Abstract

High peak-to-average power ratio (PAPR) is an inherent defect in intensity modulation and direct detection (IM/DD) discrete-multitone (DMT) system, which will cause serious signal nonlinear distortion over fiber transmission. Single carrier-DMT (SC-DMT), which also refers to the discrete-Fourier-transform spread DMT (DFT-spread DMT), is a promising technology for DMT signal PAPR reduction, but higher computational complexity is required due to the additional DFT/IDFT operations in transceiver. In this paper, we experimentally compare the performance of SC-DMT and conventional DMT (CDMT) signal when the computational complexity of SC-DMT transceiver is lower than CDMT by reducing the FFT size in SC-DMT. The results show that the receiver sensitivity of 20 GHz 1024-point FFT based SC-DMT improves by 0.7 dB than 8192-point FFT based CDMT for both 120 Gb/s 64QAM-DMT and 140 Gb/s 128QAM-DMT signal transmission over 2-km single mode fiber (SMF) at the BER of 3.8 × 10−3 and 2.0 × 10−2, respectively. It is the first time to find that the SC-DMT with lower transceiver computational complexity outperforms CDMT. In addition, fast-Hartley-transform (FHT) technique is employed to replace FFT for further transceiver computational complexity reduction. The results give out that FHT-based SC-DMT shows the same BER performance with FFT-based SC-DMT, while the computational complexity of the transceiver can be reduced by half.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Comparison of null-subcarriers reservation and adaptive notch filter for narrowband interference cancellation in intra-data center interconnect with DMT signal transmission

Dongdong Zou, Yongchao Chen, Zibin Li, Fan Li, Li Ding, Yidan Sun, Jianping Li, Qi Sui, Xingwen Yi, and Zhaohui Li
Opt. Express 27(4) 5696-5702 (2019)

Experimental demonstration of a cost-effective bit rate variable IM/DD optical OFDM with reduced guard band

Michela Svaluto Moreolo, Josep M. Fàbrega, Fco. Javier Vílchez, Laia Nadal, and Gabriel Junyent
Opt. Express 20(26) B159-B164 (2012)

Low-complexity recombined SLM scheme for PAPR reduction in IM/DD optical OFDM systems

Yating Wu, Congcong He, Qianwu Zhang, Yanzan Sun, and Tao Wang
Opt. Express 26(24) 32237-32247 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightwave Technol. 36(2), 377–400 (2018).
    [Crossref]
  2. X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
    [Crossref] [PubMed]
  3. L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
    [Crossref]
  4. J. Shi, J. Zhang, Y. Zhou, Y. Yang, and N. Chi, “Transmission Performance Comparison for 100Gb/s PAM-4, CAP-16 and DFT-S OFDM with Direct Detection,” J. Lightwave Technol. 35(23), 5127–5133 (2017).
    [Crossref]
  5. K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
    [Crossref] [PubMed]
  6. F. Li, J. Yu, Z. Cao, J. Zhang, M. Chen, and X. Li, “Experimental Demonstration of Four-Channel WDM 560 Gbit/s 128QAM-DMT Using IM/DD for 2-km Optical Interconnect,” J. Lightwave Technol. 35(4), 941–948 (2017).
    [Crossref]
  7. L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-Band,” J. Lightwave Technol. 34(2), 723–729 (2016).
    [Crossref]
  8. C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single VCSEL 100-Gb/s Short-Reach System Using Discrete Multi-Tone Modulation and Direct Detection,” in Optical Fiber Communication Conference (OFC 2015), paper Tu2H.2.
    [Crossref]
  9. F. Li, D. Zou, L. Ding, Y. Sun, J. Li, Q. Sui, L. Li, X. Yi, and Z. Li, “100 Gbit/s PAM4 Signal Transmission and Reception for 2-km Interconnect with Adaptive Notch Filter for Narrowband Interference,” Opt. Express 26(18), 24066–24074 (2018).
    [Crossref] [PubMed]
  10. K. Zhong, W. Chen, Q. Sui, J. Man, A. P. Lau, C. Lu, and L. Zeng, “Experimental Demonstration of 500Gbit/s Short Reach Transmission Employing PAM4 Signal and Direct Detection with 25Gbps Device,” in Optical Fiber Communication Conference (OFC 2015), paper Th3A.3.
    [Crossref]
  11. N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental demonstration of 84 Gb/s PAM-4 over up to 1.6 km SSMF using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
    [Crossref]
  12. L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
    [Crossref]
  13. F. Mangone, J. Tang, M. Chen, J. Xiao, F. Li, and L. Chen, “Iterative clipping and filtering based on discrete cosine transform/inverse discrete cosine transform for intensity modulator direct detection optical orthogonal frequency division multiplexing system,” Opt. Eng. 52(6), 065001 (2013).
    [Crossref]
  14. H. S. Chung, S. H. Chang, and K. Kim, “Companding transform based SPM compensation in coherent optical OFDM transmission,” Opt. Express 19(26), B702–B709 (2011).
    [Crossref] [PubMed]
  15. Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM Signals Using Selected Mapping Method and Its Application in Optical Millimeter-Wave Access System,” IEEE Photonics Technol. Lett. 24(15), 1301–1303 (2012).
    [Crossref]
  16. Y. Wu, C. He, Q. Zhang, Y. Sun, and T. Wang, “Low-complexity recombined SLM scheme for PAPR reduction in IM/DD optical OFDM systems,” Opt. Express 26(24), 32237–32247 (2018).
    [Crossref] [PubMed]
  17. F. Li, X. Li, J. Yu, and L. Chen, “Optimization of training sequence for DFT-spread DMT signal in optical access network with direct detection utilizing DML,” Opt. Express 22(19), 22962–22967 (2014).
    [Crossref] [PubMed]
  18. F. Li, X. Li, and J. Yu, “Performance Comparison of DFT-Spread and Pre-Equalization for 8 × 244.2-Gb/s PDM-16QAM-OFDM,” J. Lightwave Technol. 33(1), 227–233 (2015).
    [Crossref]
  19. J. L. Wei, C. Sanchez, and E. Giacoumidis, “Fair comparison of complexity between a multi-band CAP and DMT for data center interconnects,” Opt. Lett. 42(19), 3860–3863 (2017).
    [Crossref] [PubMed]
  20. J. Wei, Q. Cheng, R. Penty, L. White, and D. Cunningham, “400 Gigabit Ethernet Using Advanced Modulation Formats: Performance, Complexity, and Power Dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
    [Crossref]
  21. B. Inha, B. Spinnler, F. Ferreira, A. Lobato, S. Adhikari, V. Sleiffer, D. Borne, N. Hanik, and S. Jansen, “Equalizer Complexity of Mode Division Multiplexed Coherent Receiver,” in Optical Fiber Communication Conference (OFC 2012), paper OW3D.4.
  22. M. S. Faruk and K. Kikuchi, “Adaptive frequency-domain equalization in digital coherent optical receivers,” Opt. Express 19(13), 12789–12798 (2011).
    [Crossref] [PubMed]
  23. B. Spinnler, “Equalizer Design and Complexity for Digital Coherent Receivers,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010).
    [Crossref]
  24. J. Zhou and Y. Qiao, “Low-peak-to-average power ratio and low-complexity asymmetrically clipped optical orthogonal frequency-division multiplexing uplink transmission scheme for long-reach passive optical network,” Opt. Lett. 40(17), 4034–4037 (2015).
    [Crossref] [PubMed]
  25. J. Zhou, Y. Qiao, Z. Cai, and Y. Ji, “An improved scheme for Flip-OFDM based on Hartley transform in short-range IM/DD systems,” Opt. Express 22(17), 20748–20756 (2014).
    [Crossref] [PubMed]

2018 (3)

2017 (4)

2016 (1)

2015 (5)

2014 (2)

2013 (3)

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

F. Mangone, J. Tang, M. Chen, J. Xiao, F. Li, and L. Chen, “Iterative clipping and filtering based on discrete cosine transform/inverse discrete cosine transform for intensity modulator direct detection optical orthogonal frequency division multiplexing system,” Opt. Eng. 52(6), 065001 (2013).
[Crossref]

2012 (1)

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM Signals Using Selected Mapping Method and Its Application in Optical Millimeter-Wave Access System,” IEEE Photonics Technol. Lett. 24(15), 1301–1303 (2012).
[Crossref]

2011 (2)

2010 (1)

B. Spinnler, “Equalizer Design and Complexity for Digital Coherent Receivers,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010).
[Crossref]

Adhikari, S.

B. Inha, B. Spinnler, F. Ferreira, A. Lobato, S. Adhikari, V. Sleiffer, D. Borne, N. Hanik, and S. Jansen, “Equalizer Complexity of Mode Division Multiplexed Coherent Receiver,” in Optical Fiber Communication Conference (OFC 2012), paper OW3D.4.

Bao, Y.

Borne, D.

B. Inha, B. Spinnler, F. Ferreira, A. Lobato, S. Adhikari, V. Sleiffer, D. Borne, N. Hanik, and S. Jansen, “Equalizer Complexity of Mode Division Multiplexed Coherent Receiver,” in Optical Fiber Communication Conference (OFC 2012), paper OW3D.4.

Cai, Z.

Cao, Z.

Chang, S. H.

Chen, L.

F. Li, X. Li, J. Yu, and L. Chen, “Optimization of training sequence for DFT-spread DMT signal in optical access network with direct detection utilizing DML,” Opt. Express 22(19), 22962–22967 (2014).
[Crossref] [PubMed]

F. Mangone, J. Tang, M. Chen, J. Xiao, F. Li, and L. Chen, “Iterative clipping and filtering based on discrete cosine transform/inverse discrete cosine transform for intensity modulator direct detection optical orthogonal frequency division multiplexing system,” Opt. Eng. 52(6), 065001 (2013).
[Crossref]

Chen, M.

F. Li, J. Yu, Z. Cao, J. Zhang, M. Chen, and X. Li, “Experimental Demonstration of Four-Channel WDM 560 Gbit/s 128QAM-DMT Using IM/DD for 2-km Optical Interconnect,” J. Lightwave Technol. 35(4), 941–948 (2017).
[Crossref]

F. Mangone, J. Tang, M. Chen, J. Xiao, F. Li, and L. Chen, “Iterative clipping and filtering based on discrete cosine transform/inverse discrete cosine transform for intensity modulator direct detection optical orthogonal frequency division multiplexing system,” Opt. Eng. 52(6), 065001 (2013).
[Crossref]

Chen, W.

Cheng, Q.

J. Wei, Q. Cheng, R. Penty, L. White, and D. Cunningham, “400 Gigabit Ethernet Using Advanced Modulation Formats: Performance, Complexity, and Power Dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Chi, N.

J. Shi, J. Zhang, Y. Zhou, Y. Yang, and N. Chi, “Transmission Performance Comparison for 100Gb/s PAM-4, CAP-16 and DFT-S OFDM with Direct Detection,” J. Lightwave Technol. 35(23), 5127–5133 (2017).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM Signals Using Selected Mapping Method and Its Application in Optical Millimeter-Wave Access System,” IEEE Photonics Technol. Lett. 24(15), 1301–1303 (2012).
[Crossref]

Chung, H. S.

Cunningham, D.

J. Wei, Q. Cheng, R. Penty, L. White, and D. Cunningham, “400 Gigabit Ethernet Using Advanced Modulation Formats: Performance, Complexity, and Power Dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Ding, L.

Dochhan, A.

Eiselt, M. H.

Eiselt, N.

Fan, J.

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM Signals Using Selected Mapping Method and Its Application in Optical Millimeter-Wave Access System,” IEEE Photonics Technol. Lett. 24(15), 1301–1303 (2012).
[Crossref]

Fang, W.

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM Signals Using Selected Mapping Method and Its Application in Optical Millimeter-Wave Access System,” IEEE Photonics Technol. Lett. 24(15), 1301–1303 (2012).
[Crossref]

Faruk, M. S.

Ferreira, F.

B. Inha, B. Spinnler, F. Ferreira, A. Lobato, S. Adhikari, V. Sleiffer, D. Borne, N. Hanik, and S. Jansen, “Equalizer Complexity of Mode Division Multiplexed Coherent Receiver,” in Optical Fiber Communication Conference (OFC 2012), paper OW3D.4.

Gao, Y.

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Giacoumidis, E.

Griesser, H.

Gui, T.

Hanik, N.

B. Inha, B. Spinnler, F. Ferreira, A. Lobato, S. Adhikari, V. Sleiffer, D. Borne, N. Hanik, and S. Jansen, “Equalizer Complexity of Mode Division Multiplexed Coherent Receiver,” in Optical Fiber Communication Conference (OFC 2012), paper OW3D.4.

He, C.

Hohenleitner, R.

Huo, J.

Inha, B.

B. Inha, B. Spinnler, F. Ferreira, A. Lobato, S. Adhikari, V. Sleiffer, D. Borne, N. Hanik, and S. Jansen, “Equalizer Complexity of Mode Division Multiplexed Coherent Receiver,” in Optical Fiber Communication Conference (OFC 2012), paper OW3D.4.

Jansen, S.

B. Inha, B. Spinnler, F. Ferreira, A. Lobato, S. Adhikari, V. Sleiffer, D. Borne, N. Hanik, and S. Jansen, “Equalizer Complexity of Mode Division Multiplexed Coherent Receiver,” in Optical Fiber Communication Conference (OFC 2012), paper OW3D.4.

Ji, Y.

J. Zhou, Y. Qiao, Z. Cai, and Y. Ji, “An improved scheme for Flip-OFDM based on Hartley transform in short-range IM/DD systems,” Opt. Express 22(17), 20748–20756 (2014).
[Crossref] [PubMed]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Kikuchi, K.

Kim, K.

Lau, A. P.

Lau, A. P. T.

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightwave Technol. 36(2), 377–400 (2018).
[Crossref]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Li, F.

Li, J.

Li, L.

Li, X.

Li, Z.

Liu, G. N.

Liu, J.

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Lobato, A.

B. Inha, B. Spinnler, F. Ferreira, A. Lobato, S. Adhikari, V. Sleiffer, D. Borne, N. Hanik, and S. Jansen, “Equalizer Complexity of Mode Division Multiplexed Coherent Receiver,” in Optical Fiber Communication Conference (OFC 2012), paper OW3D.4.

Lu, C.

K. Zhong, X. Zhou, J. Huo, C. Yu, C. Lu, and A. P. T. Lau, “Digital signal processing for short-reach optical communications: a review of current technologies and future trends,” J. Lightwave Technol. 36(2), 377–400 (2018).
[Crossref]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Man, J.

Mangone, F.

F. Mangone, J. Tang, M. Chen, J. Xiao, F. Li, and L. Chen, “Iterative clipping and filtering based on discrete cosine transform/inverse discrete cosine transform for intensity modulator direct detection optical orthogonal frequency division multiplexing system,” Opt. Eng. 52(6), 065001 (2013).
[Crossref]

Mao, Y.

Monroy, I. T.

Neumeyr, C.

Olmos, J. J. V.

Ortsiefer, M.

Penty, R.

J. Wei, Q. Cheng, R. Penty, L. White, and D. Cunningham, “400 Gigabit Ethernet Using Advanced Modulation Formats: Performance, Complexity, and Power Dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Qiao, Y.

Sanchez, C.

Shao, Y.

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM Signals Using Selected Mapping Method and Its Application in Optical Millimeter-Wave Access System,” IEEE Photonics Technol. Lett. 24(15), 1301–1303 (2012).
[Crossref]

Shi, J.

Sleiffer, V.

B. Inha, B. Spinnler, F. Ferreira, A. Lobato, S. Adhikari, V. Sleiffer, D. Borne, N. Hanik, and S. Jansen, “Equalizer Complexity of Mode Division Multiplexed Coherent Receiver,” in Optical Fiber Communication Conference (OFC 2012), paper OW3D.4.

Spinnler, B.

B. Spinnler, “Equalizer Design and Complexity for Digital Coherent Receivers,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010).
[Crossref]

B. Inha, B. Spinnler, F. Ferreira, A. Lobato, S. Adhikari, V. Sleiffer, D. Borne, N. Hanik, and S. Jansen, “Equalizer Complexity of Mode Division Multiplexed Coherent Receiver,” in Optical Fiber Communication Conference (OFC 2012), paper OW3D.4.

Sui, Q.

Sun, Y.

Tang, J.

F. Mangone, J. Tang, M. Chen, J. Xiao, F. Li, and L. Chen, “Iterative clipping and filtering based on discrete cosine transform/inverse discrete cosine transform for intensity modulator direct detection optical orthogonal frequency division multiplexing system,” Opt. Eng. 52(6), 065001 (2013).
[Crossref]

Tao, L.

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

Wang, T.

Wang, Y.

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Wei, J.

N. Eiselt, H. Griesser, J. Wei, R. Hohenleitner, A. Dochhan, M. Ortsiefer, M. H. Eiselt, C. Neumeyr, J. J. V. Olmos, and I. T. Monroy, “Experimental demonstration of 84 Gb/s PAM-4 over up to 1.6 km SSMF using a 20-GHz VCSEL at 1525 nm,” J. Lightwave Technol. 35(8), 1342–1349 (2017).
[Crossref]

J. Wei, Q. Cheng, R. Penty, L. White, and D. Cunningham, “400 Gigabit Ethernet Using Advanced Modulation Formats: Performance, Complexity, and Power Dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Wei, J. L.

White, L.

J. Wei, Q. Cheng, R. Penty, L. White, and D. Cunningham, “400 Gigabit Ethernet Using Advanced Modulation Formats: Performance, Complexity, and Power Dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

Wu, Y.

Xiao, J.

F. Mangone, J. Tang, M. Chen, J. Xiao, F. Li, and L. Chen, “Iterative clipping and filtering based on discrete cosine transform/inverse discrete cosine transform for intensity modulator direct detection optical orthogonal frequency division multiplexing system,” Opt. Eng. 52(6), 065001 (2013).
[Crossref]

Xu, X.

Yang, Y.

Yi, X.

Yu, C.

Yu, J.

Zeng, L.

Zhang, J.

Zhang, L.

Zhang, Q.

Zhang, X.

Zhong, K.

Zhong, Q.

Zhou, E.

Zhou, J.

Zhou, X.

Zhou, Y.

Zou, D.

Zuo, T.

IEEE Commun. Mag. (1)

J. Wei, Q. Cheng, R. Penty, L. White, and D. Cunningham, “400 Gigabit Ethernet Using Advanced Modulation Formats: Performance, Complexity, and Power Dissipation,” IEEE Commun. Mag. 53(2), 182–189 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Spinnler, “Equalizer Design and Complexity for Digital Coherent Receivers,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1180–1192 (2010).
[Crossref]

IEEE Netw. (1)

L. Tao, Y. Ji, J. Liu, A. P. T. Lau, N. Chi, and C. Lu, “Advanced modulation formats for short reach optical communication systems,” IEEE Netw. 27(6), 6–13 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

L. Tao, Y. Wang, Y. Gao, A. P. T. Lau, N. Chi, and C. Lu, “40 Gb/s CAP32 system with DD-LMS equalizer for short reach optical transmissions,” IEEE Photonics Technol. Lett. 25(23), 2346–2349 (2013).
[Crossref]

Y. Shao, N. Chi, J. Fan, and W. Fang, “Generation of 16-QAM-OFDM Signals Using Selected Mapping Method and Its Application in Optical Millimeter-Wave Access System,” IEEE Photonics Technol. Lett. 24(15), 1301–1303 (2012).
[Crossref]

J. Lightwave Technol. (6)

Opt. Eng. (1)

F. Mangone, J. Tang, M. Chen, J. Xiao, F. Li, and L. Chen, “Iterative clipping and filtering based on discrete cosine transform/inverse discrete cosine transform for intensity modulator direct detection optical orthogonal frequency division multiplexing system,” Opt. Eng. 52(6), 065001 (2013).
[Crossref]

Opt. Express (8)

M. S. Faruk and K. Kikuchi, “Adaptive frequency-domain equalization in digital coherent optical receivers,” Opt. Express 19(13), 12789–12798 (2011).
[Crossref] [PubMed]

H. S. Chung, S. H. Chang, and K. Kim, “Companding transform based SPM compensation in coherent optical OFDM transmission,” Opt. Express 19(26), B702–B709 (2011).
[Crossref] [PubMed]

J. Zhou, Y. Qiao, Z. Cai, and Y. Ji, “An improved scheme for Flip-OFDM based on Hartley transform in short-range IM/DD systems,” Opt. Express 22(17), 20748–20756 (2014).
[Crossref] [PubMed]

F. Li, X. Li, J. Yu, and L. Chen, “Optimization of training sequence for DFT-spread DMT signal in optical access network with direct detection utilizing DML,” Opt. Express 22(19), 22962–22967 (2014).
[Crossref] [PubMed]

X. Xu, E. Zhou, G. N. Liu, T. Zuo, Q. Zhong, L. Zhang, Y. Bao, X. Zhang, J. Li, and Z. Li, “Advanced modulation formats for 400-Gbps short-reach optical inter-connection,” Opt. Express 23(1), 492–500 (2015).
[Crossref] [PubMed]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

F. Li, D. Zou, L. Ding, Y. Sun, J. Li, Q. Sui, L. Li, X. Yi, and Z. Li, “100 Gbit/s PAM4 Signal Transmission and Reception for 2-km Interconnect with Adaptive Notch Filter for Narrowband Interference,” Opt. Express 26(18), 24066–24074 (2018).
[Crossref] [PubMed]

Y. Wu, C. He, Q. Zhang, Y. Sun, and T. Wang, “Low-complexity recombined SLM scheme for PAPR reduction in IM/DD optical OFDM systems,” Opt. Express 26(24), 32237–32247 (2018).
[Crossref] [PubMed]

Opt. Lett. (2)

Other (3)

B. Inha, B. Spinnler, F. Ferreira, A. Lobato, S. Adhikari, V. Sleiffer, D. Borne, N. Hanik, and S. Jansen, “Equalizer Complexity of Mode Division Multiplexed Coherent Receiver,” in Optical Fiber Communication Conference (OFC 2012), paper OW3D.4.

C. Xie, P. Dong, S. Randel, D. Pilori, P. J. Winzer, S. Spiga, B. Kögel, C. Neumeyr, and M. Amann, “Single VCSEL 100-Gb/s Short-Reach System Using Discrete Multi-Tone Modulation and Direct Detection,” in Optical Fiber Communication Conference (OFC 2015), paper Tu2H.2.
[Crossref]

K. Zhong, W. Chen, Q. Sui, J. Man, A. P. Lau, C. Lu, and L. Zeng, “Experimental Demonstration of 500Gbit/s Short Reach Transmission Employing PAM4 Signal and Direct Detection with 25Gbps Device,” in Optical Fiber Communication Conference (OFC 2015), paper Th3A.3.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Computational complexity of 1024-point FFT based SC-DMT and 1024 to 8192-point FFT based CDMT in terms of same signal length.
Fig. 2
Fig. 2 (a) The offline DSP block and experimental setup diagram (b) CCDF versus PAPR of FFT-based SC-DMT and CDMT signal (c) optical spectra of CDMT signal with and without pre-equalization.
Fig. 3
Fig. 3 (a) BER performance of M-QAM CDMT signal with different FFT size. Constellation of 8192-point FFT based (b) 128-QAM CDMT signal with pre-equalization and (c) without pre-equalization (d) 64-QAM CDMT signal with pre-equalization and (e) without pre-equalization.
Fig. 4
Fig. 4 Error symbol number of each subcarrier with 21 8192-point FFT based 64-QAM CDMT samples (a) without (b) with pre-equalization.
Fig. 5
Fig. 5 (a) Pre-equalization coefficients of the 20GHz CDMT signal with different FFT size (b) electrical spectra of CDMT signal without pre-equalization and (c) with pre-equalization.
Fig. 6
Fig. 6 Measured BER versus ROP of (a) 64-QAM DMT signal with 120Gb/s data rate and (b) 128-QAM DMT signal with 140 Gb/s data rate.
Fig. 7
Fig. 7 Measured BER versus ROP of 120Gb/s FFT-based SC-DMT and FHT-based SC-DMT signal.

Tables (1)

Tables Icon

Table 1 The computational complexity of CDMT and FFT-based SC-DMT signal with different FFT size.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R=1- computation complexity of SC-DMT computation complexity of CDMT .
X ( k ) = 1 2 N n = 0 2 N 1 x ( n ) exp ( j 2 π n k 2 N ) k = 0 , 1 , ... , 2 N 1.
H ( k ) = 1 2 N n = 0 2 N 1 h ( n ) c a s ( 2 π n k 2 N ) k = 0 , 1 , ... , 2 N 1 .
h ( n ) = 1 2 N k = 0 2 N 1 H ( k ) c a s ( 2 π n k 2 N ) n = 0 , 1 , ... , 2 N 1 .
[ h ( n ) h ( 2 N n ) ] = 1 2 [ 1 1 1 1 ] [ r e a l ( x ( n ) ) i m a g ( x ( n ) ) ] .
x ( n ) = 2 ( ( h ( n ) + h ( 2 N n ) ) + j ( h ( n ) h ( 2 N n ) ) ) .

Metrics