Abstract

Abstract: Prism arrays arranged to form a slightly open alligator mouth were found to focus incident X-rays, as with increasing distance from the object symmetry axis these rays hit an increasing number of refracting prism tips. Such an object is then formally a refractive lens. Due to the strong energy dependence of the refractive index of material for X-rays a refractive X-ray lens is chromatically focusing. The attractive feature of the alligator lens is the inherent zoomability possible as the mouth can easily be opened or closed. However, the required tolerances for the jaw rotations and the jaw positioning are so stringent, that the routine use of such systems has not been reported yet. This study will show that the related technical problems can be overcome by proper object fabrication. In fact the here presented objects can already be aligned in the production stage. Then the assembly can be made with simple tools. And the zooming is achieved by just a simple rotation. The transmission through the devices was found to be as expected, and thus performance-wise these objects can directly compete with other refractive X-ray focusing systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
X-ray zoom lens allows for energy scans in X-ray microscopy

E. Kornemann, T. Zhou, O. Márkus, A. Opolka, T. U. Schülli, J. Mohr, and A. Last
Opt. Express 27(1) 185-195 (2019)

Miniaturized compound refractive X-ray zoom lens

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr
Opt. Express 25(19) 22455-22466 (2017)

Zoom system by rotation of toroidal lenses

Nicola Bregenzer, Martin Bawart, and Stefan Bernet
Opt. Express 28(3) 3258-3269 (2020)

References

  • View by:
  • |
  • |
  • |

  1. W. C. Röntgen, “Ueber eine neue Art von Strahlen,” Sitzungsberichte der Würzburger Physik.-medic. Gesellschaft. Würzburg, 1–9 (1896).
  2. R. W. James, The Optical Principles of the Diffraction of X-rays (Cornell University, 1967).
  3. M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), 6 ed.
  4. P. Kirkpatrick and A. V. Baez, “Formation of optical images by X-rays,” J. Opt. Soc. Am. 38(9), 766–774 (1948).
    [Crossref] [PubMed]
  5. P. Kirkpatrick, “X-ray images by refractive focusing,” J. Opt. Soc. Am. 39(9), 796 (1949).
  6. P. Kirkpatrick, “Formation of X-ray images by refractive focusing,” US patent 2,559,972 (1951).
  7. W. Jark, L. Rigon, and K. Oliver, “Revisiting the “forgotten” first zoomable refractive x-ray lens,” Proc. SPIE 8139, 81390G (2011).
  8. T. Tomie, “The birth of the refractive x-ray lens,” Spec. Chim. Acta B 65, 192–198 (2010).
  9. T. Tomie, “X-ray lens,” Japanese patent 6–045288 (February 18, 1994) U.S. patents 5,594,773 (January 14, 1997) and 5,684,852 (1997).
  10. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing x-rays,” Nature 384(6604), 49–51 (1996).
    [Crossref]
  11. B. Lengeler, C. G. Schroer, J. Tummler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synchrotron Radiat. 6(6), 1153–1167 (1999).
    [Crossref]
  12. B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Günzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).
  13. V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
    [Crossref]
  14. V. P. Nazmov, E. F. Reznikova, A. Somogyi, J. Mohr, and V. Saile, “Planar sets of cross x-ray refractive lenses from SU-8 polymer,” Proc. SPIE 5539. Design and Microfabrication of Novel X-Ray Optics II, 235–243 (2004).
    [Crossref]
  15. G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science 334(6060), 1234–1239 (2011).
    [Crossref] [PubMed]
  16. G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
    [Crossref] [PubMed]
  17. E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr, “Miniaturized compound refractive X-ray zoom lens,” Opt. Express 25(19), 22455–22466 (2017).
    [Crossref] [PubMed]
  18. G. M. A. Duller, “F-Switch: Novel random access manipulator for large numbers of compound refractive lenses,” MEDSI 2016 Conf ProcWEPE22 (2016).
  19. A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
    [Crossref]
  20. B. Cederström, R. N. Cahn, M. Danielsson, M. Lundqvist, and D. R. Nygren, “Focusing hard X-rays with old LPs,” Nature 404(6781), 951 (2000).
    [Crossref] [PubMed]
  21. B. Cederström, C. Ribbing, and M. Lundqvist, “Saw-tooth refractive x-ray optics with sub-micron resolution,” Proc. SPIE 4783, 37–48 (2002).
  22. S. D. Shastri, J. Almer, C. Ribbing, and B. Cederström, “High-energy X-ray optics with silicon saw-tooth refractive lenses,” J. Synchrotron Radiat. 14(Pt 2), 204–211 (2007).
    [Crossref] [PubMed]
  23. www.ips.kit.edu/5926.php
  24. K. Evans-Lutterodt, J. Ablett, A. Stein, C.-C. Kao, D. Tennant, F. Klemens, A. Taylor, C. Jacobsen, P. Gammel, H. Huggins, G. Bogart, S. Ustin, and L. Ocola, “Single-element elliptical hard x-ray micro-optics,” Opt. Express 11(8), 919–926 (2003).
    [Crossref] [PubMed]
  25. M. Sanchez del Rio and L. Alianelli, “Aspherical lens shapes for focusing synchrotron beams,” J. Synchrotron Radiat. 19(Pt 3), 366–374 (2012).
    [Crossref] [PubMed]
  26. W. Jark, “On aberrations in saw-tooth refractive X-ray lenses and on their removal,” J. Synchrotron Radiat. 18(Pt 2), 198–211 (2011).
    [Crossref] [PubMed]
  27. M. A. Antimonov, A. M. Khounsary, and S. D. Shastri, “Aberrations in saw-tooth refractive lenses in short focal length x-ray focusing,” Proc. SPIE 8848, 88480A (2013).

2018 (1)

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

2017 (1)

2013 (1)

M. A. Antimonov, A. M. Khounsary, and S. D. Shastri, “Aberrations in saw-tooth refractive lenses in short focal length x-ray focusing,” Proc. SPIE 8848, 88480A (2013).

2012 (1)

M. Sanchez del Rio and L. Alianelli, “Aspherical lens shapes for focusing synchrotron beams,” J. Synchrotron Radiat. 19(Pt 3), 366–374 (2012).
[Crossref] [PubMed]

2011 (4)

W. Jark, “On aberrations in saw-tooth refractive X-ray lenses and on their removal,” J. Synchrotron Radiat. 18(Pt 2), 198–211 (2011).
[Crossref] [PubMed]

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science 334(6060), 1234–1239 (2011).
[Crossref] [PubMed]

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

W. Jark, L. Rigon, and K. Oliver, “Revisiting the “forgotten” first zoomable refractive x-ray lens,” Proc. SPIE 8139, 81390G (2011).

2010 (1)

T. Tomie, “The birth of the refractive x-ray lens,” Spec. Chim. Acta B 65, 192–198 (2010).

2007 (1)

S. D. Shastri, J. Almer, C. Ribbing, and B. Cederström, “High-energy X-ray optics with silicon saw-tooth refractive lenses,” J. Synchrotron Radiat. 14(Pt 2), 204–211 (2007).
[Crossref] [PubMed]

2004 (2)

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Günzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).

V. P. Nazmov, E. F. Reznikova, A. Somogyi, J. Mohr, and V. Saile, “Planar sets of cross x-ray refractive lenses from SU-8 polymer,” Proc. SPIE 5539. Design and Microfabrication of Novel X-Ray Optics II, 235–243 (2004).
[Crossref]

2003 (1)

2002 (1)

B. Cederström, C. Ribbing, and M. Lundqvist, “Saw-tooth refractive x-ray optics with sub-micron resolution,” Proc. SPIE 4783, 37–48 (2002).

2000 (2)

B. Cederström, R. N. Cahn, M. Danielsson, M. Lundqvist, and D. R. Nygren, “Focusing hard X-rays with old LPs,” Nature 404(6781), 951 (2000).
[Crossref] [PubMed]

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

1999 (1)

B. Lengeler, C. G. Schroer, J. Tummler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synchrotron Radiat. 6(6), 1153–1167 (1999).
[Crossref]

1996 (1)

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing x-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

1949 (1)

1948 (1)

Ablett, J.

Alianelli, L.

M. Sanchez del Rio and L. Alianelli, “Aspherical lens shapes for focusing synchrotron beams,” J. Synchrotron Radiat. 19(Pt 3), 366–374 (2012).
[Crossref] [PubMed]

Almer, J.

S. D. Shastri, J. Almer, C. Ribbing, and B. Cederström, “High-energy X-ray optics with silicon saw-tooth refractive lenses,” J. Synchrotron Radiat. 14(Pt 2), 204–211 (2007).
[Crossref] [PubMed]

Antimonov, M. A.

M. A. Antimonov, A. M. Khounsary, and S. D. Shastri, “Aberrations in saw-tooth refractive lenses in short focal length x-ray focusing,” Proc. SPIE 8848, 88480A (2013).

Aristov, V.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Baez, A. V.

Barannikov, A.

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

Benner, B.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Günzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).

B. Lengeler, C. G. Schroer, J. Tummler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synchrotron Radiat. 6(6), 1153–1167 (1999).
[Crossref]

Bogart, G.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), 6 ed.

Budai, J. D.

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science 334(6060), 1234–1239 (2011).
[Crossref] [PubMed]

Bytchkov, A.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

Cahn, R. N.

B. Cederström, R. N. Cahn, M. Danielsson, M. Lundqvist, and D. R. Nygren, “Focusing hard X-rays with old LPs,” Nature 404(6781), 951 (2000).
[Crossref] [PubMed]

Cederström, B.

S. D. Shastri, J. Almer, C. Ribbing, and B. Cederström, “High-energy X-ray optics with silicon saw-tooth refractive lenses,” J. Synchrotron Radiat. 14(Pt 2), 204–211 (2007).
[Crossref] [PubMed]

B. Cederström, C. Ribbing, and M. Lundqvist, “Saw-tooth refractive x-ray optics with sub-micron resolution,” Proc. SPIE 4783, 37–48 (2002).

B. Cederström, R. N. Cahn, M. Danielsson, M. Lundqvist, and D. R. Nygren, “Focusing hard X-rays with old LPs,” Nature 404(6781), 951 (2000).
[Crossref] [PubMed]

Danielsson, M.

B. Cederström, R. N. Cahn, M. Danielsson, M. Lundqvist, and D. R. Nygren, “Focusing hard X-rays with old LPs,” Nature 404(6781), 951 (2000).
[Crossref] [PubMed]

Drakopoulos, M.

B. Lengeler, C. G. Schroer, J. Tummler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synchrotron Radiat. 6(6), 1153–1167 (1999).
[Crossref]

Duller, G. M. A.

G. M. A. Duller, “F-Switch: Novel random access manipulator for large numbers of compound refractive lenses,” MEDSI 2016 Conf ProcWEPE22 (2016).

Ershov, P.

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

Evans-Lutterodt, K.

Gammel, P.

Gleyzolle, H.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

Greving, I.

Grigoriev, M.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Günzler, T. F.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Günzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).

Hoffmann, M.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Huggins, H.

Ice, G. E.

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science 334(6060), 1234–1239 (2011).
[Crossref] [PubMed]

Jacobsen, C.

James, R. W.

R. W. James, The Optical Principles of the Diffraction of X-rays (Cornell University, 1967).

Jark, W.

W. Jark, L. Rigon, and K. Oliver, “Revisiting the “forgotten” first zoomable refractive x-ray lens,” Proc. SPIE 8139, 81390G (2011).

W. Jark, “On aberrations in saw-tooth refractive X-ray lenses and on their removal,” J. Synchrotron Radiat. 18(Pt 2), 198–211 (2011).
[Crossref] [PubMed]

Kao, C.-C.

Khounsary, A. M.

M. A. Antimonov, A. M. Khounsary, and S. D. Shastri, “Aberrations in saw-tooth refractive lenses in short focal length x-ray focusing,” Proc. SPIE 8848, 88480A (2013).

Kirkpatrick, P.

Klemens, F.

Klimova, N.

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

Kohn, V.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing x-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Kornemann, E.

Krywka, C.

Kuhlmann, M.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Günzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).

Kurapova, O.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Günzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).

Kuznetsov, S.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Last, A.

Lengeler, B.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Günzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).

B. Lengeler, C. G. Schroer, J. Tummler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synchrotron Radiat. 6(6), 1153–1167 (1999).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing x-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Lundqvist, M.

B. Cederström, C. Ribbing, and M. Lundqvist, “Saw-tooth refractive x-ray optics with sub-micron resolution,” Proc. SPIE 4783, 37–48 (2002).

B. Cederström, R. N. Cahn, M. Danielsson, M. Lundqvist, and D. R. Nygren, “Focusing hard X-rays with old LPs,” Nature 404(6781), 951 (2000).
[Crossref] [PubMed]

Lushnikov, A.

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

Lyatun, I.

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

Márkus, O.

Mohr, J.

E. Kornemann, O. Márkus, A. Opolka, T. Zhou, I. Greving, M. Storm, C. Krywka, A. Last, and J. Mohr, “Miniaturized compound refractive X-ray zoom lens,” Opt. Express 25(19), 22455–22466 (2017).
[Crossref] [PubMed]

V. P. Nazmov, E. F. Reznikova, A. Somogyi, J. Mohr, and V. Saile, “Planar sets of cross x-ray refractive lenses from SU-8 polymer,” Proc. SPIE 5539. Design and Microfabrication of Novel X-Ray Optics II, 235–243 (2004).
[Crossref]

Narikovich, A.

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

Nazmov, V. P.

V. P. Nazmov, E. F. Reznikova, A. Somogyi, J. Mohr, and V. Saile, “Planar sets of cross x-ray refractive lenses from SU-8 polymer,” Proc. SPIE 5539. Design and Microfabrication of Novel X-Ray Optics II, 235–243 (2004).
[Crossref]

Nygren, D. R.

B. Cederström, R. N. Cahn, M. Danielsson, M. Lundqvist, and D. R. Nygren, “Focusing hard X-rays with old LPs,” Nature 404(6781), 951 (2000).
[Crossref] [PubMed]

Ocola, L.

Oliver, K.

W. Jark, L. Rigon, and K. Oliver, “Revisiting the “forgotten” first zoomable refractive x-ray lens,” Proc. SPIE 8139, 81390G (2011).

Opolka, A.

Pang, J. W. L.

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science 334(6060), 1234–1239 (2011).
[Crossref] [PubMed]

Panormov, I.

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

Polikarpov, M.

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

Rau, C.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Reznikova, E. F.

V. P. Nazmov, E. F. Reznikova, A. Somogyi, J. Mohr, and V. Saile, “Planar sets of cross x-ray refractive lenses from SU-8 polymer,” Proc. SPIE 5539. Design and Microfabrication of Novel X-Ray Optics II, 235–243 (2004).
[Crossref]

Ribbing, C.

S. D. Shastri, J. Almer, C. Ribbing, and B. Cederström, “High-energy X-ray optics with silicon saw-tooth refractive lenses,” J. Synchrotron Radiat. 14(Pt 2), 204–211 (2007).
[Crossref] [PubMed]

B. Cederström, C. Ribbing, and M. Lundqvist, “Saw-tooth refractive x-ray optics with sub-micron resolution,” Proc. SPIE 4783, 37–48 (2002).

Richwin, M.

B. Lengeler, C. G. Schroer, J. Tummler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synchrotron Radiat. 6(6), 1153–1167 (1999).
[Crossref]

Rigon, L.

W. Jark, L. Rigon, and K. Oliver, “Revisiting the “forgotten” first zoomable refractive x-ray lens,” Proc. SPIE 8139, 81390G (2011).

Rossat, M.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

Saile, V.

V. P. Nazmov, E. F. Reznikova, A. Somogyi, J. Mohr, and V. Saile, “Planar sets of cross x-ray refractive lenses from SU-8 polymer,” Proc. SPIE 5539. Design and Microfabrication of Novel X-Ray Optics II, 235–243 (2004).
[Crossref]

Sanchez del Rio, M.

M. Sanchez del Rio and L. Alianelli, “Aspherical lens shapes for focusing synchrotron beams,” J. Synchrotron Radiat. 19(Pt 3), 366–374 (2012).
[Crossref] [PubMed]

Schroer, C. G.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Günzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).

B. Lengeler, C. G. Schroer, J. Tummler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synchrotron Radiat. 6(6), 1153–1167 (1999).
[Crossref]

Shabelnikov, L.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Shastri, S. D.

M. A. Antimonov, A. M. Khounsary, and S. D. Shastri, “Aberrations in saw-tooth refractive lenses in short focal length x-ray focusing,” Proc. SPIE 8848, 88480A (2013).

S. D. Shastri, J. Almer, C. Ribbing, and B. Cederström, “High-energy X-ray optics with silicon saw-tooth refractive lenses,” J. Synchrotron Radiat. 14(Pt 2), 204–211 (2007).
[Crossref] [PubMed]

Sinitsyn, A.

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

Snigirev, A.

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Günzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

B. Lengeler, C. G. Schroer, J. Tummler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synchrotron Radiat. 6(6), 1153–1167 (1999).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing x-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Snigireva, I.

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Günzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

B. Lengeler, C. G. Schroer, J. Tummler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synchrotron Radiat. 6(6), 1153–1167 (1999).
[Crossref]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing x-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Somogyi, A.

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Günzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).

V. P. Nazmov, E. F. Reznikova, A. Somogyi, J. Mohr, and V. Saile, “Planar sets of cross x-ray refractive lenses from SU-8 polymer,” Proc. SPIE 5539. Design and Microfabrication of Novel X-Ray Optics II, 235–243 (2004).
[Crossref]

Stein, A.

Storm, M.

Taylor, A.

Tennant, D.

Tomie, T.

T. Tomie, “The birth of the refractive x-ray lens,” Spec. Chim. Acta B 65, 192–198 (2010).

Tummler, J.

B. Lengeler, C. G. Schroer, J. Tummler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synchrotron Radiat. 6(6), 1153–1167 (1999).
[Crossref]

Ustin, S.

Vaughan, G. B. M.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

Voges, E.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Weitkamp, T.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), 6 ed.

Wright, J. P.

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

Yunkin, V.

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

Zhou, T.

Zverev, D.

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

AIP Conf. Proc. (1)

B. Lengeler, C. G. Schroer, M. Kuhlmann, B. Benner, T. F. Günzler, O. Kurapova, A. Somogyi, A. Snigirev, and I. Snigireva, “Beryllium parabolic refractive x-ray lenses,” AIP Conf. Proc. 705, 748–751 (2004).

Appl. Phys. Lett. (1)

V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. Snigirev, M. Hoffmann, and E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000).
[Crossref]

J. Opt. Soc. Am. (2)

J. Synchrotron Radiat. (5)

B. Lengeler, C. G. Schroer, J. Tummler, B. Benner, M. Richwin, A. Snigirev, I. Snigireva, and M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synchrotron Radiat. 6(6), 1153–1167 (1999).
[Crossref]

G. B. M. Vaughan, J. P. Wright, A. Bytchkov, M. Rossat, H. Gleyzolle, I. Snigireva, and A. Snigirev, “X-ray transfocators: focusing devices based on compound refractive lenses,” J. Synchrotron Radiat. 18(Pt 2), 125–133 (2011).
[Crossref] [PubMed]

S. D. Shastri, J. Almer, C. Ribbing, and B. Cederström, “High-energy X-ray optics with silicon saw-tooth refractive lenses,” J. Synchrotron Radiat. 14(Pt 2), 204–211 (2007).
[Crossref] [PubMed]

M. Sanchez del Rio and L. Alianelli, “Aspherical lens shapes for focusing synchrotron beams,” J. Synchrotron Radiat. 19(Pt 3), 366–374 (2012).
[Crossref] [PubMed]

W. Jark, “On aberrations in saw-tooth refractive X-ray lenses and on their removal,” J. Synchrotron Radiat. 18(Pt 2), 198–211 (2011).
[Crossref] [PubMed]

Microsc. Microanal. (1)

A. Narikovich, A. Barannikov, P. Ershov, N. Klimova, A. Lushnikov, I. Lyatun, I. Panormov, M. Polikarpov, A. Sinitsyn, D. Zverev, I. Snigireva, and A. Snigirev, “Mini-transfocator for X-ray focusing and microscopy,” Microsc. Microanal. 24(S2Suppl 2), 290–291 (2018).
[Crossref]

Nature (2)

B. Cederström, R. N. Cahn, M. Danielsson, M. Lundqvist, and D. R. Nygren, “Focusing hard X-rays with old LPs,” Nature 404(6781), 951 (2000).
[Crossref] [PubMed]

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, “A compound refractive lens for focusing x-rays,” Nature 384(6604), 49–51 (1996).
[Crossref]

Opt. Express (2)

Proc. SPIE (3)

M. A. Antimonov, A. M. Khounsary, and S. D. Shastri, “Aberrations in saw-tooth refractive lenses in short focal length x-ray focusing,” Proc. SPIE 8848, 88480A (2013).

B. Cederström, C. Ribbing, and M. Lundqvist, “Saw-tooth refractive x-ray optics with sub-micron resolution,” Proc. SPIE 4783, 37–48 (2002).

W. Jark, L. Rigon, and K. Oliver, “Revisiting the “forgotten” first zoomable refractive x-ray lens,” Proc. SPIE 8139, 81390G (2011).

Proc. SPIE 5539. Design and Microfabrication of Novel X-Ray Optics (1)

V. P. Nazmov, E. F. Reznikova, A. Somogyi, J. Mohr, and V. Saile, “Planar sets of cross x-ray refractive lenses from SU-8 polymer,” Proc. SPIE 5539. Design and Microfabrication of Novel X-Ray Optics II, 235–243 (2004).
[Crossref]

Science (1)

G. E. Ice, J. D. Budai, and J. W. L. Pang, “The race to x-ray microbeam and nanobeam science,” Science 334(6060), 1234–1239 (2011).
[Crossref] [PubMed]

Spec. Chim. Acta B (1)

T. Tomie, “The birth of the refractive x-ray lens,” Spec. Chim. Acta B 65, 192–198 (2010).

Other (7)

T. Tomie, “X-ray lens,” Japanese patent 6–045288 (February 18, 1994) U.S. patents 5,594,773 (January 14, 1997) and 5,684,852 (1997).

P. Kirkpatrick, “Formation of X-ray images by refractive focusing,” US patent 2,559,972 (1951).

W. C. Röntgen, “Ueber eine neue Art von Strahlen,” Sitzungsberichte der Würzburger Physik.-medic. Gesellschaft. Würzburg, 1–9 (1896).

R. W. James, The Optical Principles of the Diffraction of X-rays (Cornell University, 1967).

M. Born and E. Wolf, Principles of Optics (Pergamon, 1980), 6 ed.

G. M. A. Duller, “F-Switch: Novel random access manipulator for large numbers of compound refractive lenses,” MEDSI 2016 Conf ProcWEPE22 (2016).

www.ips.kit.edu/5926.php

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 The here described evolution of the saw-tooth refractive lens from an array, which is symmetrically oriented around the lenses optical axis (in A) and zooming in one direction, to an object, which can be zoomed for two-dimensional focusing by a simple rotation (in F). The dashed rotation axes are positioned such that the focus position remains stationary during zooming. Arrows indicate the required rotations for decreasing the inclinations of all arrays with respect to the incident beam equally. When looking along the rotation axes from bottom right to top left the rotations are clockwise and they keep the focal length constant for increasing photon energy. Blue prism arrays focus in the vertical direction, while red arrays focus horizontally. (A) Saw-tooth refractive lens as proposed by Cederström et al [20] for one dimensional focusing of X-rays. In the object in (B), looking like a blender blade, the zooming in one direction is achieved by a simple change of the array inclination. In the object in (C) instead the zooming is achieved in two orthogonal directions by a simple change of both array inclinations to be introduced by a rotation around an inclined axis at 45°. (D) The presented interdigitated array is obtained by removing every second prism in both prism arrays in (C) and by successively interdigitating them properly. (E) When two of the arrays as presented in (D) are put in series and in reversed orientation the final object can provide four-fold larger full aperture and zooming for two-dimensional focusing still employing only a single rotation. (F) The structure from (E) can also be prepared onto only two wafers, avoiding then the need for the relative alignment, which is included in the production process. The objects in the left and in the right half of the figure are independently drawn to scale. The length of the lenses in (C) and (D) are equal.
Fig. 2
Fig. 2 Sketch of the mask, as it was used here for the production of the prisms realized as columns of properly rotated squares. The related dimensions as well as the operation parameters are indicated. The array contains N prisms. The index m for the prism number as well as the focal length are counted from the prism closest to the optical axis. θ is the prism tip angle, L the overall array length, b the diagonal of the squares, c the square separation and d the corresponding prism height. g is the distance of the last prism tip from the array optical axis, and g/N is thus the pitch between adjacent prisms.
Fig. 3
Fig. 3 The zoomable prism lens arrays from Fig. 1(E) as they would appear in a shadow image, when operated with very small inclination with respect to the incident beam.
Fig. 4
Fig. 4 At left is shown the intensity distribution registered in the image plane of two vertically separated interdigitated prism arrays adjusted for f = 0.58 m. At right the two independently movable arrays were positioned properly overlapping. In all cases, whether focused only in one direction or in the two orthogonal directions, the focus in the vertical direction measures 4.9 µm, while it measures 19.2 µm in the horizontal direction. In the chosen color coding the focused intensity is presented in white, i.e. in saturation, which is starting at a spectral intensity enhancement level compared to the incident beam (orange) of 2, while the maximum spectral intensity enhancement in the final focus is found to be 85. The black borders are produced by the shadow of the wafers and the respective holders.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

δ= N A 2π r 0 λ 2 ρ Z A ,
f lens = R 2( n1 ) ,
f lens = R 2δ ,
M( y )= y 2 ( N g )tan θ 2 .
R=( g N ) 1 2tan θ 2 .
f= R δ =( g N ) 1 2δtan θ 2 ,
T( y )=exp( y 2 2fδl ),
Y= 2fδl .
A = 0 y= T( y ) dy= 0 y= exp( y 2 2fδl ) dy= π 2 2fδl .
A Y = 0 y=Y T( y ) dy=0.75 2fδl =0.75Y.
0 y=g<Y T( y ) dyexp( 0.3 ( g Y ) 2 )( 10.3 ( g Y ) 2 )g
A g<Y ( 10.3 ( g Y ) 2 )g.

Metrics