Abstract

Acoustic wave velocity measurement based on optical coherence tomography (OCT) is a promising approach to assess the mechanical properties of biological tissues and soft materials. While studies to date have demonstrated proof of concept of different ways to excite and detect mechanical waves, the quantitative performance of this modality as mechanical measurement has been underdeveloped. Here, we investigate the frequency dependent measurement of the wave propagation in viscoelastic tissues, using a piezoelectric point-contact probe driven with various waveforms. We found that a frequency range of 2–10 kHz is a good window for corneal elastography, in which the lowest-order flexural waves can be identified in post processing. We tested our system on tissue-simulating phantoms and ex vivo porcine eyes, and demonstrate reproducibility and inter-sample variability. Using the Kelvin-Voigt model of viscoelasticity, we extracted the shear-elastic modulus and viscosity of the cornea and their correlation with the corneal thickness, curvature, and eyeball mass. Our results show that our method can be a quantitative, useful tool for the mechanical analysis of the cornea.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Noncontact depth-resolved micro-scale optical coherence elastography of the cornea

Shang Wang and Kirill V. Larin
Biomed. Opt. Express 5(11) 3807-3821 (2014)

Assessing the effects of riboflavin/UV-A crosslinking on porcine corneal mechanical anisotropy with optical coherence elastography

Manmohan Singh, Jiasong Li, Zhaolong Han, Raksha Raghunathan, Achuth Nair, Chen Wu, Chih-Hao Liu, Salavat Aglyamov, Michael D. Twa, and Kirill V. Larin
Biomed. Opt. Express 8(1) 349-366 (2017)

Ultra-fast line-field low coherence holographic elastography using spatial phase shifting

Chih-Hao Liu, Alexander Schill, Raksha Raghunathan, Chen Wu, Manmohan Singh, Zhaolong Han, Achuth Nair, and Kirill V. Larin
Biomed. Opt. Express 8(2) 993-1004 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. T. Andreassen, A. Hjorth Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Exp. Eye Res. 31, 435–441 (1980).
    [Crossref] [PubMed]
  2. I. S. Nash, P. R. Greene, and C. S. Foster, “Comparison of mechanical properties of keratoconus and normal corneas,” Exp. eye research 35, 413–424 (1982).
    [Crossref]
  3. C. Edmund, “Corneal elasticity and ocular rigidity in normal and keratoconic eyes,” Acta ophthalmologica 66, 134–140 (1988).
    [Crossref] [PubMed]
  4. J. Liu and C. J. Roberts, “Influence of corneal biomechanical properties on intraocular pressure measurement,” J. Cataract. & Refract. Surg. 31, 146–155 (2005).
    [Crossref]
  5. P. D. Jaycock, L. Lobo, J. Ibrahim, J. Tyrer, and J. Marshall, “Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery,” J. Cataract. & Refract. Surg. 31, 175–184 (2005).
    [Crossref]
  6. R. R. Krueger and W. J. Dupps, “Biomechanical effects of femtosecond and microkeratome-based flap creation: prospective contralateral examination of two patients,” J. refractive surgery 23, 800–807 (2007).
  7. W. J. Dupps and C. Roberts, “Effect of acute biomechanical changes on corneal curvature after photokeratectomy,” J. refractive surgery 17, 658–669 (2001).
  8. T. Seiler, M. Matallana, S. Sendler, and T. Bende, “Does Bowman’s layer determine the biomechanical properties of the cornea?” Refract. & corneal surgery 8, 139–142 (1992).
  9. A. Elsheikh, D. Wang, and D. Pye, “Determination of the modulus of elasticity of the human cornea,” J. refractive surgery 23, 808–818 (2007).
    [Crossref]
  10. A. Elsheikh, D. Alhasso, and P. Rama, “Biomechanical properties of human and porcine corneas,” Exp. Eye Res. 86, 783–790 (2008).
    [Crossref] [PubMed]
  11. S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Investig. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
    [Crossref]
  12. D. Ortiz, D. Piñero, M. H. Shabayek, F. Arnalich-Montiel, and J. L. Alió, “Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes,” J. Cataract. & Refract. Surg. 33, 1371–1375 (2007).
    [Crossref]
  13. A. K. Lam, D. Chen, and J. Tse, “The usefulness of waveform score from the ocular response analyzer,” (2010).
  14. A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?” Surv. Ophthalmol. 52, S109–S114 (2007).
    [Crossref] [PubMed]
  15. J. Kerautret, J. Colin, D. Touboul, and C. Roberts, “Biomechanical characteristics of the ectatic cornea,” J. Cataract. Refract. Surg. 34, 510–513 (2008).
    [Crossref] [PubMed]
  16. D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract. Refract. Surg. 31, 156–162 (2005).
    [Crossref] [PubMed]
  17. V. S. De Stefano and W. J. Dupps, “Biomechanical diagnostics of the cornea,” Int. Ophthalmol. Clin. 57, 75–86 (2017).
    [Crossref] [PubMed]
  18. K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21, 68–73 (2002).
    [Crossref] [PubMed]
  19. M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Transactions on Med. Imaging 28, 1881–1893 (2009).
    [Crossref]
  20. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2, 39–43 (2008).
    [Crossref]
  21. G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA ophthalmology 133, 480–482 (2015).
    [Crossref] [PubMed]
  22. P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. Pineda II, and S.-H. Yun, “Effects of corneal hydration on Brillouin microscopy in vivo,” Investig. Opthalmology & Vis. Sci. 59, 3020 (2018).
    [Crossref]
  23. M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22, 121720 (2017).
    [Crossref]
  24. S. Marcos, G. Scarcelli, A. Ramier, and S. H. Yun, “Probing ocular mechanics with light,” in Encyclopedia of Modern Optics (Second Edition), (Elsevier, Oxford, 2018), pp. 140–154.
    [Crossref]
  25. K. V. Larin and D. D. Sampson, “Optical coherence elastography – OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8, 1172 (2017).
    [Crossref] [PubMed]
  26. R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” JBO Lett. 17, 15–18 (2012).
  27. S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. optics express 5, 3807–3821 (2014).
    [Crossref]
  28. Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
    [Crossref]
  29. Z. Han, J. Li, M. Singh, C. Wu, C.-h. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
    [Crossref]
  30. Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
    [Crossref]
  31. Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C.-h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation,” J. Biomed. Opt. 20, 020501 (2015).
    [Crossref]
  32. A. Ramier, J. T. Cheng, M. E. Ravicz, J. J. Rosowski, and S.-H. Yun, “Mapping the phase and amplitude of ossicular chain motion using sound-synchronous optical coherence vibrography,” Biomed. Opt. Express 9, 5489 (2018).
    [Crossref] [PubMed]
  33. B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886 (2011).
    [Crossref] [PubMed]
  34. M. Schroeder, “Synthesis of low-peak-factor signals and binary sequences with low autocorrelation,” IEEE Transactions on Inf. Theory 16, 85–89 (1970).
    [Crossref]
  35. T.-M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 016013 (2014).
    [Crossref]
  36. T.-M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. biomedical optics 20, 16001 (2015).
    [Crossref]
  37. J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J. 39, 745–808 (1960).
    [Crossref]
  38. P. Wells, “Absorption and dispersion of ultrasound in biological tissue,” Ultrasound Medicine & Biol. 1, 369–376 (1975).
    [Crossref]
  39. E. L. Madsen, H. J. Sathoff, and J. A. Zagzebski, “Ultrasonic shear wave properties of soft tissues and tissuelike materials,” The J. Acoust. Soc. Am. 74, 1346–1355 (1983).
    [Crossref] [PubMed]
  40. I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Medicine Biol. 56, 2245–2264 (2011).
    [Crossref]
  41. M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Cambridge University, Cambridge, 2008).
    [Crossref]
  42. Z. Han, J. Li, M. Singh, S. R. Aglyamov, C. Wu, C.-h. H. Liu, and K. V. Larin, “Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography,” Appl. Phys. Lett. 106, 233702 (2015).
    [Crossref] [PubMed]
  43. S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).
    [Crossref] [PubMed]
  44. Ł. Ambroziński, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109, 043701 (2016).
    [Crossref]
  45. V. S. De Stefano, M. R. Ford, I. Seven, and W. J. Dupps, “Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography,” PLOS ONE 13, e0209480 (2018).
    [Crossref] [PubMed]
  46. B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6, 3313 (2015).
    [Crossref] [PubMed]

2018 (3)

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. Pineda II, and S.-H. Yun, “Effects of corneal hydration on Brillouin microscopy in vivo,” Investig. Opthalmology & Vis. Sci. 59, 3020 (2018).
[Crossref]

V. S. De Stefano, M. R. Ford, I. Seven, and W. J. Dupps, “Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography,” PLOS ONE 13, e0209480 (2018).
[Crossref] [PubMed]

A. Ramier, J. T. Cheng, M. E. Ravicz, J. J. Rosowski, and S.-H. Yun, “Mapping the phase and amplitude of ossicular chain motion using sound-synchronous optical coherence vibrography,” Biomed. Opt. Express 9, 5489 (2018).
[Crossref] [PubMed]

2017 (4)

Z. Han, J. Li, M. Singh, C. Wu, C.-h. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography – OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8, 1172 (2017).
[Crossref] [PubMed]

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22, 121720 (2017).
[Crossref]

V. S. De Stefano and W. J. Dupps, “Biomechanical diagnostics of the cornea,” Int. Ophthalmol. Clin. 57, 75–86 (2017).
[Crossref] [PubMed]

2016 (3)

Ł. Ambroziński, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109, 043701 (2016).
[Crossref]

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
[Crossref]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

2015 (5)

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C.-h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation,” J. Biomed. Opt. 20, 020501 (2015).
[Crossref]

B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6, 3313 (2015).
[Crossref] [PubMed]

Z. Han, J. Li, M. Singh, S. R. Aglyamov, C. Wu, C.-h. H. Liu, and K. V. Larin, “Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography,” Appl. Phys. Lett. 106, 233702 (2015).
[Crossref] [PubMed]

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA ophthalmology 133, 480–482 (2015).
[Crossref] [PubMed]

T.-M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. biomedical optics 20, 16001 (2015).
[Crossref]

2014 (2)

T.-M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 016013 (2014).
[Crossref]

S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. optics express 5, 3807–3821 (2014).
[Crossref]

2013 (1)

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).
[Crossref] [PubMed]

2012 (1)

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” JBO Lett. 17, 15–18 (2012).

2011 (2)

I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Medicine Biol. 56, 2245–2264 (2011).
[Crossref]

B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, and J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886 (2011).
[Crossref] [PubMed]

2009 (1)

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Transactions on Med. Imaging 28, 1881–1893 (2009).
[Crossref]

2008 (3)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2, 39–43 (2008).
[Crossref]

J. Kerautret, J. Colin, D. Touboul, and C. Roberts, “Biomechanical characteristics of the ectatic cornea,” J. Cataract. Refract. Surg. 34, 510–513 (2008).
[Crossref] [PubMed]

A. Elsheikh, D. Alhasso, and P. Rama, “Biomechanical properties of human and porcine corneas,” Exp. Eye Res. 86, 783–790 (2008).
[Crossref] [PubMed]

2007 (5)

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Investig. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref]

D. Ortiz, D. Piñero, M. H. Shabayek, F. Arnalich-Montiel, and J. L. Alió, “Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes,” J. Cataract. & Refract. Surg. 33, 1371–1375 (2007).
[Crossref]

A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?” Surv. Ophthalmol. 52, S109–S114 (2007).
[Crossref] [PubMed]

R. R. Krueger and W. J. Dupps, “Biomechanical effects of femtosecond and microkeratome-based flap creation: prospective contralateral examination of two patients,” J. refractive surgery 23, 800–807 (2007).

A. Elsheikh, D. Wang, and D. Pye, “Determination of the modulus of elasticity of the human cornea,” J. refractive surgery 23, 808–818 (2007).
[Crossref]

2005 (3)

J. Liu and C. J. Roberts, “Influence of corneal biomechanical properties on intraocular pressure measurement,” J. Cataract. & Refract. Surg. 31, 146–155 (2005).
[Crossref]

P. D. Jaycock, L. Lobo, J. Ibrahim, J. Tyrer, and J. Marshall, “Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery,” J. Cataract. & Refract. Surg. 31, 175–184 (2005).
[Crossref]

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract. Refract. Surg. 31, 156–162 (2005).
[Crossref] [PubMed]

2002 (1)

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21, 68–73 (2002).
[Crossref] [PubMed]

2001 (1)

W. J. Dupps and C. Roberts, “Effect of acute biomechanical changes on corneal curvature after photokeratectomy,” J. refractive surgery 17, 658–669 (2001).

1992 (1)

T. Seiler, M. Matallana, S. Sendler, and T. Bende, “Does Bowman’s layer determine the biomechanical properties of the cornea?” Refract. & corneal surgery 8, 139–142 (1992).

1988 (1)

C. Edmund, “Corneal elasticity and ocular rigidity in normal and keratoconic eyes,” Acta ophthalmologica 66, 134–140 (1988).
[Crossref] [PubMed]

1983 (1)

E. L. Madsen, H. J. Sathoff, and J. A. Zagzebski, “Ultrasonic shear wave properties of soft tissues and tissuelike materials,” The J. Acoust. Soc. Am. 74, 1346–1355 (1983).
[Crossref] [PubMed]

1982 (1)

I. S. Nash, P. R. Greene, and C. S. Foster, “Comparison of mechanical properties of keratoconus and normal corneas,” Exp. eye research 35, 413–424 (1982).
[Crossref]

1980 (1)

T. T. Andreassen, A. Hjorth Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Exp. Eye Res. 31, 435–441 (1980).
[Crossref] [PubMed]

1975 (1)

P. Wells, “Absorption and dispersion of ultrasound in biological tissue,” Ultrasound Medicine & Biol. 1, 369–376 (1975).
[Crossref]

1970 (1)

M. Schroeder, “Synthesis of low-peak-factor signals and binary sequences with low autocorrelation,” IEEE Transactions on Inf. Theory 16, 85–89 (1970).
[Crossref]

1960 (1)

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J. 39, 745–808 (1960).
[Crossref]

Aglyamov, S.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).
[Crossref] [PubMed]

Aglyamov, S. R.

Z. Han, J. Li, M. Singh, C. Wu, C.-h. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C.-h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation,” J. Biomed. Opt. 20, 020501 (2015).
[Crossref]

Z. Han, J. Li, M. Singh, S. R. Aglyamov, C. Wu, C.-h. H. Liu, and K. V. Larin, “Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography,” Appl. Phys. Lett. 106, 233702 (2015).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” JBO Lett. 17, 15–18 (2012).

Akca, B. I.

Albersheim, W. J.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J. 39, 745–808 (1960).
[Crossref]

Alhasso, D.

A. Elsheikh, D. Alhasso, and P. Rama, “Biomechanical properties of human and porcine corneas,” Exp. Eye Res. 86, 783–790 (2008).
[Crossref] [PubMed]

Alió, J. L.

D. Ortiz, D. Piñero, M. H. Shabayek, F. Arnalich-Montiel, and J. L. Alió, “Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes,” J. Cataract. & Refract. Surg. 33, 1371–1375 (2007).
[Crossref]

Ambrozinski, L.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22, 121720 (2017).
[Crossref]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Ł. Ambroziński, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109, 043701 (2016).
[Crossref]

Andreassen, T. T.

T. T. Andreassen, A. Hjorth Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Exp. Eye Res. 31, 435–441 (1980).
[Crossref] [PubMed]

Arnal, B.

T.-M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. biomedical optics 20, 16001 (2015).
[Crossref]

T.-M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 016013 (2014).
[Crossref]

Arnalich-Montiel, F.

D. Ortiz, D. Piñero, M. H. Shabayek, F. Arnalich-Montiel, and J. L. Alió, “Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes,” J. Cataract. & Refract. Surg. 33, 1371–1375 (2007).
[Crossref]

Bende, T.

T. Seiler, M. Matallana, S. Sendler, and T. Bende, “Does Bowman’s layer determine the biomechanical properties of the cornea?” Refract. & corneal surgery 8, 139–142 (1992).

Bercoff, J.

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Transactions on Med. Imaging 28, 1881–1893 (2009).
[Crossref]

Besner, S.

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA ophthalmology 133, 480–482 (2015).
[Crossref] [PubMed]

Bhojwani, R.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Investig. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref]

Braaf, B.

Chang, E. W.

Chawla, K. K.

M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Cambridge University, Cambridge, 2008).
[Crossref]

Chen, D.

A. K. Lam, D. Chen, and J. Tse, “The usefulness of waveform score from the ocular response analyzer,” (2010).

Chen, Z.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
[Crossref]

Cheng, J. T.

Colin, J.

J. Kerautret, J. Colin, D. Touboul, and C. Roberts, “Biomechanical characteristics of the ectatic cornea,” J. Cataract. Refract. Surg. 34, 510–513 (2008).
[Crossref] [PubMed]

Cunliffe, I.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Investig. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref]

Dai, C.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
[Crossref]

Darlington, S.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J. 39, 745–808 (1960).
[Crossref]

de Boer, J. F.

De Stefano, V. S.

V. S. De Stefano, M. R. Ford, I. Seven, and W. J. Dupps, “Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography,” PLOS ONE 13, e0209480 (2018).
[Crossref] [PubMed]

V. S. De Stefano and W. J. Dupps, “Biomechanical diagnostics of the cornea,” Int. Ophthalmol. Clin. 57, 75–86 (2017).
[Crossref] [PubMed]

Dupps, W. J.

V. S. De Stefano, M. R. Ford, I. Seven, and W. J. Dupps, “Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography,” PLOS ONE 13, e0209480 (2018).
[Crossref] [PubMed]

V. S. De Stefano and W. J. Dupps, “Biomechanical diagnostics of the cornea,” Int. Ophthalmol. Clin. 57, 75–86 (2017).
[Crossref] [PubMed]

R. R. Krueger and W. J. Dupps, “Biomechanical effects of femtosecond and microkeratome-based flap creation: prospective contralateral examination of two patients,” J. refractive surgery 23, 800–807 (2007).

W. J. Dupps and C. Roberts, “Effect of acute biomechanical changes on corneal curvature after photokeratectomy,” J. refractive surgery 17, 658–669 (2001).

Edmund, C.

C. Edmund, “Corneal elasticity and ocular rigidity in normal and keratoconic eyes,” Acta ophthalmologica 66, 134–140 (1988).
[Crossref] [PubMed]

Elsheikh, A.

A. Elsheikh, D. Alhasso, and P. Rama, “Biomechanical properties of human and porcine corneas,” Exp. Eye Res. 86, 783–790 (2008).
[Crossref] [PubMed]

A. Elsheikh, D. Wang, and D. Pye, “Determination of the modulus of elasticity of the human cornea,” J. refractive surgery 23, 808–818 (2007).
[Crossref]

Eltony, A. M.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. Pineda II, and S.-H. Yun, “Effects of corneal hydration on Brillouin microscopy in vivo,” Investig. Opthalmology & Vis. Sci. 59, 3020 (2018).
[Crossref]

Emelianov, S.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).
[Crossref] [PubMed]

Emelianov, S. Y.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” JBO Lett. 17, 15–18 (2012).

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21, 68–73 (2002).
[Crossref] [PubMed]

Fink, M.

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Transactions on Med. Imaging 28, 1881–1893 (2009).
[Crossref]

Ford, M. R.

V. S. De Stefano, M. R. Ford, I. Seven, and W. J. Dupps, “Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography,” PLOS ONE 13, e0209480 (2018).
[Crossref] [PubMed]

Foster, C. S.

I. S. Nash, P. R. Greene, and C. S. Foster, “Comparison of mechanical properties of keratoconus and normal corneas,” Exp. eye research 35, 413–424 (1982).
[Crossref]

Gao, L.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22, 121720 (2017).
[Crossref]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Ł. Ambroziński, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109, 043701 (2016).
[Crossref]

Gennisson, J. L.

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Transactions on Med. Imaging 28, 1881–1893 (2009).
[Crossref]

Greene, P. R.

I. S. Nash, P. R. Greene, and C. S. Foster, “Comparison of mechanical properties of keratoconus and normal corneas,” Exp. eye research 35, 413–424 (1982).
[Crossref]

Greenleaf, J. F.

I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Medicine Biol. 56, 2245–2264 (2011).
[Crossref]

Han, Z.

Z. Han, J. Li, M. Singh, C. Wu, C.-h. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C.-h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation,” J. Biomed. Opt. 20, 020501 (2015).
[Crossref]

Z. Han, J. Li, M. Singh, S. R. Aglyamov, C. Wu, C.-h. H. Liu, and K. V. Larin, “Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography,” Appl. Phys. Lett. 106, 233702 (2015).
[Crossref] [PubMed]

He, Y.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
[Crossref]

Hjorth Simonsen, A.

T. T. Andreassen, A. Hjorth Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Exp. Eye Res. 31, 435–441 (1980).
[Crossref] [PubMed]

Hollman, K. W.

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21, 68–73 (2002).
[Crossref] [PubMed]

Huang, S.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
[Crossref]

Huang, Z.

T.-M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. biomedical optics 20, 16001 (2015).
[Crossref]

T.-M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 016013 (2014).
[Crossref]

Ibrahim, J.

P. D. Jaycock, L. Lobo, J. Ibrahim, J. Tyrer, and J. Marshall, “Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery,” J. Cataract. & Refract. Surg. 31, 175–184 (2005).
[Crossref]

Jaycock, P. D.

P. D. Jaycock, L. Lobo, J. Ibrahim, J. Tyrer, and J. Marshall, “Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery,” J. Cataract. & Refract. Surg. 31, 175–184 (2005).
[Crossref]

Jotyan, G.

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21, 68–73 (2002).
[Crossref] [PubMed]

Juhasz, T.

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21, 68–73 (2002).
[Crossref] [PubMed]

Kalout, P.

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA ophthalmology 133, 480–482 (2015).
[Crossref] [PubMed]

Kerautret, J.

J. Kerautret, J. Colin, D. Touboul, and C. Roberts, “Biomechanical characteristics of the ectatic cornea,” J. Cataract. Refract. Surg. 34, 510–513 (2008).
[Crossref] [PubMed]

Kirby, M. A.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22, 121720 (2017).
[Crossref]

Klauder, J. R.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J. 39, 745–808 (1960).
[Crossref]

Kling, S.

Kotecha, A.

A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?” Surv. Ophthalmol. 52, S109–S114 (2007).
[Crossref] [PubMed]

Krueger, R. R.

R. R. Krueger and W. J. Dupps, “Biomechanical effects of femtosecond and microkeratome-based flap creation: prospective contralateral examination of two patients,” J. refractive surgery 23, 800–807 (2007).

Kurtz, R. M.

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21, 68–73 (2002).
[Crossref] [PubMed]

Kwok, S. J. J.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. Pineda II, and S.-H. Yun, “Effects of corneal hydration on Brillouin microscopy in vivo,” Investig. Opthalmology & Vis. Sci. 59, 3020 (2018).
[Crossref]

Laiquzzaman, M.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Investig. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref]

Lam, A. K.

A. K. Lam, D. Chen, and J. Tse, “The usefulness of waveform score from the ocular response analyzer,” (2010).

Larin, K. V.

Z. Han, J. Li, M. Singh, C. Wu, C.-h. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography – OCT at work in tissue biomechanics [Invited],” Biomed. Opt. Express 8, 1172 (2017).
[Crossref] [PubMed]

Z. Han, J. Li, M. Singh, S. R. Aglyamov, C. Wu, C.-h. H. Liu, and K. V. Larin, “Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography,” Appl. Phys. Lett. 106, 233702 (2015).
[Crossref] [PubMed]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C.-h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation,” J. Biomed. Opt. 20, 020501 (2015).
[Crossref]

S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. optics express 5, 3807–3821 (2014).
[Crossref]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” JBO Lett. 17, 15–18 (2012).

Li, D.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22, 121720 (2017).
[Crossref]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Ł. Ambroziński, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109, 043701 (2016).
[Crossref]

Li, J.

Z. Han, J. Li, M. Singh, C. Wu, C.-h. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C.-h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation,” J. Biomed. Opt. 20, 020501 (2015).
[Crossref]

Z. Han, J. Li, M. Singh, S. R. Aglyamov, C. Wu, C.-h. H. Liu, and K. V. Larin, “Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography,” Appl. Phys. Lett. 106, 233702 (2015).
[Crossref] [PubMed]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” JBO Lett. 17, 15–18 (2012).

Liu, C.-h.

Z. Han, J. Li, M. Singh, C. Wu, C.-h. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C.-h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation,” J. Biomed. Opt. 20, 020501 (2015).
[Crossref]

Liu, C.-h. H.

Z. Han, J. Li, M. Singh, S. R. Aglyamov, C. Wu, C.-h. H. Liu, and K. V. Larin, “Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography,” Appl. Phys. Lett. 106, 233702 (2015).
[Crossref] [PubMed]

Liu, J.

J. Liu and C. J. Roberts, “Influence of corneal biomechanical properties on intraocular pressure measurement,” J. Cataract. & Refract. Surg. 31, 146–155 (2005).
[Crossref]

Lobo, L.

P. D. Jaycock, L. Lobo, J. Ibrahim, J. Tyrer, and J. Marshall, “Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery,” J. Cataract. & Refract. Surg. 31, 175–184 (2005).
[Crossref]

Lu, F.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
[Crossref]

Luce, D. A.

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract. Refract. Surg. 31, 156–162 (2005).
[Crossref] [PubMed]

Ma, T.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
[Crossref]

Madsen, E. L.

E. L. Madsen, H. J. Sathoff, and J. A. Zagzebski, “Ultrasonic shear wave properties of soft tissues and tissuelike materials,” The J. Acoust. Soc. Am. 74, 1346–1355 (1983).
[Crossref] [PubMed]

Manapuram, R. K.

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).
[Crossref] [PubMed]

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” JBO Lett. 17, 15–18 (2012).

Mantry, S.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Investig. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref]

Marcos, S.

B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6, 3313 (2015).
[Crossref] [PubMed]

S. Marcos, G. Scarcelli, A. Ramier, and S. H. Yun, “Probing ocular mechanics with light,” in Encyclopedia of Modern Optics (Second Edition), (Elsevier, Oxford, 2018), pp. 140–154.
[Crossref]

Marshall, J.

P. D. Jaycock, L. Lobo, J. Ibrahim, J. Tyrer, and J. Marshall, “Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery,” J. Cataract. & Refract. Surg. 31, 175–184 (2005).
[Crossref]

Mashiatulla, M.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” JBO Lett. 17, 15–18 (2012).

Matallana, M.

T. Seiler, M. Matallana, S. Sendler, and T. Bende, “Does Bowman’s layer determine the biomechanical properties of the cornea?” Refract. & corneal surgery 8, 139–142 (1992).

Meyers, M. A.

M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Cambridge University, Cambridge, 2008).
[Crossref]

Mitchell, S. A.

I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Medicine Biol. 56, 2245–2264 (2011).
[Crossref]

Monediado, F. M.

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” JBO Lett. 17, 15–18 (2012).

Nash, I. S.

I. S. Nash, P. R. Greene, and C. S. Foster, “Comparison of mechanical properties of keratoconus and normal corneas,” Exp. eye research 35, 413–424 (1982).
[Crossref]

Neiss, J. H.

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21, 68–73 (2002).
[Crossref] [PubMed]

Nenadic, I. Z.

I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Medicine Biol. 56, 2245–2264 (2011).
[Crossref]

Nguyen, T.-M.

T.-M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. biomedical optics 20, 16001 (2015).
[Crossref]

T.-M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 016013 (2014).
[Crossref]

O’Donnell, M.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22, 121720 (2017).
[Crossref]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Ł. Ambroziński, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109, 043701 (2016).
[Crossref]

T.-M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. biomedical optics 20, 16001 (2015).
[Crossref]

T.-M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 016013 (2014).
[Crossref]

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21, 68–73 (2002).
[Crossref] [PubMed]

Ortiz, D.

D. Ortiz, D. Piñero, M. H. Shabayek, F. Arnalich-Montiel, and J. L. Alió, “Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes,” J. Cataract. & Refract. Surg. 33, 1371–1375 (2007).
[Crossref]

Oxlund, H.

T. T. Andreassen, A. Hjorth Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Exp. Eye Res. 31, 435–441 (1980).
[Crossref] [PubMed]

Pelivanov, I.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22, 121720 (2017).
[Crossref]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Ł. Ambroziński, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109, 043701 (2016).
[Crossref]

Pineda, R.

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA ophthalmology 133, 480–482 (2015).
[Crossref] [PubMed]

Pineda II, R.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. Pineda II, and S.-H. Yun, “Effects of corneal hydration on Brillouin microscopy in vivo,” Investig. Opthalmology & Vis. Sci. 59, 3020 (2018).
[Crossref]

Piñero, D.

D. Ortiz, D. Piñero, M. H. Shabayek, F. Arnalich-Montiel, and J. L. Alió, “Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes,” J. Cataract. & Refract. Surg. 33, 1371–1375 (2007).
[Crossref]

Price, A. C.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J. 39, 745–808 (1960).
[Crossref]

Pye, D.

A. Elsheikh, D. Wang, and D. Pye, “Determination of the modulus of elasticity of the human cornea,” J. refractive surgery 23, 808–818 (2007).
[Crossref]

Qu, Y.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
[Crossref]

Raghunathan, R.

Z. Han, J. Li, M. Singh, C. Wu, C.-h. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

Rama, P.

A. Elsheikh, D. Alhasso, and P. Rama, “Biomechanical properties of human and porcine corneas,” Exp. Eye Res. 86, 783–790 (2008).
[Crossref] [PubMed]

Ramier, A.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. Pineda II, and S.-H. Yun, “Effects of corneal hydration on Brillouin microscopy in vivo,” Investig. Opthalmology & Vis. Sci. 59, 3020 (2018).
[Crossref]

A. Ramier, J. T. Cheng, M. E. Ravicz, J. J. Rosowski, and S.-H. Yun, “Mapping the phase and amplitude of ossicular chain motion using sound-synchronous optical coherence vibrography,” Biomed. Opt. Express 9, 5489 (2018).
[Crossref] [PubMed]

B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6, 3313 (2015).
[Crossref] [PubMed]

S. Marcos, G. Scarcelli, A. Ramier, and S. H. Yun, “Probing ocular mechanics with light,” in Encyclopedia of Modern Optics (Second Edition), (Elsevier, Oxford, 2018), pp. 140–154.
[Crossref]

Ravicz, M. E.

Roberts, C.

J. Kerautret, J. Colin, D. Touboul, and C. Roberts, “Biomechanical characteristics of the ectatic cornea,” J. Cataract. Refract. Surg. 34, 510–513 (2008).
[Crossref] [PubMed]

W. J. Dupps and C. Roberts, “Effect of acute biomechanical changes on corneal curvature after photokeratectomy,” J. refractive surgery 17, 658–669 (2001).

Roberts, C. J.

J. Liu and C. J. Roberts, “Influence of corneal biomechanical properties on intraocular pressure measurement,” J. Cataract. & Refract. Surg. 31, 146–155 (2005).
[Crossref]

Rosowski, J. J.

Sampson, D. D.

Sathoff, H. J.

E. L. Madsen, H. J. Sathoff, and J. A. Zagzebski, “Ultrasonic shear wave properties of soft tissues and tissuelike materials,” The J. Acoust. Soc. Am. 74, 1346–1355 (1983).
[Crossref] [PubMed]

Scarcelli, G.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. Pineda II, and S.-H. Yun, “Effects of corneal hydration on Brillouin microscopy in vivo,” Investig. Opthalmology & Vis. Sci. 59, 3020 (2018).
[Crossref]

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA ophthalmology 133, 480–482 (2015).
[Crossref] [PubMed]

B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6, 3313 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2, 39–43 (2008).
[Crossref]

S. Marcos, G. Scarcelli, A. Ramier, and S. H. Yun, “Probing ocular mechanics with light,” in Encyclopedia of Modern Optics (Second Edition), (Elsevier, Oxford, 2018), pp. 140–154.
[Crossref]

Schroeder, M.

M. Schroeder, “Synthesis of low-peak-factor signals and binary sequences with low autocorrelation,” IEEE Transactions on Inf. Theory 16, 85–89 (1970).
[Crossref]

Seiler, T.

T. Seiler, M. Matallana, S. Sendler, and T. Bende, “Does Bowman’s layer determine the biomechanical properties of the cornea?” Refract. & corneal surgery 8, 139–142 (1992).

Seiler, T. G.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. Pineda II, and S.-H. Yun, “Effects of corneal hydration on Brillouin microscopy in vivo,” Investig. Opthalmology & Vis. Sci. 59, 3020 (2018).
[Crossref]

Sendler, S.

T. Seiler, M. Matallana, S. Sendler, and T. Bende, “Does Bowman’s layer determine the biomechanical properties of the cornea?” Refract. & corneal surgery 8, 139–142 (1992).

Seven, I.

V. S. De Stefano, M. R. Ford, I. Seven, and W. J. Dupps, “Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography,” PLOS ONE 13, e0209480 (2018).
[Crossref] [PubMed]

Shabayek, M. H.

D. Ortiz, D. Piñero, M. H. Shabayek, F. Arnalich-Montiel, and J. L. Alió, “Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes,” J. Cataract. & Refract. Surg. 33, 1371–1375 (2007).
[Crossref]

Shah, S.

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Investig. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref]

Shao, P.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. Pineda II, and S.-H. Yun, “Effects of corneal hydration on Brillouin microscopy in vivo,” Investig. Opthalmology & Vis. Sci. 59, 3020 (2018).
[Crossref]

Shen, T. T.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22, 121720 (2017).
[Crossref]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Ł. Ambroziński, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109, 043701 (2016).
[Crossref]

Shung, K. K.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
[Crossref]

Sicam, V. A. D.

Singh, M.

Z. Han, J. Li, M. Singh, C. Wu, C.-h. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C.-h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation,” J. Biomed. Opt. 20, 020501 (2015).
[Crossref]

Z. Han, J. Li, M. Singh, S. R. Aglyamov, C. Wu, C.-h. H. Liu, and K. V. Larin, “Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography,” Appl. Phys. Lett. 106, 233702 (2015).
[Crossref] [PubMed]

Song, S.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22, 121720 (2017).
[Crossref]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Ł. Ambroziński, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109, 043701 (2016).
[Crossref]

T.-M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. biomedical optics 20, 16001 (2015).
[Crossref]

T.-M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 016013 (2014).
[Crossref]

Spooner, G. J.

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21, 68–73 (2002).
[Crossref] [PubMed]

Tanter, M.

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Transactions on Med. Imaging 28, 1881–1893 (2009).
[Crossref]

Touboul, D.

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Transactions on Med. Imaging 28, 1881–1893 (2009).
[Crossref]

J. Kerautret, J. Colin, D. Touboul, and C. Roberts, “Biomechanical characteristics of the ectatic cornea,” J. Cataract. Refract. Surg. 34, 510–513 (2008).
[Crossref] [PubMed]

Tse, J.

A. K. Lam, D. Chen, and J. Tse, “The usefulness of waveform score from the ocular response analyzer,” (2010).

Twa, M. D.

Z. Han, J. Li, M. Singh, C. Wu, C.-h. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C.-h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation,” J. Biomed. Opt. 20, 020501 (2015).
[Crossref]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).
[Crossref] [PubMed]

Tyrer, J.

P. D. Jaycock, L. Lobo, J. Ibrahim, J. Tyrer, and J. Marshall, “Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery,” J. Cataract. & Refract. Surg. 31, 175–184 (2005).
[Crossref]

Urban, M. W.

I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Medicine Biol. 56, 2245–2264 (2011).
[Crossref]

van Meurs, J. C.

van Zeeburg, E.

Vantipalli, S.

Z. Han, J. Li, M. Singh, C. Wu, C.-h. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C.-h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation,” J. Biomed. Opt. 20, 020501 (2015).
[Crossref]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).
[Crossref] [PubMed]

Vermeer, K. A.

Wang, D.

A. Elsheikh, D. Wang, and D. Pye, “Determination of the modulus of elasticity of the human cornea,” J. refractive surgery 23, 808–818 (2007).
[Crossref]

Wang, R. K.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22, 121720 (2017).
[Crossref]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Ł. Ambroziński, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109, 043701 (2016).
[Crossref]

T.-M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. biomedical optics 20, 16001 (2015).
[Crossref]

T.-M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 016013 (2014).
[Crossref]

Wang, S.

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C.-h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation,” J. Biomed. Opt. 20, 020501 (2015).
[Crossref]

S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. optics express 5, 3807–3821 (2014).
[Crossref]

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).
[Crossref] [PubMed]

Wells, P.

P. Wells, “Absorption and dispersion of ultrasound in biological tissue,” Ultrasound Medicine & Biol. 1, 369–376 (1975).
[Crossref]

Wong, E. Y.

T.-M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 016013 (2014).
[Crossref]

Wu, C.

Z. Han, J. Li, M. Singh, C. Wu, C.-h. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C.-h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation,” J. Biomed. Opt. 20, 020501 (2015).
[Crossref]

Z. Han, J. Li, M. Singh, S. R. Aglyamov, C. Wu, C.-h. H. Liu, and K. V. Larin, “Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography,” Appl. Phys. Lett. 106, 233702 (2015).
[Crossref] [PubMed]

Yoon, S. J.

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22, 121720 (2017).
[Crossref]

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Ł. Ambroziński, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109, 043701 (2016).
[Crossref]

Yu, M.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
[Crossref]

Yun, S. H.

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA ophthalmology 133, 480–482 (2015).
[Crossref] [PubMed]

B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6, 3313 (2015).
[Crossref] [PubMed]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2, 39–43 (2008).
[Crossref]

S. Marcos, G. Scarcelli, A. Ramier, and S. H. Yun, “Probing ocular mechanics with light,” in Encyclopedia of Modern Optics (Second Edition), (Elsevier, Oxford, 2018), pp. 140–154.
[Crossref]

Yun, S.-H.

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. Pineda II, and S.-H. Yun, “Effects of corneal hydration on Brillouin microscopy in vivo,” Investig. Opthalmology & Vis. Sci. 59, 3020 (2018).
[Crossref]

A. Ramier, J. T. Cheng, M. E. Ravicz, J. J. Rosowski, and S.-H. Yun, “Mapping the phase and amplitude of ossicular chain motion using sound-synchronous optical coherence vibrography,” Biomed. Opt. Express 9, 5489 (2018).
[Crossref] [PubMed]

Zagzebski, J. A.

E. L. Madsen, H. J. Sathoff, and J. A. Zagzebski, “Ultrasonic shear wave properties of soft tissues and tissuelike materials,” The J. Acoust. Soc. Am. 74, 1346–1355 (1983).
[Crossref] [PubMed]

Zhou, Q.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
[Crossref]

Zhu, J.

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
[Crossref]

Acta ophthalmologica (1)

C. Edmund, “Corneal elasticity and ocular rigidity in normal and keratoconic eyes,” Acta ophthalmologica 66, 134–140 (1988).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Z. Han, J. Li, M. Singh, S. R. Aglyamov, C. Wu, C.-h. H. Liu, and K. V. Larin, “Analysis of the effects of curvature and thickness on elastic wave velocity in cornea-like structures by finite element modeling and optical coherence elastography,” Appl. Phys. Lett. 106, 233702 (2015).
[Crossref] [PubMed]

Ł. Ambroziński, I. Pelivanov, S. Song, S. J. Yoon, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Air-coupled acoustic radiation force for non-contact generation of broadband mechanical waves in soft media,” Appl. Phys. Lett. 109, 043701 (2016).
[Crossref]

Bell Syst. Tech. J. (1)

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, “The theory and design of chirp radars,” Bell Syst. Tech. J. 39, 745–808 (1960).
[Crossref]

Biomed. Opt. Express (3)

Biomed. optics express (1)

S. Wang and K. V. Larin, “Noncontact depth-resolved micro-scale optical coherence elastography of the cornea,” Biomed. optics express 5, 3807–3821 (2014).
[Crossref]

Cornea (1)

K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21, 68–73 (2002).
[Crossref] [PubMed]

Exp. Eye Res. (2)

T. T. Andreassen, A. Hjorth Simonsen, and H. Oxlund, “Biomechanical properties of keratoconus and normal corneas,” Exp. Eye Res. 31, 435–441 (1980).
[Crossref] [PubMed]

A. Elsheikh, D. Alhasso, and P. Rama, “Biomechanical properties of human and porcine corneas,” Exp. Eye Res. 86, 783–790 (2008).
[Crossref] [PubMed]

Exp. eye research (1)

I. S. Nash, P. R. Greene, and C. S. Foster, “Comparison of mechanical properties of keratoconus and normal corneas,” Exp. eye research 35, 413–424 (1982).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Qu, T. Ma, Y. He, J. Zhu, C. Dai, M. Yu, S. Huang, F. Lu, K. K. Shung, Q. Zhou, and Z. Chen, “Acoustic radiation force optical coherence elastography of corneal tissue,” IEEE J. Sel. Top. Quantum Electron. 22, 288–294 (2016).
[Crossref]

IEEE Transactions on Inf. Theory (1)

M. Schroeder, “Synthesis of low-peak-factor signals and binary sequences with low autocorrelation,” IEEE Transactions on Inf. Theory 16, 85–89 (1970).
[Crossref]

IEEE Transactions on Med. Imaging (1)

M. Tanter, D. Touboul, J. L. Gennisson, J. Bercoff, and M. Fink, “High-resolution quantitative imaging of cornea elasticity using supersonic shear imaging,” IEEE Transactions on Med. Imaging 28, 1881–1893 (2009).
[Crossref]

Int. Ophthalmol. Clin. (1)

V. S. De Stefano and W. J. Dupps, “Biomechanical diagnostics of the cornea,” Int. Ophthalmol. Clin. 57, 75–86 (2017).
[Crossref] [PubMed]

Investig. Ophthalmol. Vis. Sci. (1)

S. Shah, M. Laiquzzaman, R. Bhojwani, S. Mantry, and I. Cunliffe, “Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes,” Investig. Ophthalmol. Vis. Sci. 48, 3026–3031 (2007).
[Crossref]

Investig. Opthalmology & Vis. Sci. (1)

P. Shao, T. G. Seiler, A. M. Eltony, A. Ramier, S. J. J. Kwok, G. Scarcelli, R. Pineda II, and S.-H. Yun, “Effects of corneal hydration on Brillouin microscopy in vivo,” Investig. Opthalmology & Vis. Sci. 59, 3020 (2018).
[Crossref]

J. Biomed. Opt. (3)

M. A. Kirby, I. Pelivanov, S. Song, Ł. Ambrozinski, S. J. Yoon, L. Gao, D. Li, T. T. Shen, R. K. Wang, and M. O’Donnell, “Optical coherence elastography in ophthalmology,” J. Biomed. Opt. 22, 121720 (2017).
[Crossref]

T.-M. Nguyen, S. Song, B. Arnal, E. Y. Wong, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography,” J. Biomed. Opt. 19, 016013 (2014).
[Crossref]

Z. Han, S. R. Aglyamov, J. Li, M. Singh, S. Wang, S. Vantipalli, C. Wu, C.-h. Liu, M. D. Twa, and K. V. Larin, “Quantitative assessment of corneal viscoelasticity using optical coherence elastography and a modified Rayleigh–Lamb equation,” J. Biomed. Opt. 20, 020501 (2015).
[Crossref]

J. biomedical optics (1)

T.-M. Nguyen, B. Arnal, S. Song, Z. Huang, R. K. Wang, and M. O’Donnell, “Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography,” J. biomedical optics 20, 16001 (2015).
[Crossref]

J. Cataract. & Refract. Surg. (3)

D. Ortiz, D. Piñero, M. H. Shabayek, F. Arnalich-Montiel, and J. L. Alió, “Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes,” J. Cataract. & Refract. Surg. 33, 1371–1375 (2007).
[Crossref]

J. Liu and C. J. Roberts, “Influence of corneal biomechanical properties on intraocular pressure measurement,” J. Cataract. & Refract. Surg. 31, 146–155 (2005).
[Crossref]

P. D. Jaycock, L. Lobo, J. Ibrahim, J. Tyrer, and J. Marshall, “Interferometric technique to measure biomechanical changes in the cornea induced by refractive surgery,” J. Cataract. & Refract. Surg. 31, 175–184 (2005).
[Crossref]

J. Cataract. Refract. Surg. (2)

J. Kerautret, J. Colin, D. Touboul, and C. Roberts, “Biomechanical characteristics of the ectatic cornea,” J. Cataract. Refract. Surg. 34, 510–513 (2008).
[Crossref] [PubMed]

D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract. Refract. Surg. 31, 156–162 (2005).
[Crossref] [PubMed]

J. Mech. Behav. Biomed. Mater. (1)

Z. Han, J. Li, M. Singh, C. Wu, C.-h. Liu, R. Raghunathan, S. R. Aglyamov, S. Vantipalli, M. D. Twa, and K. V. Larin, “Optical coherence elastography assessment of corneal viscoelasticity with a modified Rayleigh-Lamb wave model,” J. Mech. Behav. Biomed. Mater. 66, 87–94 (2017).
[Crossref]

J. refractive surgery (3)

A. Elsheikh, D. Wang, and D. Pye, “Determination of the modulus of elasticity of the human cornea,” J. refractive surgery 23, 808–818 (2007).
[Crossref]

R. R. Krueger and W. J. Dupps, “Biomechanical effects of femtosecond and microkeratome-based flap creation: prospective contralateral examination of two patients,” J. refractive surgery 23, 800–807 (2007).

W. J. Dupps and C. Roberts, “Effect of acute biomechanical changes on corneal curvature after photokeratectomy,” J. refractive surgery 17, 658–669 (2001).

JAMA ophthalmology (1)

G. Scarcelli, S. Besner, R. Pineda, P. Kalout, and S. H. Yun, “In vivo biomechanical mapping of normal and keratoconus corneas,” JAMA ophthalmology 133, 480–482 (2015).
[Crossref] [PubMed]

JBO Lett. (1)

R. K. Manapuram, S. R. Aglyamov, F. M. Monediado, M. Mashiatulla, J. Li, S. Y. Emelianov, and K. V. Larin, “In vivo estimation of elastic wave parameters using phase-stabilized swept source optical coherence elastography,” JBO Lett. 17, 15–18 (2012).

Laser Phys. Lett. (1)

S. Wang, K. V. Larin, J. Li, S. Vantipalli, R. K. Manapuram, S. Aglyamov, S. Emelianov, and M. D. Twa, “A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity,” Laser Phys. Lett. 10, 075605 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2, 39–43 (2008).
[Crossref]

Opt. Express (1)

Phys. Medicine Biol. (1)

I. Z. Nenadic, M. W. Urban, S. A. Mitchell, and J. F. Greenleaf, “Lamb wave dispersion ultrasound vibrometry (LDUV) method for quantifying mechanical properties of viscoelastic solids,” Phys. Medicine Biol. 56, 2245–2264 (2011).
[Crossref]

PLOS ONE (1)

V. S. De Stefano, M. R. Ford, I. Seven, and W. J. Dupps, “Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography,” PLOS ONE 13, e0209480 (2018).
[Crossref] [PubMed]

Refract. & corneal surgery (1)

T. Seiler, M. Matallana, S. Sendler, and T. Bende, “Does Bowman’s layer determine the biomechanical properties of the cornea?” Refract. & corneal surgery 8, 139–142 (1992).

Sci. Reports (1)

Ł. Ambroziński, S. Song, S. J. Yoon, I. Pelivanov, D. Li, L. Gao, T. T. Shen, R. K. Wang, and M. O’Donnell, “Acoustic micro-tapping for non-contact 4D imaging of tissue elasticity,” Sci. Reports 6, 38967 (2016).
[Crossref]

Surv. Ophthalmol. (1)

A. Kotecha, “What biomechanical properties of the cornea are relevant for the clinician?” Surv. Ophthalmol. 52, S109–S114 (2007).
[Crossref] [PubMed]

The J. Acoust. Soc. Am. (1)

E. L. Madsen, H. J. Sathoff, and J. A. Zagzebski, “Ultrasonic shear wave properties of soft tissues and tissuelike materials,” The J. Acoust. Soc. Am. 74, 1346–1355 (1983).
[Crossref] [PubMed]

Ultrasound Medicine & Biol. (1)

P. Wells, “Absorption and dispersion of ultrasound in biological tissue,” Ultrasound Medicine & Biol. 1, 369–376 (1975).
[Crossref]

Other (3)

S. Marcos, G. Scarcelli, A. Ramier, and S. H. Yun, “Probing ocular mechanics with light,” in Encyclopedia of Modern Optics (Second Edition), (Elsevier, Oxford, 2018), pp. 140–154.
[Crossref]

M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials (Cambridge University, Cambridge, 2008).
[Crossref]

A. K. Lam, D. Chen, and J. Tse, “The usefulness of waveform score from the ocular response analyzer,” (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of the contact probe and measurement setup. (b) Representative stimulus waveforms used in this study (left) and their frequency contents.
Fig. 2
Fig. 2 Displacement field of elastic waves at the surface of an elastomer phantom for different waveforms. (a) Several time frames selected from a full data set for single 100 μs-long Gaussian impulse stimulus. (b) Corresponding time frames for a Schroeder-type chirp [34]. (c) Snapshots for pure tones at 1, 2, 4, 6, and 8 kHz, respectively.
Fig. 3
Fig. 3 Processing steps to compute the mechanical wave dispersion of a sample applied to a tissue-simulating phantom. (a) Displacement field as a function of the time and transverse propagation distance (t-r plane). (b) Impulse response calculated from cross-correlation with the stimulus waveform. (c–d) A Fourier transform of the cross-correlation function over time, showing the magnitude, (c), and phase, (d), in the f-r plane. (e) Magnitude of the Fourier transform of the Fourier-domain cross-correlation function over space, revealing the dispersion curve of the lowest-order guided wave (bright curve). (f) Phase velocity obtained from the dispersion map as a function of frequency.
Fig. 4
Fig. 4 (a) Measured phase velocity of silicone rubber using three different stimulus waveforms: chirp (Schroeder-type [34], with frequency components between 0 and 10 kHz by steps of 180 Hz), impulse (Gaussian-shaped with a 4σ pulse length of 100 μs), and single tones at frequencies 2, 4, 6, 8 and 10 kHz. (b) Comparison to wave speeds measured by rheometry in a low frequency range of 0.1–100 Hz). Inset, complex shear modulus measured using a commercial shear rheometer.
Fig. 5
Fig. 5 (a) Schematic of elastography experiment performed on a porcine eye. (b) Time-dependent displacement field in the cornea from a impulse stimulus. The displacement field is overlaid over the standard OCT intensity image.
Fig. 6
Fig. 6 Phase velocity measurement of porcine corneas at the same IOP level of 15 mmHg. (a) Displacement field. (b) Cross-spectrum magnitude. (c) Dispersion map obtained by a 2D Fourier transform of the displacement field. (d) Frequency-dependent phase velocity of the same porcine cornea measured 3 times. (e) Frequency-dependent phase velocity of 20 different porcine eye samples.
Fig. 7
Fig. 7 Parameter estimation using the Lamb wave model. (a) Example Lamb wave spectrum for typical porcine cornea properties, neglecting viscosity. (b) Lamb wave model fitted to the measured porcine cornea phase velocities. (c) Fit error estimation using the initial guess variation method. Each marker represents the fit results for a different set of initial guess parameters. Probability density function (PDF) contours are also shown to help visualization. Each panel uses a different frequency ranges for fitting.
Fig. 8
Fig. 8 Wave attenuation measurement of porcine corneas as a function of frequency. Gray lines represent the measured wave attenuation data for each of the 20 porcine eyes at an IOP of 15 mmHg, measured by fitting an exponential decay function to the wave magnitude at each frequency. Green line and shaded region represent the mean and 2 standard deviation error. The solid red curve represents the attenuation predicted by the KV and Lamb models with μ0 = 20.5 kPa and η = 0.28 Pa s previously obtained. The dotted line represents the attenuation in the absence of waveguiding as predicted by Eq. (11).
Fig. 9
Fig. 9 Measured static shear modulus, μ0 of 10 pairs of porcine eyes (20 eyes) as a function of (a) weight, (b) central corneal thickness (CCT), and (c) anterior corneal radius of curvature. (d) Comparison between the left and right eyes of matching pairs.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

μ = ρ c s 2
Δ ϕ ( r , t i ) = arg ( r ROI A * ( r , t i 1 ) A ( r , t i ) )
ϕ ( r , t k ) = i = 1 k Δ ϕ ( r , t i )
u z ( r , t k ) = λ 0 4 π n m ( ϕ ( r , t k ) + ϕ ( r surf , t k ) n m n 0 n 0 )
γ u , s ( r , τ ) = u z ( r , t ) s ( t ) ,
Γ u , s ( r , f ) = U z ( r , f ) S * ( f ) ,
Γ u , s ( f , k ) = U ( f , k ) S * ( f ) ,
c = | μ | ρ 2 1 + cos δ ,
μ ( f ) = μ 0 + i ( 2 π f ) η ,
c = μ 0 ρ 2 ζ 2 ζ + 1 ,
α = 2 π f ρ μ 0 ζ 1 2 ζ 2
L = ln 10 α ,
N = ln 10 2 π ζ + 1 ζ 1 ,