rev. Lett. (6)

F. Grosshans and P. Grangier, “Continuous variable quantum cryptography using coherent states,” Phys. Rev. Lett. 88, 057902 (2002).
[Crossref] [PubMed]

M. Navascues, F. Grosshans, and A. Acin, “Optimality of gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[Crossref] [PubMed]

R. Garcia-Patron and N. J. Cerf, “Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[Crossref] [PubMed]

M. M. Wolf, G. Giedke, and J. I. Cirac, “Extremality of gaussian quantum states,” Phys. Rev. Lett. 96, 080502 (2006).
[Crossref] [PubMed]

A. I. Lvovsky and J. Mlynek, “Quantum-optical catalysis: Generating nonclassical states of light by means of linear optics,” Phys. Rev. Lett. 88, 250401 (2002).
[Crossref] [PubMed]

M. Koashi, “Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse,” Phys. Rev. Lett. 93, 120501 (2004).
[Crossref] [PubMed]

Phys. Rev. X (2)

D. B. S. Soh, C. Brif, P. J. Coles, N. Lutkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5, 041010 (2015).

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator "locally" in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5, 041009 (2015).

Quantum Inf. Process (1)

Y. J. Zhao, Y. C. Zhang, Z. Y. Li, S. Yu, and H. Guo, “Improvement of two-way continuous-variable quantum key distribution with virtual photon subtraction,” Quantum Inf. Process 16, 184 (2017).
[Crossref]

Rev. Mod. Phys. (3)

V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009).
[Crossref]

N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[Crossref]

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Other (2)

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers Systems, and Signal Processing, Bangalore, India, (1984), pp. 175–179.

Y. Guo, W. Ye, H. Zhong, and Q. Liao, “Continuous-variable quantum key distribution with non-Gaussian quantum catalysis,” arXiv e-prints arXiv:1811.06698 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the SR-CVQKD system where Alice successively sends weak quantum signal (green pulse) and bright reference (orange pulse) pulses to Bob over an optical channel characterized by channel transmittance T and excess noise ε. At reception, each received pulse is performed by coherent detection in Bob’s own phase reference frame using the LO pulses (blue pulse). GM: Gaussian modulation; T: channel transmittance; ε: excess noise.
Fig. 2
Fig. 2 The schematic view of SR-CVQKD protocol with zero-photon catalysis (the purple box) at the sender. (a) Prepare-and-measure scheme of zero-photon catalysis (ZPC) SR-CVQKD. (b). Entanglement-based (EB) scheme of ZPC-based SR-CVQKD. BS: beam splitter; T, ε: channel parameters; Π ^ o f f: projection operator | 0 0 |.
Fig. 3
Fig. 3 The maximal secret key rate at each transmission distance with several different parameters ϵel ∈ {0.01, 0.001} and VR ∈ {20VA, 50VA } for the optimal choice of η. The black thin line represents the original protocol. The magenta thick line represents the single-photon subtraction. The blue dashed line represents the zero-photon catalysis.
Fig. 4
Fig. 4 The optimal η for the maximal secret key at each transmission distance with several different parameters ϵel ∈ {0.01, 0.001} and VR ∈ {20VA, 50VA}. The blue dashed line represents the zero-photon catalysis.
Fig. 5
Fig. 5 The maximal tolerable excess noise as a function of transmission distance with several different parameters ϵel ∈{0.01,0.001} and VR ∈ {20VA, 50VA}, when optimized over η of Alice’s beam splitter. The black thin line represents the original protocol. The magenta thick line represents the single-photon subtraction. The blue dashed line represents the zero-photon catalysis.
Fig. 6
Fig. 6 The success probability Pd of implementation of zero-photon catalysis as a function of η. As a comparison, the magenta solid line represents the single-photon subtraction case.
Fig. 7
Fig. 7 When VR = 20VA and ϵel = 0.001, the transmission distance as a function of the estimated parameter η. The color region denotes the secret key rate. The red solid line denotes the optimal value of η corresponding to KOpt. The orange (black) dashed line denotes the upper (lower) of η, if the secret key rate maintains more than 90%KOpt. KOpt: the optimal secret key rate.
Fig. 8
Fig. 8 Performance comparison of SR-CVQKD with the zero-photon catalysis and the single-photon subtraction for different quantum detection efficiency μ and electronic noise ϵel of the coherent detections, when given when given VR = 20VA and transmission distance 20 km.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

( q B R p B R ) = T e c t ( cos  θ ^ E sin  θ ^ E sin  θ ^ E cos  θ ^ E ) ( q A R p A R ) ,
θ ^ E = arctan  p B R q B R .
V e s t = V e r r + V c h + V d r i ,
Γ A B = ( V I I T μ ( V 2 1 ) φ ¯ T μ ( V 2 1 ) φ ¯ T μ ( V + χ ) I I ) ,
φ ¯ = ( cos  ϕ e r r ¯ sin  ϕ e r r ¯ sin  ϕ e r r ¯ cos  ϕ e r r ¯ ) ,
cos  ϕ e r r ¯ = π π d ϕ e r r P ( ϕ e r r ) cos  ϕ e r r , sin   ϕ e r r ¯ = π π d ϕ e r r P ( ϕ e r r ) sin   ϕ e r r ,
| E P R A B = 1 λ 2 exp  { λ a b } | 0 , 0 A B ,
Π ^ o f f = | 0 c 0 | , Π ^ o n = 1 ^ | 0 c 0 | .
O ^ 0 = Tr [ B ( η ) | 0 c 0 | ] = : exp   [ ( η 1 ) b b ] : = ( η ) b b ,
| Ψ A B 1 = O ^ 0 P d | E P R A B = 1 λ 2 P d exp   { λ η a b } | 0 , 0 A B ,
P d = 2 1 + η + R V ,
Γ A B 1 = ( X 1 I I Z 1 φ ¯ Z 1 φ ¯ Y 1 I I ) ,
X 1 = Y 1 = 2 ( 1 + V ) 1 + η + R V 1 , Z 1 = 2 η ( V 2 1 ) 1 + η + R V , φ ¯ = cos   ϕ e r r ¯ σ z .
Γ A B 2 = ( X 1 I I T e c t Z 1 φ ¯ T e c t Z 1 φ ¯ T e c t ( Y 1 + χ ) I I ) ,
χ = 1 T e c t + ϵ e l T e c t + ε ,
K = P d { β I ( A : B ) I ( B : E ) } ,
I ( A : B ) = 1 2 log 2 V A   ' V A | B   ' ,
V e s t = V e r r = χ + 1 V R + 1 T μ V R .
cos  ϕ e r r ¯ 2 = 1 V e r r ,
I ( B : E ) = S ( E ) S ( E | B ) = S ( A B ) S ( A | B ) = i 2 G [ ( λ i 1 ) / 2 ] G [ ( λ 3 1 ) / 2 ] ,
λ 1 , 2 2 = Δ ± Δ 2 4 D 2 2 , λ 3 2 = X 1 2 X 1 Z 1 2 ( 1 V e r r ) X 1 + χ ,

Metrics