Abstract

Atmospheric transmission distortion is one of the main challenges hampering the practical application of a vortex beam (VB) which carries orbital angular momentum (OAM). In this work, we propose and investigate a deep learning based atmospheric turbulence compensation method for correcting the distorted VB and improving the performance of OAM multiplexing communication. A deep convolutional neural network (CNN) model, which can automatically learn the mapping relationship of the intensity distributions of input and the turbulent phase, is well designed. After trained with loads of studying samples, the CNN model possesses a good generalization ability in quickly and accurately predicting equivalent turbulent phase screen, including the untrained turbulent phase screens. The results show that through correction, the mode purity of the distorted VB improves from 39.52% to 98.34% under the turbulence intensity of Cn2 = 1 × 10−13. Constructing an OAM multiplexing communication link, the bit-error-rate (BER) of the transmitted signals in each OAM channel is reduced by almost two orders of magnitude under moderate-strong turbulence, and the demodulated constellation diagram also converges well after compensated by the CNN model.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link

Yongxiong Ren, Guodong Xie, Hao Huang, Nisar Ahmed, Yan Yan, Long Li, Changjing Bao, Martin P. J. Lavery, Moshe Tur, Mark A. Neifeld, Robert W. Boyd, Jeffrey H. Shapiro, and Alan E. Willner
Optica 1(6) 376-382 (2014)

Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication

Jin Li, Min Zhang, Danshi Wang, Shaojun Wu, and Yueying Zhan
Opt. Express 26(8) 10494-10508 (2018)

Turbulence heterodyne coherent mitigation of orbital angular momentum multiplexing in a free space optical link by auxiliary light

Chunyong Yang, Chuang Xu, Wenjun Ni, Yu Gan, Jin Hou, and Shaoping Chen
Opt. Express 25(21) 25612-25624 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  2. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  3. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
    [Crossref] [PubMed]
  4. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1), 169–175 (2002).
    [Crossref]
  5. M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
    [Crossref]
  6. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006).
    [Crossref] [PubMed]
  7. D. S. Simon and A. V. Sergienko, “Two-photon spiral imaging with correlated orbital angular momentum states,” Phys. Rev. A 85(4), 43825 (2012).
    [Crossref]
  8. M. Erhard, H. Qassim, H. Mand, E. Karimi, and R. W. Boyd, “Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation,” Phys. Rev. A 92(2), 022321 (2015).
    [Crossref]
  9. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
    [Crossref] [PubMed]
  10. J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
    [Crossref] [PubMed]
  11. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
    [Crossref]
  12. Y. Jiang, X. Li, and M. Gu, “Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam,” Opt. Lett. 38(16), 2957–2960 (2013).
    [Crossref] [PubMed]
  13. A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
    [Crossref]
  14. J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
    [Crossref]
  15. A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos Trans A Math Phys Eng Sci 375(2087), 20150439 (2017).
    [Crossref] [PubMed]
  16. X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
    [Crossref]
  17. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  18. L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, “Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber,” Opt. Express 24(15), 16934–16944 (2016).
    [Crossref] [PubMed]
  19. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.
  20. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
    [Crossref] [PubMed]
  21. G. A. Tyler and R. W. Boyd, “Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum,” Opt. Lett. 34(2), 142–144 (2009).
    [Crossref] [PubMed]
  22. M. Malik, M. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding,” Opt. Express 20(12), 13195–13200 (2012).
    [Crossref] [PubMed]
  23. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link,” Appl. Opt. 47(13), 2414–2429 (2008).
    [Crossref] [PubMed]
  24. Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
    [Crossref]
  25. A. Trichili, A. B. Salem, A. Dudley, M. Zghal, and A. Forbes, “Encoding information using Laguerre Gaussian modes over free space turbulence media,” Opt. Lett. 41(13), 3086–3089 (2016).
    [Crossref] [PubMed]
  26. S. M. Zhao, J. Leach, L. Y. Gong, J. Ding, and B. Y. Zheng, “Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states,” Opt. Express 20(1), 452–461 (2012).
    [Crossref] [PubMed]
  27. S. Fu, S. Zhang, T. Wang, and C. Gao, “Pre-turbulence compensation of orbital angular momentum beams based on a probe and the Gerchberg-Saxton algorithm,” Opt. Lett. 41(14), 3185–3188 (2016).
    [Crossref] [PubMed]
  28. G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
    [Crossref] [PubMed]
  29. E E. M. Knutson, S. Lohani, O. Danaci, S. D. Huver, and R. T. Glasser, “Deep learning as a tool to distinguish between high orbital angular momentum optical modes,” in Optics and Photonics for Information Processing X (International Society for Optics and Photonics, 2016), p. 997013.
  30. T. Doster and A. T. Watnik, “Machine learning approach to OAM beam demultiplexing via convolutional neural networks,” Appl. Opt. 56(12), 3386–3396 (2017).
    [Crossref] [PubMed]
  31. D. Wang, M. Zhang, Z. Li, C. Song, M. Fu, J. Li, and X. Chen, “System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm,” Opt. Commun. 399, 1–12 (2017).
    [Crossref]
  32. J. Li, M. Zhang, and D. Wang, “Adaptive demodulator using machine learning for orbital angular momentum shift keying,” IEEE Photonics Technol. Lett. 29(17), 1455–1458 (2017).
    [Crossref]
  33. S. Lohani and R. T. Glasser, “Turbulence correction with artificial neural networks,” Opt. Lett. 43(11), 2611–2614 (2018).
    [Crossref] [PubMed]
  34. A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Cr Acad. Sci. URSS 30, 301–305 (1941).
  35. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE, 2005).
  36. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
    [Crossref] [PubMed]
  37. S. Li, S. Chen, C. Gao, A. E. Willner, and J. Wang, “Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives,” Opt. Commun. 408, 68–81 (2018).
    [Crossref]
  38. M. Schöck and E. J. Spillar, “Method for a quantitative investigation of the frozen flow hypothesis,” J. Opt. Soc. Am. A 17(9), 1650–1658 (2000).
    [Crossref] [PubMed]
  39. M. Schoeck, E. J. Spillar, R. K. Tyson, and R. Q. Fugate, “Analysis of turbulent atmospheric layers with a wavefront sensor: testing the frozen flow hypothesis,” in Adaptive Optics Systems and Technology (International Society for Optics and Photonics, 1999), pp. 225–236.

2018 (2)

S. Li, S. Chen, C. Gao, A. E. Willner, and J. Wang, “Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives,” Opt. Commun. 408, 68–81 (2018).
[Crossref]

S. Lohani and R. T. Glasser, “Turbulence correction with artificial neural networks,” Opt. Lett. 43(11), 2611–2614 (2018).
[Crossref] [PubMed]

2017 (5)

D. Wang, M. Zhang, Z. Li, C. Song, M. Fu, J. Li, and X. Chen, “System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm,” Opt. Commun. 399, 1–12 (2017).
[Crossref]

J. Li, M. Zhang, and D. Wang, “Adaptive demodulator using machine learning for orbital angular momentum shift keying,” IEEE Photonics Technol. Lett. 29(17), 1455–1458 (2017).
[Crossref]

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos Trans A Math Phys Eng Sci 375(2087), 20150439 (2017).
[Crossref] [PubMed]

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

T. Doster and A. T. Watnik, “Machine learning approach to OAM beam demultiplexing via convolutional neural networks,” Appl. Opt. 56(12), 3386–3396 (2017).
[Crossref] [PubMed]

2016 (4)

2015 (4)

G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
[Crossref] [PubMed]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

M. Erhard, H. Qassim, H. Mand, E. Karimi, and R. W. Boyd, “Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation,” Phys. Rev. A 92(2), 022321 (2015).
[Crossref]

2014 (3)

2013 (2)

Y. Jiang, X. Li, and M. Gu, “Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam,” Opt. Lett. 38(16), 2957–2960 (2013).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

2012 (4)

D. S. Simon and A. V. Sergienko, “Two-photon spiral imaging with correlated orbital angular momentum states,” Phys. Rev. A 85(4), 43825 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

S. M. Zhao, J. Leach, L. Y. Gong, J. Ding, and B. Y. Zheng, “Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states,” Opt. Express 20(1), 452–461 (2012).
[Crossref] [PubMed]

M. Malik, M. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding,” Opt. Express 20(12), 13195–13200 (2012).
[Crossref] [PubMed]

2011 (2)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

2010 (1)

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

2006 (1)

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1), 169–175 (2002).
[Crossref]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

2000 (1)

1996 (1)

1941 (1)

A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Cr Acad. Sci. URSS 30, 301–305 (1941).

Ahmed, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
[Crossref] [PubMed]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.

Andrews, L. C.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE, 2005).

Anguita, J. A.

Ashrafi, N.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Ashrafi, S.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos Trans A Math Phys Eng Sci 375(2087), 20150439 (2017).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Bao, C.

Barnett, S. M.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Bengio, Y.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

Bernet, S.

Birnbaum, K.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.

Birnbaum, K. M.

Bowman, R.

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Boyd, R. W.

M. Erhard, H. Qassim, H. Mand, E. Karimi, and R. W. Boyd, “Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation,” Phys. Rev. A 92(2), 022321 (2015).
[Crossref]

G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
[Crossref] [PubMed]

Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
[Crossref]

M. Malik, M. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding,” Opt. Express 20(12), 13195–13200 (2012).
[Crossref] [PubMed]

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

G. A. Tyler and R. W. Boyd, “Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum,” Opt. Lett. 34(2), 142–144 (2009).
[Crossref] [PubMed]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Cai, Y.

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Cao, Y.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
[Crossref] [PubMed]

Chen, L.

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Chen, S.

S. Li, S. Chen, C. Gao, A. E. Willner, and J. Wang, “Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives,” Opt. Commun. 408, 68–81 (2018).
[Crossref]

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Chen, X.

D. Wang, M. Zhang, Z. Li, C. Song, M. Fu, J. Li, and X. Chen, “System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm,” Opt. Commun. 399, 1–12 (2017).
[Crossref]

Chen, Y.

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Choi, J.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1), 169–175 (2002).
[Crossref]

Ding, J.

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.

Dolinar, S. J.

Doster, T.

Du, C.

Dudley, A.

Erhard, M.

M. Erhard, H. Qassim, H. Mand, E. Karimi, and R. W. Boyd, “Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation,” Phys. Rev. A 92(2), 022321 (2015).
[Crossref]

Erkmen, B.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.

Erkmen, B. I.

Fan, D.

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.

Forbes, A.

Franke-Arnold, S.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Fu, M.

D. Wang, M. Zhang, Z. Li, C. Song, M. Fu, J. Li, and X. Chen, “System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm,” Opt. Commun. 399, 1–12 (2017).
[Crossref]

Fu, S.

Fürhapter, S.

Gahagan, K. T.

Gao, C.

S. Li, S. Chen, C. Gao, A. E. Willner, and J. Wang, “Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives,” Opt. Commun. 408, 68–81 (2018).
[Crossref]

S. Fu, S. Zhang, T. Wang, and C. Gao, “Pre-turbulence compensation of orbital angular momentum beams based on a probe and the Gerchberg-Saxton algorithm,” Opt. Lett. 41(14), 3185–3188 (2016).
[Crossref] [PubMed]

Giacobino, E.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Giner, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Glasser, R. T.

Gong, L. Y.

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1), 169–175 (2002).
[Crossref]

Gu, M.

He, Y.

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Hinton, G.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

Huang, H.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
[Crossref] [PubMed]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ireland, D. G.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Jack, B.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Jesacher, A.

Jha, A. K.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Jiang, Y.

Karimi, E.

M. Erhard, H. Qassim, H. Mand, E. Karimi, and R. W. Boyd, “Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation,” Phys. Rev. A 92(2), 022321 (2015).
[Crossref]

Kolmogorov, A. N.

A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Cr Acad. Sci. URSS 30, 301–305 (1941).

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1), 169–175 (2002).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Laurat, J.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Lavery, M. P.

Lavery, M. P. J.

Leach, J.

LeCun, Y.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

Li, J.

D. Wang, M. Zhang, Z. Li, C. Song, M. Fu, J. Li, and X. Chen, “System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm,” Opt. Commun. 399, 1–12 (2017).
[Crossref]

J. Li, M. Zhang, and D. Wang, “Adaptive demodulator using machine learning for orbital angular momentum shift keying,” IEEE Photonics Technol. Lett. 29(17), 1455–1458 (2017).
[Crossref]

Li, L.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos Trans A Math Phys Eng Sci 375(2087), 20150439 (2017).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
[Crossref] [PubMed]

Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
[Crossref]

Li, S.

S. Li, S. Chen, C. Gao, A. E. Willner, and J. Wang, “Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives,” Opt. Commun. 408, 68–81 (2018).
[Crossref]

Li, X.

Li, Y.

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Li, Z.

D. Wang, M. Zhang, Z. Li, C. Song, M. Fu, J. Li, and X. Chen, “System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm,” Opt. Commun. 399, 1–12 (2017).
[Crossref]

Liu, J.

Lohani, S.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Malik, M.

Mand, H.

M. Erhard, H. Qassim, H. Mand, E. Karimi, and R. W. Boyd, “Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation,” Phys. Rev. A 92(2), 022321 (2015).
[Crossref]

Maurer, C.

Maxein, D.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Mirhosseini, M.

Mo, Q.

Molisch, A. F.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos Trans A Math Phys Eng Sci 375(2087), 20150439 (2017).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Neifeld, M.

Neifeld, M. A.

Nicolas, A.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

O’Sullivan, M.

Padgett, M. J.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

M. Malik, M. O’Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, “Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding,” Opt. Express 20(12), 13195–13200 (2012).
[Crossref] [PubMed]

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Phillips, R. L.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE, 2005).

Qassim, H.

M. Erhard, H. Qassim, H. Mand, E. Karimi, and R. W. Boyd, “Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation,” Phys. Rev. A 92(2), 022321 (2015).
[Crossref]

Ramachandran, S.

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ren, Y.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos Trans A Math Phys Eng Sci 375(2087), 20150439 (2017).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
[Crossref] [PubMed]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ritsch-Marte, M.

Rodenburg, B.

Rogawski, D.

Romero, J.

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Salem, A. B.

Schöck, M.

Sergienko, A. V.

D. S. Simon and A. V. Sergienko, “Two-photon spiral imaging with correlated orbital angular momentum states,” Phys. Rev. A 85(4), 43825 (2012).
[Crossref]

Shamee, B.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.

Shapiro, J. H.

Simon, D. S.

D. S. Simon and A. V. Sergienko, “Two-photon spiral imaging with correlated orbital angular momentum states,” Phys. Rev. A 85(4), 43825 (2012).
[Crossref]

Song, C.

D. Wang, M. Zhang, Z. Li, C. Song, M. Fu, J. Li, and X. Chen, “System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm,” Opt. Commun. 399, 1–12 (2017).
[Crossref]

Spillar, E. J.

Su, C.

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Su, M.

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Swartzlander, G. A.

Trichili, A.

Tur, M.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos Trans A Math Phys Eng Sci 375(2087), 20150439 (2017).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
[Crossref] [PubMed]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.

Tyler, G. A.

Vasic, B. V.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Veissier, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Wang, D.

J. Li, M. Zhang, and D. Wang, “Adaptive demodulator using machine learning for orbital angular momentum shift keying,” IEEE Photonics Technol. Lett. 29(17), 1455–1458 (2017).
[Crossref]

D. Wang, M. Zhang, Z. Li, C. Song, M. Fu, J. Li, and X. Chen, “System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm,” Opt. Commun. 399, 1–12 (2017).
[Crossref]

Wang, J.

S. Li, S. Chen, C. Gao, A. E. Willner, and J. Wang, “Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives,” Opt. Commun. 408, 68–81 (2018).
[Crossref]

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos Trans A Math Phys Eng Sci 375(2087), 20150439 (2017).
[Crossref] [PubMed]

L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, “Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber,” Opt. Express 24(15), 16934–16944 (2016).
[Crossref] [PubMed]

J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.

Wang, T.

Watnik, A. T.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Willner, A. E.

S. Li, S. Chen, C. Gao, A. E. Willner, and J. Wang, “Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives,” Opt. Commun. 408, 68–81 (2018).
[Crossref]

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos Trans A Math Phys Eng Sci 375(2087), 20150439 (2017).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
[Crossref] [PubMed]

Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.

Willner, M.

Willner, M. J.

Xiang, Y.

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Xie, G.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos Trans A Math Phys Eng Sci 375(2087), 20150439 (2017).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
[Crossref] [PubMed]

Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
[Crossref]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

Yan, Y.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos Trans A Math Phys Eng Sci 375(2087), 20150439 (2017).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
[Crossref] [PubMed]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. P. J. Lavery, M. Tur, M. Neifeld, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular momentum beams in a bidirectional free-space optical link,” Optica 1(6), 376–382 (2014).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Yue, Y.

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Zghal, M.

Zhang, M.

D. Wang, M. Zhang, Z. Li, C. Song, M. Fu, J. Li, and X. Chen, “System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm,” Opt. Commun. 399, 1–12 (2017).
[Crossref]

J. Li, M. Zhang, and D. Wang, “Adaptive demodulator using machine learning for orbital angular momentum shift keying,” IEEE Photonics Technol. Lett. 29(17), 1455–1458 (2017).
[Crossref]

Zhang, S.

Zhang, X.

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Zhao, S. M.

Zhao, Z.

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos Trans A Math Phys Eng Sci 375(2087), 20150439 (2017).
[Crossref] [PubMed]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
[Crossref] [PubMed]

Zheng, B. Y.

Zhou, X.

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

Zhu, L.

Adv. Opt. Photonics (2)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi, “Optical communications using orbital angular momentum beams,” Adv. Opt. Photonics 7(1), 66–106 (2015).
[Crossref]

Appl. Opt. (2)

Cr Acad. Sci. URSS (1)

A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Cr Acad. Sci. URSS 30, 301–305 (1941).

IEEE Photonics J. (1)

X. Zhang, Y. He, Y. Cai, M. Su, X. Zhou, Y. Chen, S. Chen, Y. Xiang, L. Chen, C. Su, Y. Li, and D. Fan, “Coherent separation detection for orbital angular momentum multiplexing in free-space optical communications,” IEEE Photonics J. 9(3), 1–11 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Li, M. Zhang, and D. Wang, “Adaptive demodulator using machine learning for orbital angular momentum shift keying,” IEEE Photonics Technol. Lett. 29(17), 1455–1458 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

Nat. Photonics (3)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

M. J. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011).
[Crossref]

Nature (2)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412(6844), 313–316 (2001).
[Crossref] [PubMed]

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
[Crossref] [PubMed]

Opt. Commun. (3)

S. Li, S. Chen, C. Gao, A. E. Willner, and J. Wang, “Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives,” Opt. Commun. 408, 68–81 (2018).
[Crossref]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1), 169–175 (2002).
[Crossref]

D. Wang, M. Zhang, Z. Li, C. Song, M. Fu, J. Li, and X. Chen, “System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm,” Opt. Commun. 399, 1–12 (2017).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

Y. Jiang, X. Li, and M. Gu, “Generation of sub-diffraction-limited pure longitudinal magnetization by the inverse Faraday effect by tightly focusing an azimuthally polarized vortex beam,” Opt. Lett. 38(16), 2957–2960 (2013).
[Crossref] [PubMed]

K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
[Crossref] [PubMed]

H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M. J. Willner, B. I. Erkmen, K. M. Birnbaum, S. J. Dolinar, M. P. Lavery, M. J. Padgett, M. Tur, and A. E. Willner, “100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength,” Opt. Lett. 39(2), 197–200 (2014).
[Crossref] [PubMed]

G. A. Tyler and R. W. Boyd, “Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum,” Opt. Lett. 34(2), 142–144 (2009).
[Crossref] [PubMed]

S. Fu, S. Zhang, T. Wang, and C. Gao, “Pre-turbulence compensation of orbital angular momentum beams based on a probe and the Gerchberg-Saxton algorithm,” Opt. Lett. 41(14), 3185–3188 (2016).
[Crossref] [PubMed]

G. Xie, Y. Ren, H. Huang, M. P. Lavery, N. Ahmed, Y. Yan, C. Bao, L. Li, Z. Zhao, Y. Cao, M. Willner, M. Tur, S. J. Dolinar, R. W. Boyd, J. H. Shapiro, and A. E. Willner, “Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm,” Opt. Lett. 40(7), 1197–1200 (2015).
[Crossref] [PubMed]

S. Lohani and R. T. Glasser, “Turbulence correction with artificial neural networks,” Opt. Lett. 43(11), 2611–2614 (2018).
[Crossref] [PubMed]

A. Trichili, A. B. Salem, A. Dudley, M. Zghal, and A. Forbes, “Encoding information using Laguerre Gaussian modes over free space turbulence media,” Opt. Lett. 41(13), 3086–3089 (2016).
[Crossref] [PubMed]

Optica (1)

Philos Trans A Math Phys Eng Sci (1)

A. E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A. F. Molisch, and S. Ashrafi, “Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing,” Philos Trans A Math Phys Eng Sci 375(2087), 20150439 (2017).
[Crossref] [PubMed]

Photon. Res. (1)

Phys. Rev. A (2)

D. S. Simon and A. V. Sergienko, “Two-photon spiral imaging with correlated orbital angular momentum states,” Phys. Rev. A 85(4), 43825 (2012).
[Crossref]

M. Erhard, H. Qassim, H. Mand, E. Karimi, and R. W. Boyd, “Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation,” Phys. Rev. A 92(2), 022321 (2015).
[Crossref]

Science (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett, and M. J. Padgett, “Quantum correlations in optical angle-orbital angular momentum variables,” Science 329(5992), 662–665 (2010).
[Crossref] [PubMed]

Other (4)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, B. Shamee, A. E. Willner, K. Birnbaum, J. Choi, B. Erkmen, S. Dolinar, and M. Tur, “25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes,” in Proceedings of IEEE Photonic Society 24th Annual Meeting (IEEE, 2011), pp. 587–588.

E E. M. Knutson, S. Lohani, O. Danaci, S. D. Huver, and R. T. Glasser, “Deep learning as a tool to distinguish between high orbital angular momentum optical modes,” in Optics and Photonics for Information Processing X (International Society for Optics and Photonics, 2016), p. 997013.

M. Schoeck, E. J. Spillar, R. K. Tyson, and R. Q. Fugate, “Analysis of turbulent atmospheric layers with a wavefront sensor: testing the frozen flow hypothesis,” in Adaptive Optics Systems and Technology (International Society for Optics and Photonics, 1999), pp. 225–236.

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media, 2nd ed. (SPIE, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 The intensity and phase distributions of VBs with different topological charges (l=0,1,3) under the influence of AT. (a) C n 2 =0 (without turbulence); (b) C n 2 =1× 10 14 ; (c) C n 2 =5× 10 14 ; (d) C n 2 =1× 10 13 .
Fig. 2
Fig. 2 The mode purity of the VB (l=3) under the influence of AT. (a) C n 2 =1× 10 14 ; (b) C n 2 =5× 10 14 ; (c) C n 2 =1× 10 13 .
Fig. 3
Fig. 3 The architecture of the CNN model used for AT compensation. Conv: convolution; Deconv: deconvolution.
Fig. 4
Fig. 4 (a) Loss function curves. (b) The iteration numbers and loss values corresponding to A, B, C, D, and E, respectively. (c) AT phase diagrams.
Fig. 5
Fig. 5 The phase compensation effect of the trained CNN under different AT intensities at the distance of Δz=20m. (a) C n 2 =1× 10 -14 ; (b) C n 2 =5× 10 -14 ; (c) C n 2 =1× 10 -13 .
Fig. 6
Fig. 6 The beam profiles of the VB (l=3) with and without compensation corresponding to different turbulence intensities, Δz=20m.
Fig. 7
Fig. 7 The mode purity of the VB (l=3) under the influence of different AT intensities with and without CNN compensation, Δz=20m. (a) The mode purity curves as the function of turbulence intensity C n 2 . (b) The mode purity before and after compensation for different turbulence intensities.
Fig. 8
Fig. 8 The mode purity of the VB (l=3) under the AT intensity of C n 2 =5× 10 -14 at different distance Δz. (a) The mode purity curves as the function of distance Δz. (b) The mode purity before and after compensation for different distances.
Fig. 9
Fig. 9 The system diagram of OAM multiplexing FSO communication link with AT compensation. PBS: polarization beam splitter; AT: AT; MR: mirror; SLM: spatial light modulator.
Fig. 10
Fig. 10 The BER curves as the function of SNR for different turbulence intensities C n 2 with and without compensation at the distance of Δz=20m. (a) l=3. (b) l=1.
Fig. 11
Fig. 11 (a) The BER curves as the function of turbulence intensity C n 2 for each OAM channel with and without compensation at the distance of Δz=20m. (b) The constellations of the channel l=3 at C n 2 =1× 10 14 , C n 2 =5× 10 14 , and C n 2 =1× 10 13 without (top) and with (bottom) AT compensation.
Fig. 12
Fig. 12 (a) The BER curves as the function of transmission distance of Δz for each OAM channel with and without AT compensation at C n 2 =5× 10 14 . (b) The constellations of the channel l=3 at Δz=15m,20m,25m without (top) and with (bottom) atmospheric compensation.
Fig. 13
Fig. 13 The constellations of the channel l=3with multiplexed OAM modes l=2,3, l=4,3, l=5,3 with and without AT compensation.
Fig. 14
Fig. 14 (a) The BER curves as the function of turbulence intensity C n 2 for each OAM channel with and without compensation at the transmission distance of Δz=1000m. (b) The constellations of the channel l=3 at C n 2 =1× 10 15 , C n 2 =5× 10 15 , and C n 2 =1× 10 14 without (top) and with (bottom) AT compensation.
Fig. 15
Fig. 15 Loss function curve and mean test loss value for the weak AT of C n 2 [1× 10 -15 ,1× 10 -14 ]and strong AT of C n 2 [1× 10 -13 ,1× 10 -12 ], Δz[15m,25m].
Fig. 16
Fig. 16 The compensation effect after turbulence has changed to varying degrees.

Tables (2)

Tables Icon

Table 1 The BER of the OAM channel when the other multiplexed OAM mode is different

Tables Icon

Table 2 The mean test loss for different numbers of training data

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

D( r )= C n 2 r 2/3 , l 0 r L 0 ,
Φ n ( k )=0.033 C n 2 k 11/3 ,
Φ n ( k x , k y )=0.033 C n 2 [1+1.802 k x 2 + k y 2 k l 2 0.254 ( k x 2 + k y 2 k l 2 ) 7/12 ] ×exp( k x 2 + k y 2 k l 2 ) ( k x 2 + k y 2 + 1 L 0 2 ) 11/6 ,
σ 2 ( k x , k y )= ( 2π NΔL ) 2 Φ( k x , k y ),
ϕ(x,y)=FFT[Cσ( k x , k y )],
U(z+Δz,x,y)FF T 1 [exp(iAΔz)FFT{exp(iϕ(x,y))×U(z,x,y)}].
l 1 (f( x i ,θ), y i )= ( y i f( x i ,θ)) 2 ,
l 2 (f( x i ,θ), y i )=Relu( y i f( x i ,θ)a),
l 3 (f( x i ,θ), y i )=Relu(f( x i ,θ) y i a),
L(f(X,θ),Y)= i=1 N [ l 1 (f( x i ,θ), y i )+ l 2 (f( x i ,θ), y i )+ l 3 (f( x i ,θ), y i )] /N = i=1 N [ ( y i f( x i ,θ)) 2 +Relu( y i f( x i ,θ)a)+Relu(f( x i ,θ) y i a)] /N,
θ opt = min θ (L(f(X,θ),Y).
y ^ =f(x, θ opt ).
y com =yG( y ^ ),

Metrics