Abstract

A novel electromagnetically induced transparency (EIT) all-dielectric metamaterial is proposed, fabricated, and characterized. The unit cell of the proposed metamaterial comprises of two asymmetric split ring resonators (a-SRRs) positioned with a mirror symmetry. The asymmetric nature of a-SRRs results from the length difference of two arcs. Optical properties of the fabricated metamaterial are investigated numerically using finite difference method, as well as experimentally using a terahertz time-domain spectroscopy. The results confirm that the proposed metamaterial exhibits an EIT transparent window in the frequency range around 0.78THz with a Q-factor of ~75.7 and a time-delay up to ~28.9ps. Theoretical investigations show that EIT effects in our metamaterial are achieved by hybridizing two bright modes in the same unit cell, which are aroused by the excitation of magnetic moments. We also confirm that the proposed metamaterial has great potential for sensing applications with high sensitivity and high figure of merit (FOM), which guarantees potential applications in in situ chemical and biological sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial

Xunjun He, Xingyu Yang, Shaopeng Li, Shuang Shi, Fengmin Wu, and Jiuxing Jiang
Opt. Mater. Express 6(10) 3075-3085 (2016)

Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response

Bingxin Han, Xiangjun Li, Chuanshuai Sui, Jinyan Diao, Xufeng Jing, and Zhi Hong
Opt. Mater. Express 8(8) 2197-2207 (2018)

Electromagnetically induced transparency in all-dielectric metamaterial-waveguide system

Pei Ding, Jinna He, Junqiao Wang, Chunzhen Fan, and Erjun Liang
Appl. Opt. 54(12) 3708-3714 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  3. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
    [Crossref]
  4. H. Schmidt and A. Imamogdlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21(23), 1936–1938 (1996).
    [Crossref] [PubMed]
  5. Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
    [Crossref] [PubMed]
  6. D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
    [Crossref]
  7. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
    [Crossref] [PubMed]
  8. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
    [Crossref] [PubMed]
  9. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
    [Crossref] [PubMed]
  10. H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
    [Crossref]
  11. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  12. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [Crossref] [PubMed]
  13. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  14. L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. Fu, K. Zhang, and G. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
    [Crossref]
  15. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
    [Crossref]
  16. R. Maas, J. van de Groep, and A. Polman, “Planar metal/dielectric single-periodic multilayer ultraviolet flat lens,” Optica 3(6), 592–596 (2016).
    [Crossref]
  17. S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
    [Crossref] [PubMed]
  18. H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  19. J. He, P. Ding, J. Wang, C. Fan, and E. Liang, “Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption,” Opt. Express 23(5), 6083–6091 (2015).
    [Crossref] [PubMed]
  20. G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
    [Crossref]
  21. T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 87(16), 161110 (2013).
    [Crossref]
  22. M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
    [Crossref]
  23. Y. Tian, S. Hu, X. Huang, Z. Yu, H. Lin, and H. Yang, “Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing,” J. Phys. D Appl. Phys. 50(40), 405105 (2017).
    [Crossref]
  24. D. B. Litt, M. R. Jones, M. Hentschel, Y. Wang, S. Yang, H. D. Ha, X. Zhang, and A. P. Alivisatos, “Hybrid lithographic and DNA-directed assembly of a configurable plasmonic metamaterial that exhibits electromagnetically induced transparency,” Nano Lett. 18(2), 859–864 (2018).
    [Crossref] [PubMed]
  25. Y. Song, H. Zhan, C. Jiang, K. Zhao, J. Zhu, R. Chen, S. Hao, and W. Yue, “High water content prediction of oil–water emulsions based on terahertz electromagnetically induced transparency-like metamaterial,” ACS Omega 4(1), 1810–1815 (2019).
    [Crossref]
  26. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
    [Crossref]
  27. M. Manjappa, S. P. Turaga, Y. K. Srivastava, A. A. Bettiol, and R. Singh, “Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial,” Opt. Lett. 42(11), 2106–2109 (2017).
    [Crossref] [PubMed]
  28. K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
    [Crossref] [PubMed]
  29. S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]
  30. Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99(4), 041104 (2019).
    [Crossref]
  31. M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
    [Crossref] [PubMed]
  32. H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
    [Crossref]
  33. R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
    [Crossref]
  34. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  35. I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
    [Crossref]
  36. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
    [Crossref] [PubMed]
  37. L. Zhu, X. Zhao, L. Dong, J. Guo, X. J. He, and Z. M. Yao, “Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators,” RSC Advances 8(48), 27342–27348 (2018).
    [Crossref]
  38. B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response,” Opt. Mater. Express 8(8), 2197–2207 (2018).
    [Crossref]
  39. A. Podzorov and G. Gallot, “Low-loss polymers for terahertz applications,” Appl. Opt. 47(18), 3254–3257 (2008).
    [Crossref] [PubMed]
  40. A. E. Siegman, G. Nemes, and J. Serna, “How to (maybe) measure laser beam quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues (Optical Society of America, 1998), p. MQ1.
  41. V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 89(20), 205112 (2014).
    [Crossref]
  42. F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
    [Crossref]

2019 (2)

Y. Song, H. Zhan, C. Jiang, K. Zhao, J. Zhu, R. Chen, S. Hao, and W. Yue, “High water content prediction of oil–water emulsions based on terahertz electromagnetically induced transparency-like metamaterial,” ACS Omega 4(1), 1810–1815 (2019).
[Crossref]

Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99(4), 041104 (2019).
[Crossref]

2018 (6)

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

D. B. Litt, M. R. Jones, M. Hentschel, Y. Wang, S. Yang, H. D. Ha, X. Zhang, and A. P. Alivisatos, “Hybrid lithographic and DNA-directed assembly of a configurable plasmonic metamaterial that exhibits electromagnetically induced transparency,” Nano Lett. 18(2), 859–864 (2018).
[Crossref] [PubMed]

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

L. Zhu, X. Zhao, L. Dong, J. Guo, X. J. He, and Z. M. Yao, “Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators,” RSC Advances 8(48), 27342–27348 (2018).
[Crossref]

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

B. Han, X. Li, C. Sui, J. Diao, X. Jing, and Z. Hong, “Analog of electromagnetically induced transparency in an E-shaped all-dielectric metasurface based on toroidal dipolar response,” Opt. Mater. Express 8(8), 2197–2207 (2018).
[Crossref]

2017 (6)

K. M. Devi, A. K. Sarma, D. R. Chowdhury, and G. Kumar, “Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial,” Opt. Express 25(9), 10484–10493 (2017).
[Crossref] [PubMed]

M. Manjappa, S. P. Turaga, Y. K. Srivastava, A. A. Bettiol, and R. Singh, “Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial,” Opt. Lett. 42(11), 2106–2109 (2017).
[Crossref] [PubMed]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Y. Tian, S. Hu, X. Huang, Z. Yu, H. Lin, and H. Yang, “Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing,” J. Phys. D Appl. Phys. 50(40), 405105 (2017).
[Crossref]

G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

2016 (1)

2015 (4)

J. He, P. Ding, J. Wang, C. Fan, and E. Liang, “Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption,” Opt. Express 23(5), 6083–6091 (2015).
[Crossref] [PubMed]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. Fu, K. Zhang, and G. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

2014 (2)

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 89(20), 205112 (2014).
[Crossref]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

2013 (2)

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 87(16), 161110 (2013).
[Crossref]

2012 (2)

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

2010 (1)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

2009 (5)

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
[Crossref]

2008 (3)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

A. Podzorov and G. Gallot, “Low-loss polymers for terahertz applications,” Appl. Opt. 47(18), 3254–3257 (2008).
[Crossref] [PubMed]

2007 (1)

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

2006 (1)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

2004 (2)

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

1996 (1)

1991 (1)

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Agha, I.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Alivisatos, A. P.

D. B. Litt, M. R. Jones, M. Hentschel, Y. Wang, S. Yang, H. D. Ha, X. Zhang, and A. P. Alivisatos, “Hybrid lithographic and DNA-directed assembly of a configurable plasmonic metamaterial that exhibits electromagnetically induced transparency,” Nano Lett. 18(2), 859–864 (2018).
[Crossref] [PubMed]

Averitt, R. D.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Azad, A. K.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bettiol, A. A.

Biswas, S.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Boller, K.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Boyd, R. W.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Brener, I.

G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Brown, A. W.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

Burrow, J. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Chang, H.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Che, B. J.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. Fu, K. Zhang, and G. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Chen, H.

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Chen, H. T.

G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Chen, R.

Y. Song, H. Zhan, C. Jiang, K. Zhao, J. Zhu, R. Chen, S. Hao, and W. Yue, “High water content prediction of oil–water emulsions based on terahertz electromagnetically induced transparency-like metamaterial,” ACS Omega 4(1), 1810–1815 (2019).
[Crossref]

Chen, X.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Chowdhury, D. R.

Cich, M. J.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Devi, K. M.

Diao, J.

Ding, P.

Dong, L.

L. Zhu, X. Zhao, L. Dong, J. Guo, X. J. He, and Z. M. Yao, “Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators,” RSC Advances 8(48), 27342–27348 (2018).
[Crossref]

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. Fu, K. Zhang, and G. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Duan, J.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Fan, C.

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Fan, Y.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Fedotov, V. A.

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 89(20), 205112 (2014).
[Crossref]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Feng, S.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Fu, J.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. Fu, K. Zhang, and G. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Gallot, G.

Gao, J.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. Fu, K. Zhang, and G. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Gu, J.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

Guo, J.

L. Zhu, X. Zhao, L. Dong, J. Guo, X. J. He, and Z. M. Yao, “Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators,” RSC Advances 8(48), 27342–27348 (2018).
[Crossref]

Guo, X.

Ha, H. D.

D. B. Litt, M. R. Jones, M. Hentschel, Y. Wang, S. Yang, H. D. Ha, X. Zhang, and A. P. Alivisatos, “Hybrid lithographic and DNA-directed assembly of a configurable plasmonic metamaterial that exhibits electromagnetically induced transparency,” Nano Lett. 18(2), 859–864 (2018).
[Crossref] [PubMed]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Han, B.

Han, J.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

Hao, S.

Y. Song, H. Zhan, C. Jiang, K. Zhao, J. Zhu, R. Chen, S. Hao, and W. Yue, “High water content prediction of oil–water emulsions based on terahertz electromagnetically induced transparency-like metamaterial,” ACS Omega 4(1), 1810–1815 (2019).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

He, J.

He, X. J.

L. Zhu, X. Zhao, L. Dong, J. Guo, X. J. He, and Z. M. Yao, “Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators,” RSC Advances 8(48), 27342–27348 (2018).
[Crossref]

Hentschel, M.

D. B. Litt, M. R. Jones, M. Hentschel, Y. Wang, S. Yang, H. D. Ha, X. Zhang, and A. P. Alivisatos, “Hybrid lithographic and DNA-directed assembly of a configurable plasmonic metamaterial that exhibits electromagnetically induced transparency,” Nano Lett. 18(2), 859–864 (2018).
[Crossref] [PubMed]

Hong, Z.

Hu, S.

Y. Tian, S. Hu, X. Huang, Z. Yu, H. Lin, and H. Yang, “Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing,” J. Phys. D Appl. Phys. 50(40), 405105 (2017).
[Crossref]

Huang, X.

Y. Tian, S. Hu, X. Huang, Z. Yu, H. Lin, and H. Yang, “Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing,” J. Phys. D Appl. Phys. 50(40), 405105 (2017).
[Crossref]

Imamogdlu, A.

Imamolu, A.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Jiang, C.

Y. Song, H. Zhan, C. Jiang, K. Zhao, J. Zhu, R. Chen, S. Hao, and W. Yue, “High water content prediction of oil–water emulsions based on terahertz electromagnetically induced transparency-like metamaterial,” ACS Omega 4(1), 1810–1815 (2019).
[Crossref]

Jing, X.

Jones, M. R.

D. B. Litt, M. R. Jones, M. Hentschel, Y. Wang, S. Yang, H. D. Ha, X. Zhang, and A. P. Alivisatos, “Hybrid lithographic and DNA-directed assembly of a configurable plasmonic metamaterial that exhibits electromagnetically induced transparency,” Nano Lett. 18(2), 859–864 (2018).
[Crossref] [PubMed]

Karl, N.

G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Keiser, G. R.

G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Kim, S. M.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Kitano, M.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 87(16), 161110 (2013).
[Crossref]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Kumar, G.

Kung, P.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Kwong, D. L.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lederer, F.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
[Crossref]

Li, S.

Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99(4), 041104 (2019).
[Crossref]

Li, X.

Li, Z.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liang, E.

Lin, H.

Y. Tian, S. Hu, X. Huang, Z. Yu, H. Lin, and H. Yang, “Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing,” J. Phys. D Appl. Phys. 50(40), 405105 (2017).
[Crossref]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Litt, D. B.

D. B. Litt, M. R. Jones, M. Hentschel, Y. Wang, S. Yang, H. D. Ha, X. Zhang, and A. P. Alivisatos, “Hybrid lithographic and DNA-directed assembly of a configurable plasmonic metamaterial that exhibits electromagnetically induced transparency,” Nano Lett. 18(2), 859–864 (2018).
[Crossref] [PubMed]

Liu, M.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, P. Q.

G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Liu, S.

Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99(4), 041104 (2019).
[Crossref]

Liu, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liu, X.

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Liu, Z.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Lu, H.

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Maas, R.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Manjappa, M.

Mao, D.

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

Mathews, J.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Mekonen, S. M.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Meng, F. Y.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. Fu, K. Zhang, and G. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Mittleman, D. M.

G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Nakanishi, T.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 87(16), 161110 (2013).
[Crossref]

Nepal, D.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Novikova, I.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Otani, T.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 87(16), 161110 (2013).
[Crossref]

Ouyang, C.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

Pachter, R.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Padilla, W. J.

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Park, K.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Parvinnezhad Hokmabadi, M.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Philip, E.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Podzorov, A.

Polman, A.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Qiu, K.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Reno, J. L.

G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Rivera, E.

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Rockstuhl, C.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
[Crossref]

Rosenberger, A.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Sarangan, A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Sarma, A. K.

Savinov, V.

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 89(20), 205112 (2014).
[Crossref]

Schilling, J.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

Schmidt, H.

Searles, T. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Singh, R.

M. Manjappa, S. P. Turaga, Y. K. Srivastava, A. A. Bettiol, and R. Singh, “Magnetic annihilation of the dark mode in a strongly coupled bright-dark terahertz metamaterial,” Opt. Lett. 42(11), 2106–2109 (2017).
[Crossref] [PubMed]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
[Crossref]

Smith, D. D.

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Song, Y.

Y. Song, H. Zhan, C. Jiang, K. Zhao, J. Zhu, R. Chen, S. Hao, and W. Yue, “High water content prediction of oil–water emulsions based on terahertz electromagnetically induced transparency-like metamaterial,” ACS Omega 4(1), 1810–1815 (2019).
[Crossref]

Srivastava, Y. K.

Staude, I.

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Sui, C.

Tamayama, Y.

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 87(16), 161110 (2013).
[Crossref]

Taylor, A. J.

G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Tian, Y.

Y. Tian, S. Hu, X. Huang, Z. Yu, H. Lin, and H. Yang, “Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing,” J. Phys. D Appl. Phys. 50(40), 405105 (2017).
[Crossref]

Tian, Z.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

Tulloss, C.

G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Turaga, S. P.

Vaia, R. A.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

van de Groep, J.

Walsworth, R. L.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Wang, J.

Wang, T.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Wang, Y.

D. B. Litt, M. R. Jones, M. Hentschel, Y. Wang, S. Yang, H. D. Ha, X. Zhang, and A. P. Alivisatos, “Hybrid lithographic and DNA-directed assembly of a configurable plasmonic metamaterial that exhibits electromagnetically induced transparency,” Nano Lett. 18(2), 859–864 (2018).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wong, C. W.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Wu, Q.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. Fu, K. Zhang, and G. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Xiao, M.

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

Xiao, S.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xiao, Y.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Xu, C.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xu, Q.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Xu, Z.

Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99(4), 041104 (2019).
[Crossref]

Yahiaoui, R.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Yan, X.

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Yang, G.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. Fu, K. Zhang, and G. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Yang, H.

Y. Tian, S. Hu, X. Huang, Z. Yu, H. Lin, and H. Yang, “Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing,” J. Phys. D Appl. Phys. 50(40), 405105 (2017).
[Crossref]

Yang, Q.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

Yang, S.

D. B. Litt, M. R. Jones, M. Hentschel, Y. Wang, S. Yang, H. D. Ha, X. Zhang, and A. P. Alivisatos, “Hybrid lithographic and DNA-directed assembly of a configurable plasmonic metamaterial that exhibits electromagnetically induced transparency,” Nano Lett. 18(2), 859–864 (2018).
[Crossref] [PubMed]

Yang, X.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Yao, Z. M.

L. Zhu, X. Zhao, L. Dong, J. Guo, X. J. He, and Z. M. Yao, “Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators,” RSC Advances 8(48), 27342–27348 (2018).
[Crossref]

Yin, X.

Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99(4), 041104 (2019).
[Crossref]

Yu, M.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Yu, Z.

Y. Tian, S. Hu, X. Huang, Z. Yu, H. Lin, and H. Yang, “Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing,” J. Phys. D Appl. Phys. 50(40), 405105 (2017).
[Crossref]

Yue, W.

Y. Song, H. Zhan, C. Jiang, K. Zhao, J. Zhu, R. Chen, S. Hao, and W. Yue, “High water content prediction of oil–water emulsions based on terahertz electromagnetically induced transparency-like metamaterial,” ACS Omega 4(1), 1810–1815 (2019).
[Crossref]

Zhan, H.

Y. Song, H. Zhan, C. Jiang, K. Zhao, J. Zhu, R. Chen, S. Hao, and W. Yue, “High water content prediction of oil–water emulsions based on terahertz electromagnetically induced transparency-like metamaterial,” ACS Omega 4(1), 1810–1815 (2019).
[Crossref]

Zhang, F.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Zhang, H.

Zhang, K.

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. Fu, K. Zhang, and G. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
[Crossref]

Zhang, X.

D. B. Litt, M. R. Jones, M. Hentschel, Y. Wang, S. Yang, H. D. Ha, X. Zhang, and A. P. Alivisatos, “Hybrid lithographic and DNA-directed assembly of a configurable plasmonic metamaterial that exhibits electromagnetically induced transparency,” Nano Lett. 18(2), 859–864 (2018).
[Crossref] [PubMed]

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Y.

H. Chen, H. Zhang, M. Liu, Y. Zhao, X. Guo, and Y. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

Zhao, K.

Y. Song, H. Zhan, C. Jiang, K. Zhao, J. Zhu, R. Chen, S. Hao, and W. Yue, “High water content prediction of oil–water emulsions based on terahertz electromagnetically induced transparency-like metamaterial,” ACS Omega 4(1), 1810–1815 (2019).
[Crossref]

Zhao, Q.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Zhao, X.

L. Zhu, X. Zhao, L. Dong, J. Guo, X. J. He, and Z. M. Yao, “Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators,” RSC Advances 8(48), 27342–27348 (2018).
[Crossref]

Zhao, Y.

Zheludev, N. I.

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 89(20), 205112 (2014).
[Crossref]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Zhou, J.

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

Zhu, J.

Y. Song, H. Zhan, C. Jiang, K. Zhao, J. Zhu, R. Chen, S. Hao, and W. Yue, “High water content prediction of oil–water emulsions based on terahertz electromagnetically induced transparency-like metamaterial,” ACS Omega 4(1), 1810–1815 (2019).
[Crossref]

Zhu, L.

L. Zhu, X. Zhao, L. Dong, J. Guo, X. J. He, and Z. M. Yao, “Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators,” RSC Advances 8(48), 27342–27348 (2018).
[Crossref]

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. Fu, K. Zhang, and G. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

ACS Omega (1)

Y. Song, H. Zhan, C. Jiang, K. Zhao, J. Zhu, R. Chen, S. Hao, and W. Yue, “High water content prediction of oil–water emulsions based on terahertz electromagnetically induced transparency-like metamaterial,” ACS Omega 4(1), 1810–1815 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, and J. Zhou, “Mechanically stretchable and tunable metamaterial absorber,” Appl. Phys. Lett. 106(9), 091907 (2015).
[Crossref]

G. R. Keiser, N. Karl, P. Q. Liu, C. Tulloss, H. T. Chen, A. J. Taylor, I. Brener, J. L. Reno, and D. M. Mittleman, “Nonlinear terahertz metamaterials with active electrical control,” Appl. Phys. Lett. 111(12), 121101 (2017).
[Crossref]

Carbon (1)

S. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

J. Appl. Phys. (1)

L. Zhu, F. Y. Meng, L. Dong, Q. Wu, B. J. Che, J. Gao, J. Fu, K. Zhang, and G. Yang, “Magnetic metamaterial analog of electromagnetically induced transparency and absorption,” J. Appl. Phys. 117(17), 17D146 (2015).
[Crossref]

J. Phys. D Appl. Phys. (2)

M. Liu, Q. Yang, Q. Xu, X. Chen, Z. Tian, J. Gu, C. Ouyang, X. Zhang, J. Han, and W. Zhang, “Tailoring mode interference in plasmon-induced transparency metamaterials,” J. Phys. D Appl. Phys. 51(17), 174005 (2018).
[Crossref]

Y. Tian, S. Hu, X. Huang, Z. Yu, H. Lin, and H. Yang, “Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing,” J. Phys. D Appl. Phys. 50(40), 405105 (2017).
[Crossref]

Laser Photonics Rev. (1)

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photonics Rev. 6(3), 333–353 (2012).
[Crossref]

Nano Lett. (2)

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, and R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13(12), 6287–6291 (2013).
[Crossref] [PubMed]

D. B. Litt, M. R. Jones, M. Hentschel, Y. Wang, S. Yang, H. D. Ha, X. Zhang, and A. P. Alivisatos, “Hybrid lithographic and DNA-directed assembly of a configurable plasmonic metamaterial that exhibits electromagnetically induced transparency,” Nano Lett. 18(2), 859–864 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

I. Staude and J. Schilling, “Metamaterial-inspired silicon nanophotonics,” Nat. Photonics 11(5), 274–284 (2017).
[Crossref]

H. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (2)

Optica (1)

Phys. Rev. A (2)

H. Lu, X. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012).
[Crossref]

D. D. Smith, H. Chang, K. A. Fuller, A. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[Crossref]

Phys. Rev. B (2)

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Z. Xu, S. Liu, S. Li, and X. Yin, “Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states,” Phys. Rev. B 99(4), 041104 (2019).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (4)

V. Savinov, V. A. Fedotov, and N. I. Zheludev, “Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials,” Phys. Rev. B Condens. Matter Mater. Phys. 89(20), 205112 (2014).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
[Crossref]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B Condens. Matter Mater. Phys. 79(8), 085111 (2009).
[Crossref]

T. Nakanishi, T. Otani, Y. Tamayama, and M. Kitano, “Storage of electromagnetic waves in a metamaterial that mimics electromagnetically induced transparency,” Phys. Rev. B Condens. Matter Mater. Phys. 87(16), 161110 (2013).
[Crossref]

Phys. Rev. Lett. (7)

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99(12), 123603 (2007).
[Crossref] [PubMed]

RSC Advances (1)

L. Zhu, X. Zhao, L. Dong, J. Guo, X. J. He, and Z. M. Yao, “Polarization-independent and angle-insensitive electromagnetically induced transparent (EIT) metamaterial based on bi-air-hole dielectric resonators,” RSC Advances 8(48), 27342–27348 (2018).
[Crossref]

Sci. Rep. (1)

M. Parvinnezhad Hokmabadi, E. Philip, E. Rivera, P. Kung, and S. M. Kim, “Plasmon-induced transparency by hybridizing concentric-twisted double split ring resonators,” Sci. Rep. 5(1), 15735 (2015).
[Crossref] [PubMed]

Other (1)

A. E. Siegman, G. Nemes, and J. Serna, “How to (maybe) measure laser beam quality,” in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues (Optical Society of America, 1998), p. MQ1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Complex refractive index measured in the terahertz regime of (a) – (b) intrinsic silicon and (c) – (d) PDMS.
Fig. 2
Fig. 2 (a) Schematic of the all-dielectric metamaterial composed of two asymmetric split ring resonators. Inset: top view of the unit cell. All dimensions shown here are h = 100 μ m , t = 30 μ m , P x = 400 μ m , P y = 400 μ m , R 1 = 75 μ m , R 2 = 75 μ m , α = 160 ° , and β = 120 ° . (b) Microscopy of the fabricated sample. Bars refer to 500μm. (c) Transmission spectra and (d) corresponding group delay of the proposed metamaterial.
Fig. 3
Fig. 3 (a) Simulated transmission curves of Short SRR (blue solid line), long SRR (red solid line), and a-SRR (black solid line) metamaterials. The dashed magenta line refers the analytically fitted data using the two-oscillator model [Eq. (3)]. (b) Scattered power of the five major multipoles of the proposed metamaterial, including electric dipole (P), magnetic dipole (M), electric quadrupole Qe, and magnetic quadrupole Qm. Spatial distribution of (c)-(e) electric field and (f)-(h) magnetic field in the x-0-z plane bisecting the metamaterial at dip 1 (0.77THz), peak (0.78THz) and dip 2 (0.80THz), respectively.
Fig. 4
Fig. 4 Vector plots of magnetic fields at (a) Dip 1 0.77THz, (b) EIT peak 0.78THz, (c) Dip 2 0.80THz and (d) 0.776THz where the intensity of magnetic field is magnified by 5 times.
Fig. 5
Fig. 5 (a) Numerically simulated (solid black lines) and analytically modeled (dashed blue lines) transmission spectra for the proposed metamaterial with different spacing between two SRRs. (b) Local H-field maps for the unit cell with varying SRRs spacing. (c) Schematic showing the variation of the SRRs spacing. The dashed lines show original positions of subresonators in the proposed metamaterial with d = 150 μ m . (d) Extracted coupling coefficient and Q factor as a function of the SRRs spacing.
Fig. 6
Fig. 6 (a) Numerically simulated (solid black lines) and analytically modeled (dashed blue lines) transmission spectra for the proposed metamaterial with different lengths of short-arc-subresonator. (b) Local H-field maps for the unit cell with varying length of short-arc-subresonator. (c) Schematic showing the variation of the subresonator spacing. (d) Extracted coupling coefficient and Q factor as a function of length of short-arc-subresonator.
Fig. 7
Fig. 7 (a) Simulated transmittance spectra of the proposed metamaterial when the background refractive indices varying from 1.0 to 1.4. (b) The spectral position of the EIT peak as a function of the background refractive index. The linear fit (solid black line) reveals the sensitivity as S = 231 G H z / R I U .
Fig. 8
Fig. 8 (a) Simulated transmission spectrum of the EIT metamaterial with an optimized structure. Its structural parameters are as follows: h = 100 μ m , t = 30 μ m , P x = 320 μ m , P y = 320 μ m , R 1 = 60 μ m , R 2 = 40 μ m , α = 160 ° , and β = 140 ° . (b) Simulated transmittance spectra of the optimized metamaterial when the background refractive indices varying from 1.0 to 1.4. Inset: The spectral position of the EIT peak as a function of the background refractive index.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ω 2 = 4 ( ω ω 0 ) 2 T ( ω ) 2 d ω T ( ω ) 2 d ω ,
x ¨ a ( t ) + γ a x ˙ a ( t ) + ω a x a ( t ) + Ω 2 x b ( t ) = c a E x ¨ b ( t ) + γ b x ˙ b ( t ) + ω b x b ( t ) + Ω 2 x a ( t ) = c b E
χ e f f = P ε 0 E = c a x a + c b x b ε 0 E = K × [ c a 2 ( ω 2 ω b 2 ) + c b 2 ( ω 2 ω a 2 ) + c a c b Ω Ω 4 ( ω 2 ω a 2 + i ω γ a ) ( ω 2 ω b 2 + i ω γ b ) i ω c a 2 γ b + c b 2 γ a Ω 4 ( ω 2 ω a 2 + i ω γ a ) ( ω 2 ω b 2 + i ω γ b ) ]

Metrics