Abstract

In past studies, liquid crystal (LC)-based immunoassays were accomplished by fabricating an LC cell with two pieces of glass slides after immunobinding, which makes the determination of the immunoassay not in real-time and requires trained personnel. Herein, we developed the LC-based immunoassay by using rectangular capillaries as the substrate for immunobinding. The inner surface of rectangular capillaries was decorated with a long alkyl saline, dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP), followed by immobilization of human serum albumin (HSA) as the probe. In this situation, the orientation of LC was homeotropic and dark LC image was observed under polarized light. When the solution containing anti-human serum albumin (anti-HSA) were dispensed into the capillary through capillary action, the specific immunobinding between HSA and anti-HSA formed an immunocomplex on the inner surface of capillary, which disrupted the original orientation of LC and led to a dark-to-bright transition of the LC images. The quantification of anti-HSA can be achieved by measuring the length of the bright LC image in the rectangular capillary. By using this immunoassay, the limit of detection (LOD) for anti-HSA is 1 μg/mL, and it did not respond to HSA and anti-human immunoglobulin G (anti-h-IgG). On the other hand, the diversity of the LC-based immunoassay can be extended for HSA detection when we immobilized anti-HSA in the capillary. Because the post-fabrication of LC cell was waived by using rectangular capillaries to develop the LC-based immunoassay, it is more convenient for users to handle and collect more reliable data. Moreover, the results of the immunoassay were visualized through naked-eye and could be recorded by a smartphone; it is more suitable for portable and point-of-care applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Immunoassays for the cancer biomarker CA125 based on a large-birefringence nematic liquid-crystal mixture

Shih-Hung Sun, Mon-Juan Lee, Yun-Han Lee, Wei Lee, Xiaolong Song, and Chao-Yuan Chen
Biomed. Opt. Express 6(1) 245-256 (2015)

Label-free protein sensing by employing blue phase liquid crystal

Mon-Juan Lee, Chung-Huan Chang, and Wei Lee
Biomed. Opt. Express 8(3) 1712-1720 (2017)

Electric-field-assisted signal amplification for label-free liquid-crystal-based detection of biomolecules

Wei-Liang Hsu, Mon-Juan Lee, and Wei Lee
Biomed. Opt. Express 10(10) 4987-4998 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, “Paper-based ELISA,” Angew. Chem. Int. Ed. Engl. 49(28), 4771–4774 (2010).
    [Crossref] [PubMed]
  2. A. Ambrosi, F. Airò, and A. Merkoçi, “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker,” Anal. Chem. 82(3), 1151–1156 (2010).
    [Crossref] [PubMed]
  3. J. Liang, C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, C. Lan, D. Cao, and Y. Tang, “Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen,” Biosens. Bioelectron. 69, 128–134 (2015).
    [Crossref] [PubMed]
  4. Y. Wu, L. Zeng, Y. Xiong, Y. Leng, H. Wang, and Y. Xiong, “Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B,” Talanta 181, 258–264 (2018).
    [Crossref] [PubMed]
  5. K. Kitamura, K. Matsuda, M. Ide, T. Tokunaga, and M. Honda, “A fluorescence sandwich ELISA for detecting soluble and cell-associated human interleukin-2,” J. Immunol. Methods 121(2), 281–288 (1989).
    [Crossref] [PubMed]
  6. S. K. Arya and P. Estrela, “Electrochemical ELISA-based platform for bladder cancer protein biomarker detection in urine,” Biosens. Bioelectron. 117, 620–627 (2018).
    [Crossref] [PubMed]
  7. A. C. Glavan, D. C. Christodouleas, B. Mosadegh, H. D. Yu, B. S. Smith, J. Lessing, M. T. Fernández-Abedul, and G. M. Whitesides, “Folding analytical devices for electrochemical ELISA in hydrophobic R(H) paper,” Anal. Chem. 86(24), 11999–12007 (2014).
    [Crossref] [PubMed]
  8. H. W. Su, M. J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 57004 (2015).
    [Crossref] [PubMed]
  9. W. H. Ho and C. H. Chen, “Liquid crystal-based immunoassay for detecting human serum albumin,” Res. Chem. Intermed. 40(6), 2229–2236 (2014).
    [Crossref]
  10. C. H. Chen and K. L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Anal. Biochem. 421(1), 321–323 (2012).
    [Crossref] [PubMed]
  11. C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
    [Crossref]
  12. A. Shirai, T. G. Henares, K. Sueyoshi, T. Endo, and H. Hisamoto, “Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide-antibody conjugate and fluorescently labelled antibody,” Analyst (Lond.) 141(11), 3389–3394 (2016).
    [Crossref] [PubMed]
  13. M. Khan and S. Y. Park, “Liquid crystal-based biosensor with backscattering interferometry: A quantitative approach,” Biosens. Bioelectron. 87, 976–983 (2017).
    [Crossref] [PubMed]
  14. H. J. Kim and C. H. Jang, “Micro-capillary sensor for imaging trypsin activity using confined nematic liquid crystals,” J. Mol. Liq. 222, 596–600 (2016).
    [Crossref]
  15. W. H. Ho and C. H. Chen, “Liquid crystal-based immunoassay for detecting human serum albumin,” Res. Chem. Intermed. 40(6), 2229–2236 (2014).
    [Crossref]
  16. C. H. Chen and K. L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
    [Crossref] [PubMed]
  17. C. Y. Xue and K. L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
    [Crossref] [PubMed]
  18. W. Zhang, W. T. Ang, C. Y. Xue, and K. L. Yang, “Minimizing nonspecific protein adsorption in liquid crystal immunoassays by using surfactants,” ACS Appl. Mater. Interfaces 3(9), 3496–3500 (2011).
    [Crossref] [PubMed]
  19. C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
    [Crossref]

2018 (2)

Y. Wu, L. Zeng, Y. Xiong, Y. Leng, H. Wang, and Y. Xiong, “Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B,” Talanta 181, 258–264 (2018).
[Crossref] [PubMed]

S. K. Arya and P. Estrela, “Electrochemical ELISA-based platform for bladder cancer protein biomarker detection in urine,” Biosens. Bioelectron. 117, 620–627 (2018).
[Crossref] [PubMed]

2017 (1)

M. Khan and S. Y. Park, “Liquid crystal-based biosensor with backscattering interferometry: A quantitative approach,” Biosens. Bioelectron. 87, 976–983 (2017).
[Crossref] [PubMed]

2016 (2)

H. J. Kim and C. H. Jang, “Micro-capillary sensor for imaging trypsin activity using confined nematic liquid crystals,” J. Mol. Liq. 222, 596–600 (2016).
[Crossref]

A. Shirai, T. G. Henares, K. Sueyoshi, T. Endo, and H. Hisamoto, “Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide-antibody conjugate and fluorescently labelled antibody,” Analyst (Lond.) 141(11), 3389–3394 (2016).
[Crossref] [PubMed]

2015 (2)

J. Liang, C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, C. Lan, D. Cao, and Y. Tang, “Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen,” Biosens. Bioelectron. 69, 128–134 (2015).
[Crossref] [PubMed]

H. W. Su, M. J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 57004 (2015).
[Crossref] [PubMed]

2014 (3)

W. H. Ho and C. H. Chen, “Liquid crystal-based immunoassay for detecting human serum albumin,” Res. Chem. Intermed. 40(6), 2229–2236 (2014).
[Crossref]

A. C. Glavan, D. C. Christodouleas, B. Mosadegh, H. D. Yu, B. S. Smith, J. Lessing, M. T. Fernández-Abedul, and G. M. Whitesides, “Folding analytical devices for electrochemical ELISA in hydrophobic R(H) paper,” Anal. Chem. 86(24), 11999–12007 (2014).
[Crossref] [PubMed]

W. H. Ho and C. H. Chen, “Liquid crystal-based immunoassay for detecting human serum albumin,” Res. Chem. Intermed. 40(6), 2229–2236 (2014).
[Crossref]

2012 (1)

C. H. Chen and K. L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Anal. Biochem. 421(1), 321–323 (2012).
[Crossref] [PubMed]

2011 (1)

W. Zhang, W. T. Ang, C. Y. Xue, and K. L. Yang, “Minimizing nonspecific protein adsorption in liquid crystal immunoassays by using surfactants,” ACS Appl. Mater. Interfaces 3(9), 3496–3500 (2011).
[Crossref] [PubMed]

2010 (3)

C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, “Paper-based ELISA,” Angew. Chem. Int. Ed. Engl. 49(28), 4771–4774 (2010).
[Crossref] [PubMed]

A. Ambrosi, F. Airò, and A. Merkoçi, “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker,” Anal. Chem. 82(3), 1151–1156 (2010).
[Crossref] [PubMed]

C. H. Chen and K. L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
[Crossref] [PubMed]

2009 (2)

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

2008 (1)

C. Y. Xue and K. L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
[Crossref] [PubMed]

1989 (1)

K. Kitamura, K. Matsuda, M. Ide, T. Tokunaga, and M. Honda, “A fluorescence sandwich ELISA for detecting soluble and cell-associated human interleukin-2,” J. Immunol. Methods 121(2), 281–288 (1989).
[Crossref] [PubMed]

Airò, F.

A. Ambrosi, F. Airò, and A. Merkoçi, “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker,” Anal. Chem. 82(3), 1151–1156 (2010).
[Crossref] [PubMed]

Ambrosi, A.

A. Ambrosi, F. Airò, and A. Merkoçi, “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker,” Anal. Chem. 82(3), 1151–1156 (2010).
[Crossref] [PubMed]

Ang, W. T.

W. Zhang, W. T. Ang, C. Y. Xue, and K. L. Yang, “Minimizing nonspecific protein adsorption in liquid crystal immunoassays by using surfactants,” ACS Appl. Mater. Interfaces 3(9), 3496–3500 (2011).
[Crossref] [PubMed]

Arya, S. K.

S. K. Arya and P. Estrela, “Electrochemical ELISA-based platform for bladder cancer protein biomarker detection in urine,” Biosens. Bioelectron. 117, 620–627 (2018).
[Crossref] [PubMed]

Cao, D.

J. Liang, C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, C. Lan, D. Cao, and Y. Tang, “Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen,” Biosens. Bioelectron. 69, 128–134 (2015).
[Crossref] [PubMed]

Carrilho, E.

C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, “Paper-based ELISA,” Angew. Chem. Int. Ed. Engl. 49(28), 4771–4774 (2010).
[Crossref] [PubMed]

Chen, C. H.

W. H. Ho and C. H. Chen, “Liquid crystal-based immunoassay for detecting human serum albumin,” Res. Chem. Intermed. 40(6), 2229–2236 (2014).
[Crossref]

W. H. Ho and C. H. Chen, “Liquid crystal-based immunoassay for detecting human serum albumin,” Res. Chem. Intermed. 40(6), 2229–2236 (2014).
[Crossref]

C. H. Chen and K. L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Anal. Biochem. 421(1), 321–323 (2012).
[Crossref] [PubMed]

C. H. Chen and K. L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
[Crossref] [PubMed]

Cheng, C. M.

C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, “Paper-based ELISA,” Angew. Chem. Int. Ed. Engl. 49(28), 4771–4774 (2010).
[Crossref] [PubMed]

Christodouleas, D. C.

A. C. Glavan, D. C. Christodouleas, B. Mosadegh, H. D. Yu, B. S. Smith, J. Lessing, M. T. Fernández-Abedul, and G. M. Whitesides, “Folding analytical devices for electrochemical ELISA in hydrophobic R(H) paper,” Anal. Chem. 86(24), 11999–12007 (2014).
[Crossref] [PubMed]

Endo, T.

A. Shirai, T. G. Henares, K. Sueyoshi, T. Endo, and H. Hisamoto, “Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide-antibody conjugate and fluorescently labelled antibody,” Analyst (Lond.) 141(11), 3389–3394 (2016).
[Crossref] [PubMed]

Estrela, P.

S. K. Arya and P. Estrela, “Electrochemical ELISA-based platform for bladder cancer protein biomarker detection in urine,” Biosens. Bioelectron. 117, 620–627 (2018).
[Crossref] [PubMed]

Fernández-Abedul, M. T.

A. C. Glavan, D. C. Christodouleas, B. Mosadegh, H. D. Yu, B. S. Smith, J. Lessing, M. T. Fernández-Abedul, and G. M. Whitesides, “Folding analytical devices for electrochemical ELISA in hydrophobic R(H) paper,” Anal. Chem. 86(24), 11999–12007 (2014).
[Crossref] [PubMed]

Fu, Q.

J. Liang, C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, C. Lan, D. Cao, and Y. Tang, “Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen,” Biosens. Bioelectron. 69, 128–134 (2015).
[Crossref] [PubMed]

Glavan, A. C.

A. C. Glavan, D. C. Christodouleas, B. Mosadegh, H. D. Yu, B. S. Smith, J. Lessing, M. T. Fernández-Abedul, and G. M. Whitesides, “Folding analytical devices for electrochemical ELISA in hydrophobic R(H) paper,” Anal. Chem. 86(24), 11999–12007 (2014).
[Crossref] [PubMed]

Gong, J.

C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, “Paper-based ELISA,” Angew. Chem. Int. Ed. Engl. 49(28), 4771–4774 (2010).
[Crossref] [PubMed]

Henares, T. G.

A. Shirai, T. G. Henares, K. Sueyoshi, T. Endo, and H. Hisamoto, “Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide-antibody conjugate and fluorescently labelled antibody,” Analyst (Lond.) 141(11), 3389–3394 (2016).
[Crossref] [PubMed]

Hisamoto, H.

A. Shirai, T. G. Henares, K. Sueyoshi, T. Endo, and H. Hisamoto, “Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide-antibody conjugate and fluorescently labelled antibody,” Analyst (Lond.) 141(11), 3389–3394 (2016).
[Crossref] [PubMed]

Ho, W. H.

W. H. Ho and C. H. Chen, “Liquid crystal-based immunoassay for detecting human serum albumin,” Res. Chem. Intermed. 40(6), 2229–2236 (2014).
[Crossref]

W. H. Ho and C. H. Chen, “Liquid crystal-based immunoassay for detecting human serum albumin,” Res. Chem. Intermed. 40(6), 2229–2236 (2014).
[Crossref]

Honda, M.

K. Kitamura, K. Matsuda, M. Ide, T. Tokunaga, and M. Honda, “A fluorescence sandwich ELISA for detecting soluble and cell-associated human interleukin-2,” J. Immunol. Methods 121(2), 281–288 (1989).
[Crossref] [PubMed]

Huang, C.

J. Liang, C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, C. Lan, D. Cao, and Y. Tang, “Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen,” Biosens. Bioelectron. 69, 128–134 (2015).
[Crossref] [PubMed]

Ide, M.

K. Kitamura, K. Matsuda, M. Ide, T. Tokunaga, and M. Honda, “A fluorescence sandwich ELISA for detecting soluble and cell-associated human interleukin-2,” J. Immunol. Methods 121(2), 281–288 (1989).
[Crossref] [PubMed]

Jang, C. H.

H. J. Kim and C. H. Jang, “Micro-capillary sensor for imaging trypsin activity using confined nematic liquid crystals,” J. Mol. Liq. 222, 596–600 (2016).
[Crossref]

Khan, M.

M. Khan and S. Y. Park, “Liquid crystal-based biosensor with backscattering interferometry: A quantitative approach,” Biosens. Bioelectron. 87, 976–983 (2017).
[Crossref] [PubMed]

Khan, S. A.

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

Kim, H. J.

H. J. Kim and C. H. Jang, “Micro-capillary sensor for imaging trypsin activity using confined nematic liquid crystals,” J. Mol. Liq. 222, 596–600 (2016).
[Crossref]

Kitamura, K.

K. Kitamura, K. Matsuda, M. Ide, T. Tokunaga, and M. Honda, “A fluorescence sandwich ELISA for detecting soluble and cell-associated human interleukin-2,” J. Immunol. Methods 121(2), 281–288 (1989).
[Crossref] [PubMed]

Lan, C.

J. Liang, C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, C. Lan, D. Cao, and Y. Tang, “Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen,” Biosens. Bioelectron. 69, 128–134 (2015).
[Crossref] [PubMed]

Lee, M. J.

H. W. Su, M. J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 57004 (2015).
[Crossref] [PubMed]

Lee, W.

H. W. Su, M. J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 57004 (2015).
[Crossref] [PubMed]

Leng, Y.

Y. Wu, L. Zeng, Y. Xiong, Y. Leng, H. Wang, and Y. Xiong, “Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B,” Talanta 181, 258–264 (2018).
[Crossref] [PubMed]

Lessing, J.

A. C. Glavan, D. C. Christodouleas, B. Mosadegh, H. D. Yu, B. S. Smith, J. Lessing, M. T. Fernández-Abedul, and G. M. Whitesides, “Folding analytical devices for electrochemical ELISA in hydrophobic R(H) paper,” Anal. Chem. 86(24), 11999–12007 (2014).
[Crossref] [PubMed]

Li, X.

J. Liang, C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, C. Lan, D. Cao, and Y. Tang, “Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen,” Biosens. Bioelectron. 69, 128–134 (2015).
[Crossref] [PubMed]

Liang, J.

J. Liang, C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, C. Lan, D. Cao, and Y. Tang, “Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen,” Biosens. Bioelectron. 69, 128–134 (2015).
[Crossref] [PubMed]

Mace, C. R.

C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, “Paper-based ELISA,” Angew. Chem. Int. Ed. Engl. 49(28), 4771–4774 (2010).
[Crossref] [PubMed]

Martinez, A. W.

C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, “Paper-based ELISA,” Angew. Chem. Int. Ed. Engl. 49(28), 4771–4774 (2010).
[Crossref] [PubMed]

Matsuda, K.

K. Kitamura, K. Matsuda, M. Ide, T. Tokunaga, and M. Honda, “A fluorescence sandwich ELISA for detecting soluble and cell-associated human interleukin-2,” J. Immunol. Methods 121(2), 281–288 (1989).
[Crossref] [PubMed]

Merkoçi, A.

A. Ambrosi, F. Airò, and A. Merkoçi, “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker,” Anal. Chem. 82(3), 1151–1156 (2010).
[Crossref] [PubMed]

Mirica, K. A.

C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, “Paper-based ELISA,” Angew. Chem. Int. Ed. Engl. 49(28), 4771–4774 (2010).
[Crossref] [PubMed]

Mosadegh, B.

A. C. Glavan, D. C. Christodouleas, B. Mosadegh, H. D. Yu, B. S. Smith, J. Lessing, M. T. Fernández-Abedul, and G. M. Whitesides, “Folding analytical devices for electrochemical ELISA in hydrophobic R(H) paper,” Anal. Chem. 86(24), 11999–12007 (2014).
[Crossref] [PubMed]

Park, S. Y.

M. Khan and S. Y. Park, “Liquid crystal-based biosensor with backscattering interferometry: A quantitative approach,” Biosens. Bioelectron. 87, 976–983 (2017).
[Crossref] [PubMed]

Phillips, S. T.

C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, “Paper-based ELISA,” Angew. Chem. Int. Ed. Engl. 49(28), 4771–4774 (2010).
[Crossref] [PubMed]

Shirai, A.

A. Shirai, T. G. Henares, K. Sueyoshi, T. Endo, and H. Hisamoto, “Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide-antibody conjugate and fluorescently labelled antibody,” Analyst (Lond.) 141(11), 3389–3394 (2016).
[Crossref] [PubMed]

Smith, B. S.

A. C. Glavan, D. C. Christodouleas, B. Mosadegh, H. D. Yu, B. S. Smith, J. Lessing, M. T. Fernández-Abedul, and G. M. Whitesides, “Folding analytical devices for electrochemical ELISA in hydrophobic R(H) paper,” Anal. Chem. 86(24), 11999–12007 (2014).
[Crossref] [PubMed]

Su, H. W.

H. W. Su, M. J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 57004 (2015).
[Crossref] [PubMed]

Sueyoshi, K.

A. Shirai, T. G. Henares, K. Sueyoshi, T. Endo, and H. Hisamoto, “Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide-antibody conjugate and fluorescently labelled antibody,” Analyst (Lond.) 141(11), 3389–3394 (2016).
[Crossref] [PubMed]

Tang, Y.

J. Liang, C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, C. Lan, D. Cao, and Y. Tang, “Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen,” Biosens. Bioelectron. 69, 128–134 (2015).
[Crossref] [PubMed]

Tokunaga, T.

K. Kitamura, K. Matsuda, M. Ide, T. Tokunaga, and M. Honda, “A fluorescence sandwich ELISA for detecting soluble and cell-associated human interleukin-2,” J. Immunol. Methods 121(2), 281–288 (1989).
[Crossref] [PubMed]

Wang, H.

Y. Wu, L. Zeng, Y. Xiong, Y. Leng, H. Wang, and Y. Xiong, “Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B,” Talanta 181, 258–264 (2018).
[Crossref] [PubMed]

Whitesides, G. M.

A. C. Glavan, D. C. Christodouleas, B. Mosadegh, H. D. Yu, B. S. Smith, J. Lessing, M. T. Fernández-Abedul, and G. M. Whitesides, “Folding analytical devices for electrochemical ELISA in hydrophobic R(H) paper,” Anal. Chem. 86(24), 11999–12007 (2014).
[Crossref] [PubMed]

C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, “Paper-based ELISA,” Angew. Chem. Int. Ed. Engl. 49(28), 4771–4774 (2010).
[Crossref] [PubMed]

Wu, Y.

Y. Wu, L. Zeng, Y. Xiong, Y. Leng, H. Wang, and Y. Xiong, “Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B,” Talanta 181, 258–264 (2018).
[Crossref] [PubMed]

Wu, Z.

J. Liang, C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, C. Lan, D. Cao, and Y. Tang, “Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen,” Biosens. Bioelectron. 69, 128–134 (2015).
[Crossref] [PubMed]

Xiong, Y.

Y. Wu, L. Zeng, Y. Xiong, Y. Leng, H. Wang, and Y. Xiong, “Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B,” Talanta 181, 258–264 (2018).
[Crossref] [PubMed]

Y. Wu, L. Zeng, Y. Xiong, Y. Leng, H. Wang, and Y. Xiong, “Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B,” Talanta 181, 258–264 (2018).
[Crossref] [PubMed]

Xue, C. Y.

W. Zhang, W. T. Ang, C. Y. Xue, and K. L. Yang, “Minimizing nonspecific protein adsorption in liquid crystal immunoassays by using surfactants,” ACS Appl. Mater. Interfaces 3(9), 3496–3500 (2011).
[Crossref] [PubMed]

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

C. Y. Xue and K. L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
[Crossref] [PubMed]

Yang, K. L.

C. H. Chen and K. L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Anal. Biochem. 421(1), 321–323 (2012).
[Crossref] [PubMed]

W. Zhang, W. T. Ang, C. Y. Xue, and K. L. Yang, “Minimizing nonspecific protein adsorption in liquid crystal immunoassays by using surfactants,” ACS Appl. Mater. Interfaces 3(9), 3496–3500 (2011).
[Crossref] [PubMed]

C. H. Chen and K. L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
[Crossref] [PubMed]

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

C. Y. Xue and K. L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
[Crossref] [PubMed]

Yao, C.

J. Liang, C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, C. Lan, D. Cao, and Y. Tang, “Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen,” Biosens. Bioelectron. 69, 128–134 (2015).
[Crossref] [PubMed]

Yu, H. D.

A. C. Glavan, D. C. Christodouleas, B. Mosadegh, H. D. Yu, B. S. Smith, J. Lessing, M. T. Fernández-Abedul, and G. M. Whitesides, “Folding analytical devices for electrochemical ELISA in hydrophobic R(H) paper,” Anal. Chem. 86(24), 11999–12007 (2014).
[Crossref] [PubMed]

Zeng, L.

Y. Wu, L. Zeng, Y. Xiong, Y. Leng, H. Wang, and Y. Xiong, “Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B,” Talanta 181, 258–264 (2018).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, W. T. Ang, C. Y. Xue, and K. L. Yang, “Minimizing nonspecific protein adsorption in liquid crystal immunoassays by using surfactants,” ACS Appl. Mater. Interfaces 3(9), 3496–3500 (2011).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

W. Zhang, W. T. Ang, C. Y. Xue, and K. L. Yang, “Minimizing nonspecific protein adsorption in liquid crystal immunoassays by using surfactants,” ACS Appl. Mater. Interfaces 3(9), 3496–3500 (2011).
[Crossref] [PubMed]

Adv. Mater. (2)

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

C. Y. Xue, S. A. Khan, and K. L. Yang, “Exploring optical properties of liquid crystals for developing label-free and high-throughput microfluidic immunoassays,” Adv. Mater. 21(2), 198–202 (2009).
[Crossref]

Anal. Biochem. (1)

C. H. Chen and K. L. Yang, “Liquid crystal-based immunoassays for detecting hepatitis B antibody,” Anal. Biochem. 421(1), 321–323 (2012).
[Crossref] [PubMed]

Anal. Chem. (2)

A. C. Glavan, D. C. Christodouleas, B. Mosadegh, H. D. Yu, B. S. Smith, J. Lessing, M. T. Fernández-Abedul, and G. M. Whitesides, “Folding analytical devices for electrochemical ELISA in hydrophobic R(H) paper,” Anal. Chem. 86(24), 11999–12007 (2014).
[Crossref] [PubMed]

A. Ambrosi, F. Airò, and A. Merkoçi, “Enhanced gold nanoparticle based ELISA for a breast cancer biomarker,” Anal. Chem. 82(3), 1151–1156 (2010).
[Crossref] [PubMed]

Analyst (Lond.) (1)

A. Shirai, T. G. Henares, K. Sueyoshi, T. Endo, and H. Hisamoto, “Fast and single-step immunoassay based on fluorescence quenching within a square glass capillary immobilizing graphene oxide-antibody conjugate and fluorescently labelled antibody,” Analyst (Lond.) 141(11), 3389–3394 (2016).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

C. M. Cheng, A. W. Martinez, J. Gong, C. R. Mace, S. T. Phillips, E. Carrilho, K. A. Mirica, and G. M. Whitesides, “Paper-based ELISA,” Angew. Chem. Int. Ed. Engl. 49(28), 4771–4774 (2010).
[Crossref] [PubMed]

Biosens. Bioelectron. (3)

J. Liang, C. Yao, X. Li, Z. Wu, C. Huang, Q. Fu, C. Lan, D. Cao, and Y. Tang, “Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen,” Biosens. Bioelectron. 69, 128–134 (2015).
[Crossref] [PubMed]

S. K. Arya and P. Estrela, “Electrochemical ELISA-based platform for bladder cancer protein biomarker detection in urine,” Biosens. Bioelectron. 117, 620–627 (2018).
[Crossref] [PubMed]

M. Khan and S. Y. Park, “Liquid crystal-based biosensor with backscattering interferometry: A quantitative approach,” Biosens. Bioelectron. 87, 976–983 (2017).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

H. W. Su, M. J. Lee, and W. Lee, “Surface modification of alignment layer by ultraviolet irradiation to dramatically improve the detection limit of liquid-crystal-based immunoassay for the cancer biomarker CA125,” J. Biomed. Opt. 20(5), 57004 (2015).
[Crossref] [PubMed]

J. Immunol. Methods (1)

K. Kitamura, K. Matsuda, M. Ide, T. Tokunaga, and M. Honda, “A fluorescence sandwich ELISA for detecting soluble and cell-associated human interleukin-2,” J. Immunol. Methods 121(2), 281–288 (1989).
[Crossref] [PubMed]

J. Mol. Liq. (1)

H. J. Kim and C. H. Jang, “Micro-capillary sensor for imaging trypsin activity using confined nematic liquid crystals,” J. Mol. Liq. 222, 596–600 (2016).
[Crossref]

Langmuir (2)

C. H. Chen and K. L. Yang, “Detection and quantification of DNA adsorbed on solid surfaces by using liquid crystals,” Langmuir 26(3), 1427–1430 (2010).
[Crossref] [PubMed]

C. Y. Xue and K. L. Yang, “Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins,” Langmuir 24(2), 563–567 (2008).
[Crossref] [PubMed]

Res. Chem. Intermed. (2)

W. H. Ho and C. H. Chen, “Liquid crystal-based immunoassay for detecting human serum albumin,” Res. Chem. Intermed. 40(6), 2229–2236 (2014).
[Crossref]

W. H. Ho and C. H. Chen, “Liquid crystal-based immunoassay for detecting human serum albumin,” Res. Chem. Intermed. 40(6), 2229–2236 (2014).
[Crossref]

Talanta (1)

Y. Wu, L. Zeng, Y. Xiong, Y. Leng, H. Wang, and Y. Xiong, “Fluorescence ELISA based on glucose oxidase-mediated fluorescence quenching of quantum dots for highly sensitive detection of Hepatitis B,” Talanta 181, 258–264 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Polarized images of (a) bare rectangular capillaries and (b) rectangular capillaries (top view) with DMOAP-coating on the inner surface. The schematic at the bottom illustrated the orientation of LC in the capillaries (cross section). It shows that the orientation of LC is homeotropic in DMOAP-coated capillaries and a dark LC image was shown.
Fig. 2
Fig. 2 Polarized images of rectangular capillaries (top view) immobilized with (a) 100, (b) 50, (c) 40, and (d) 30 μg/mL of HSA. In (e-h), the capillary was immobilized with (e) 100, (f) 50, (g) 40 and (h) 30 μg/mL of FITC-labeled HSA. The schematic at the bottom illustrated two different orientations of LC in the capillaries (cross section). It shows that LC image was bright in capillaries when the concentration of HSA was 40 μg/mL or above.
Fig. 3
Fig. 3 Polarized images of rectangular capillaries (top view) immobilized with 30 μg/mL of HSA dispensed with (a) 50 μg/mL of anti-HSA and (b) 0 μg/mL of anti-HSA. It shows that LC image turned bright in capillaries when anti-HSA bound to HSA in the capillaries.
Fig. 4
Fig. 4 Polarized images of rectangular capillaries (top view) immobilized with 1 μg/mL of anti-HSA dispensed with (a) 75 μg/mL of HSA and (b) 0 μg/mL of HSA. It shows that LC image turned bright in capillaries when HSA bound to anti-HSA in the capillaries.
Fig. 5
Fig. 5 (a) Polarized images of rectangular capillaries (top view) immobilized with 10 μg/mL of HSA then dispensed with 0, 1, 5, 10, 20, 30, 40, 50 and 60 μg/mL of anti-HSA (from top to bottom) through capillary action. (b) Correlations between the brightness length of the capillaries and the concentration of anti-HSA. The error bars indicate the standard deviation of the measurements of five repeated experiments for each assay. It shows that brightness length of the capillaries increased as the concentration of anti-HSA.
Fig. 6
Fig. 6 (a) Polarized images of rectangular capillaries (top view) immobilized with 10 μg/mL of HSA then dispensed with 0, 1, 5, 10, 20, 30 and 40 μg/mL of anti-HSA (from top to bottom) in artificial urine through capillary action. (b) Correlations between the brightness length of the capillaries and the concentration of anti-HSA. The error bars indicate the standard deviation of the measurements of five repeated experiments for each assay. (c) Polarized images of rectangular capillaries (top view) immobilized with 10 μg/mL of HSA then dispensed with 20 μg/mL of HSA, 20 μg/mL of IgG and 20 μg/mL of IgG together with 20 μg/mL of anti-HSA (from top to bottom) in artificial urine through capillary action. It shows that the LC-based immunoassays can be applied in urine samples for anti-HSA detection, and it was not interfered with HSA and IgG.
Fig. 7
Fig. 7 The image of LC-based immunoassay captured by a smartphone. It shows that the LC image was clear, and the length of the bright LC image can be easily differentiated with an integrated scale bar.

Metrics