Abstract

A coupling system is proposed to active control of strong exciton–plasmon–exciton coupling, which consists of a silver nanoprism separated from a monolayer WS2 by J-aggregates. The scattering spectrum of the hybrid system calculated by the finite-difference time-domain (FDTD) method is well reproduced by the coupled oscillator model theory. The calculation results show that strong couplings among WS2 excitons, J-aggregate excitons, and localized surface plasmon resonances (LSPRs) are achieved in the hybrid nanostructure, and result in three plexciton branches. We further analyze the exciton–plasmon–exciton coupling behaviors and obtain the weighting efficiencies of the original modes in three plexciton branches. The strong couplings between two different excitons and LSPRs can be active manipulated by tuning the temperature or the concentration of J-aggregates. The proposed systems make up a simple platform for the dynamic control of exciton–plasmon–exciton couplings and have potential applications in optical modulators at the nanoscale.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS2

Hongju Li, Meng Qin, Yongze Ren, and Jigang Hu
Opt. Express 27(16) 22951-22959 (2019)

Direct observation of strong light-exciton coupling in thin WS2 flakes

Qi Wang, Liaoxin Sun, Bo Zhang, Changqing Chen, Xuechu Shen, and Wei Lu
Opt. Express 24(7) 7151-7157 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
    [Crossref] [PubMed]
  2. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
    [Crossref] [PubMed]
  3. T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
    [Crossref] [PubMed]
  4. M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
    [Crossref] [PubMed]
  5. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
    [Crossref]
  6. W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
    [Crossref] [PubMed]
  7. D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light–matter interactions,” ACS Photonics 5(1), 24–42 (2018).
    [Crossref]
  8. J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2– plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
    [Crossref] [PubMed]
  9. S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegscheider, and A. Imamoglu, “Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas,” Science 346(6207), 332–335 (2014).
    [Crossref] [PubMed]
  10. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref] [PubMed]
  11. P. Vasa and C. Lienau, “Strong light–matter interaction in quantum emitter/metal hybrid nanostructures,” ACS Photonics 5(1), 2–23 (2018).
    [Crossref]
  12. J. Flick, N. Rivera, and P. Narang, “Strong light-matter coupling in quantum chemistry and quantum photonics,” Nanophotonics 7(9), 1479–1501 (2018).
    [Crossref]
  13. K. L. Koshelev, S. K. Sychev, Z. F. Sadrieva, A. A. Bogdanov, and I. V. Iorsh, “Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum,” Phys. Rev. B 98(16), 161113 (2018).
    [Crossref]
  14. J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. (2019).
  15. D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-X. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photonics 10(4), 703–756 (2018).
    [Crossref]
  16. D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
    [Crossref] [PubMed]
  17. R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
    [Crossref] [PubMed]
  18. Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
    [Crossref] [PubMed]
  19. P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
    [Crossref] [PubMed]
  20. X. Han, K. Wang, X. Xing, M. Wang, and P. Lu, “Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature,” ACS Photonics 5(10), 3970–3976 (2018).
    [Crossref]
  21. M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
    [Crossref] [PubMed]
  22. A. Bisht, J. Cuadra, M. Wersäll, A. Canales, T. J. Antosiewicz, and T. Shegai, “Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems,” Nano Lett. 19(1), 189–196 (2019).
    [Crossref] [PubMed]
  23. B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
    [Crossref] [PubMed]
  24. W. Liu, B. Lee, C. H. Naylor, H.-S. Ee, J. Park, A. T. Johnson, and R. Agarwal, “Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
    [Crossref] [PubMed]
  25. J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
    [Crossref] [PubMed]
  26. M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
    [Crossref] [PubMed]
  27. P. Peng, Y. C. Liu, D. Xu, Q. T. Cao, G. Lu, Q. Gong, and Y. F. Xiao, “Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances,” Phys. Rev. Lett. 119(23), 233901 (2017).
    [Crossref] [PubMed]
  28. T. Song, Z. Chen, W. Zhang, L. Lin, Y. Bao, L. Wu, and Z. K. Zhou, “Compounding Plasmon-Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting,” Nanomaterials (Basel) 9(4), 564(2019).
    [Crossref]
  29. S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).
  30. Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
    [Crossref]
  31. K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe(2).,” Phys. Rev. Lett. 113(2), 026803 (2014).
    [Crossref] [PubMed]
  32. M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
    [Crossref] [PubMed]
  33. L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8(1), 14097 (2017).
    [Crossref] [PubMed]
  34. I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
    [Crossref]
  35. J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
    [Crossref] [PubMed]
  36. P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
    [Crossref] [PubMed]
  37. P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
    [Crossref]
  38. T. Kobayashi, J-aggregates (World Scientific, 2012).
  39. S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235402 (2012).
    [Crossref]
  40. I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chern. Phys. 77(12), 6289–6295 (1982).
    [Crossref]
  41. D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
    [Crossref] [PubMed]
  42. K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
    [Crossref]
  43. M. Balasubrahmaniyam, D. Kar, P. Sen, P. B. Bisht, and S. Kasiviswanathan, “Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling,” Appl. Phys. Lett. 110(17), 171101 (2017).
    [Crossref]
  44. H. Yang, J. Yao, X.-W. Wu, D.-J. Wu, and X.-J. Liu, “Strong Plasmon–Exciton–Plasmon Multimode Couplings in Three-Layered Ag–J-Aggregates–Ag Nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
    [Crossref]
  45. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  46. S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
    [Crossref] [PubMed]
  47. A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
    [Crossref] [PubMed]
  48. S. Zhang, H. Zhang, T. Xu, W. Wang, Y. Zhu, D. Li, Z. Zhang, J. Yi, and W. Wang, “Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves,” Phys. Rev. B 97(23), 235401 (2018).
    [Crossref]
  49. N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
    [Crossref] [PubMed]
  50. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
    [Crossref] [PubMed]
  51. M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
    [Crossref] [PubMed]
  52. K. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
    [Crossref]
  53. X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18(23), 23633–23645 (2010).
    [Crossref] [PubMed]
  54. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

2019 (2)

A. Bisht, J. Cuadra, M. Wersäll, A. Canales, T. J. Antosiewicz, and T. Shegai, “Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems,” Nano Lett. 19(1), 189–196 (2019).
[Crossref] [PubMed]

T. Song, Z. Chen, W. Zhang, L. Lin, Y. Bao, L. Wu, and Z. K. Zhou, “Compounding Plasmon-Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting,” Nanomaterials (Basel) 9(4), 564(2019).
[Crossref]

2018 (10)

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref] [PubMed]

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light–matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2– plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref] [PubMed]

P. Vasa and C. Lienau, “Strong light–matter interaction in quantum emitter/metal hybrid nanostructures,” ACS Photonics 5(1), 2–23 (2018).
[Crossref]

J. Flick, N. Rivera, and P. Narang, “Strong light-matter coupling in quantum chemistry and quantum photonics,” Nanophotonics 7(9), 1479–1501 (2018).
[Crossref]

K. L. Koshelev, S. K. Sychev, Z. F. Sadrieva, A. A. Bogdanov, and I. V. Iorsh, “Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum,” Phys. Rev. B 98(16), 161113 (2018).
[Crossref]

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-X. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photonics 10(4), 703–756 (2018).
[Crossref]

X. Han, K. Wang, X. Xing, M. Wang, and P. Lu, “Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature,” ACS Photonics 5(10), 3970–3976 (2018).
[Crossref]

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref] [PubMed]

S. Zhang, H. Zhang, T. Xu, W. Wang, Y. Zhu, D. Li, Z. Zhang, J. Yi, and W. Wang, “Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves,” Phys. Rev. B 97(23), 235401 (2018).
[Crossref]

2017 (10)

M. Balasubrahmaniyam, D. Kar, P. Sen, P. B. Bisht, and S. Kasiviswanathan, “Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling,” Appl. Phys. Lett. 110(17), 171101 (2017).
[Crossref]

H. Yang, J. Yao, X.-W. Wu, D.-J. Wu, and X.-J. Liu, “Strong Plasmon–Exciton–Plasmon Multimode Couplings in Three-Layered Ag–J-Aggregates–Ag Nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref] [PubMed]

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref] [PubMed]

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

P. Peng, Y. C. Liu, D. Xu, Q. T. Cao, G. Lu, Q. Gong, and Y. F. Xiao, “Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances,” Phys. Rev. Lett. 119(23), 233901 (2017).
[Crossref] [PubMed]

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8(1), 14097 (2017).
[Crossref] [PubMed]

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

2016 (3)

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

W. Liu, B. Lee, C. H. Naylor, H.-S. Ee, J. Park, A. T. Johnson, and R. Agarwal, “Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref] [PubMed]

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

2015 (2)

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

2014 (7)

S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegscheider, and A. Imamoglu, “Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas,” Science 346(6207), 332–335 (2014).
[Crossref] [PubMed]

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe(2).,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

2013 (3)

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

2012 (2)

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235402 (2012).
[Crossref]

2010 (3)

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18(23), 23633–23645 (2010).
[Crossref] [PubMed]

2008 (2)

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

2006 (1)

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

2004 (1)

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[Crossref] [PubMed]

2003 (1)

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

1991 (1)

K. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

1982 (1)

I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chern. Phys. 77(12), 6289–6295 (1982).
[Crossref]

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdelsalam, M. E.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Abid, I.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Agarwal, R.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

W. Liu, B. Lee, C. H. Naylor, H.-S. Ee, J. Park, A. T. Johnson, and R. Agarwal, “Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref] [PubMed]

Aizpurua, J.

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. (2019).

Alexeev, E. M.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

Antosiewicz, T. J.

A. Bisht, J. Cuadra, M. Wersäll, A. Canales, T. J. Antosiewicz, and T. Shegai, “Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems,” Nano Lett. 19(1), 189–196 (2019).
[Crossref] [PubMed]

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref] [PubMed]

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light–matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2– plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref] [PubMed]

Arakawa, Y.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Arita, M.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Ates, S.

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235402 (2012).
[Crossref]

Avendano, C.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Aydinli, A.

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235402 (2012).
[Crossref]

Azzini, S.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

Babinec, T. M.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Badolato, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Balasubrahmaniyam, M.

M. Balasubrahmaniyam, D. Kar, P. Sen, P. B. Bisht, and S. Kasiviswanathan, “Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling,” Appl. Phys. Lett. 110(17), 171101 (2017).
[Crossref]

Balci, S.

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235402 (2012).
[Crossref]

Bao, Y.

T. Song, Z. Chen, W. Zhang, L. Lin, Y. Bao, L. Wu, and Z. K. Zhou, “Compounding Plasmon-Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting,” Nanomaterials (Basel) 9(4), 564(2019).
[Crossref]

Baranov, D. G.

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2– plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref] [PubMed]

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light–matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref] [PubMed]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

Bartlett, P. N.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Baumberg, J. J.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. (2019).

Beck, K. M.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

Berger, J. S.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

Bisht, A.

A. Bisht, J. Cuadra, M. Wersäll, A. Canales, T. J. Antosiewicz, and T. Shegai, “Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems,” Nano Lett. 19(1), 189–196 (2019).
[Crossref] [PubMed]

Bisht, P. B.

M. Balasubrahmaniyam, D. Kar, P. Sen, P. B. Bisht, and S. Kasiviswanathan, “Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling,” Appl. Phys. Lett. 110(17), 171101 (2017).
[Crossref]

Blais, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[Crossref] [PubMed]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

Bogdanov, A. A.

K. L. Koshelev, S. K. Sychev, Z. F. Sadrieva, A. A. Bogdanov, and I. V. Iorsh, “Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum,” Phys. Rev. B 98(16), 161113 (2018).
[Crossref]

Bohloul, A.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

Bradley, A. J.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Brillante, A.

I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chern. Phys. 77(12), 6289–6295 (1982).
[Crossref]

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

Bücker, R.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

Canales, A.

A. Bisht, J. Cuadra, M. Wersäll, A. Canales, T. J. Antosiewicz, and T. Shegai, “Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems,” Nano Lett. 19(1), 189–196 (2019).
[Crossref] [PubMed]

Cao, Q. T.

P. Peng, Y. C. Liu, D. Xu, Q. T. Cao, G. Lu, Q. Gong, and Y. F. Xiao, “Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances,” Phys. Rev. Lett. 119(23), 233901 (2017).
[Crossref] [PubMed]

Carnegie, C.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

Cerullo, G.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Chen, H.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref] [PubMed]

Chen, J.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

Chen, W.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

Chen, X.

K. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

Chen, Z.

T. Song, Z. Chen, W. Zhang, L. Lin, Y. Bao, L. Wu, and Z. K. Zhou, “Compounding Plasmon-Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting,” Nanomaterials (Basel) 9(4), 564(2019).
[Crossref]

Chenet, D. A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Chernikov, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Chervy, T.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

Chikkaraddy, R.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

Choi, K.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cirmi, G.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Clark, C.

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

Coles, D. M.

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8(1), 14097 (2017).
[Crossref] [PubMed]

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

Crommie, M. F.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Cuadra, J.

A. Bisht, J. Cuadra, M. Wersäll, A. Canales, T. J. Antosiewicz, and T. Shegai, “Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems,” Nano Lett. 19(1), 189–196 (2019).
[Crossref] [PubMed]

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref] [PubMed]

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light–matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2– plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref] [PubMed]

da Jornada, F. H.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

de Nijs, B.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

de Pury, A. C.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

De Re, E.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Deacon, W.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

Deng, Q.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref] [PubMed]

Deng, S.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

Deng, Z.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

Ebbesen, T. W.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

Ee, H.-S.

W. Liu, B. Lee, C. H. Naylor, H.-S. Ee, J. Park, A. T. Johnson, and R. Agarwal, “Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref] [PubMed]

Faelt, S.

S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegscheider, and A. Imamoglu, “Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas,” Science 346(6207), 332–335 (2014).
[Crossref] [PubMed]

Fan, R.-H.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Flatten, L. C.

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8(1), 14097 (2017).
[Crossref] [PubMed]

Flick, J.

J. Flick, N. Rivera, and P. Narang, “Strong light-matter coupling in quantum chemistry and quantum photonics,” Nanophotonics 7(9), 1479–1501 (2018).
[Crossref]

Fofang, N. T.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Frunzio, L.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[Crossref] [PubMed]

Genet, C.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

Gentile, M. J.

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

George, J.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

Girvin, S. M.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[Crossref] [PubMed]

Gong, Q.

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-X. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photonics 10(4), 703–756 (2018).
[Crossref]

P. Peng, Y. C. Liu, D. Xu, Q. T. Cao, G. Lu, Q. Gong, and Y. F. Xiao, “Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances,” Phys. Rev. Lett. 119(23), 233901 (2017).
[Crossref] [PubMed]

Gray, S. K.

Große, C.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

Gullans, M.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

Guo, G.-C.

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-X. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photonics 10(4), 703–756 (2018).
[Crossref]

Halas, N. J.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Han, X.

X. Han, K. Wang, X. Xing, M. Wang, and P. Lu, “Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature,” ACS Photonics 5(10), 3970–3976 (2018).
[Crossref]

Haupt, F.

S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegscheider, and A. Imamoglu, “Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas,” Science 346(6207), 332–335 (2014).
[Crossref] [PubMed]

Hausmann, B. J.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

He, K.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe(2).,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

He, Z.

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8(1), 14097 (2017).
[Crossref] [PubMed]

Heinz, T. F.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Hemmer, P. R.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Hennessy, K. J.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Hill, H. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Holmes, M. J.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Hone, J.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Hu, E. L.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Hu, H.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref] [PubMed]

Huang, R.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[Crossref] [PubMed]

Hussain, Z.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Hutchison, J.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

Hutchison, J. A.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

Imamoglu, A.

S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegscheider, and A. Imamoglu, “Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas,” Science 346(6207), 332–335 (2014).
[Crossref] [PubMed]

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Iorsh, I. V.

K. L. Koshelev, S. K. Sychev, Z. F. Sadrieva, A. A. Bogdanov, and I. V. Iorsh, “Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum,” Phys. Rev. B 98(16), 161113 (2018).
[Crossref]

Johnson, A. T.

W. Liu, B. Lee, C. H. Naylor, H.-S. Ee, J. Park, A. T. Johnson, and R. Agarwal, “Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref] [PubMed]

Johnson, A. T. C.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

Johnson, E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kako, S.

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

Kang, M.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref] [PubMed]

Kar, D.

M. Balasubrahmaniyam, D. Kar, P. Sen, P. B. Bisht, and S. Kasiviswanathan, “Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling,” Appl. Phys. Lett. 110(17), 171101 (2017).
[Crossref]

Karademir, E.

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235402 (2012).
[Crossref]

Kasiviswanathan, S.

M. Balasubrahmaniyam, D. Kar, P. Sen, P. B. Bisht, and S. Kasiviswanathan, “Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling,” Appl. Phys. Lett. 110(17), 171101 (2017).
[Crossref]

Kelf, T. A.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Khan, M.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Kihm, J. E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

Kim, D. S.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

Kimble, H. J.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

Kleemann, M. E.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

Kocabas, C.

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235402 (2012).
[Crossref]

Kos, D.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

Koshelev, K. L.

K. L. Koshelev, S. K. Sychev, Z. F. Sadrieva, A. A. Bogdanov, and I. V. Iorsh, “Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum,” Phys. Rev. B 98(16), 161113 (2018).
[Crossref]

Kumar, N.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe(2).,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

Kumar, S.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[Crossref] [PubMed]

Kunets, V.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

Lagoudakis, P. G.

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

Lammers, M.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

Large, N.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

Lee, B.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

W. Liu, B. Lee, C. H. Naylor, H.-S. Ee, J. Park, A. T. Johnson, and R. Agarwal, “Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref] [PubMed]

Leipold, D.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Li, D.

S. Zhang, H. Zhang, T. Xu, W. Wang, Y. Zhu, D. Li, Z. Zhang, J. Yi, and W. Wang, “Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves,” Phys. Rev. B 97(23), 235401 (2018).
[Crossref]

Li, S.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

Li, Y.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Lidzey, D. G.

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8(1), 14097 (2017).
[Crossref] [PubMed]

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

Lienau, C.

P. Vasa and C. Lienau, “Strong light–matter interaction in quantum emitter/metal hybrid nanostructures,” ACS Photonics 5(1), 2–23 (2018).
[Crossref]

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

Lin, L.

T. Song, Z. Chen, W. Zhang, L. Lin, Y. Bao, L. Wu, and Z. K. Zhou, “Compounding Plasmon-Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting,” Nanomaterials (Basel) 9(4), 564(2019).
[Crossref]

Liu, F.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

Liu, G.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref] [PubMed]

Liu, R.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref] [PubMed]

Liu, W.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

W. Liu, B. Lee, C. H. Naylor, H.-S. Ee, J. Park, A. T. Johnson, and R. Agarwal, “Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref] [PubMed]

Liu, X.-J.

H. Yang, J. Yao, X.-W. Wu, D.-J. Wu, and X.-J. Liu, “Strong Plasmon–Exciton–Plasmon Multimode Couplings in Three-Layered Ag–J-Aggregates–Ag Nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

Liu, Y. C.

P. Peng, Y. C. Liu, D. Xu, Q. T. Cao, G. Lu, Q. Gong, and Y. F. Xiao, “Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances,” Phys. Rev. Lett. 119(23), 233901 (2017).
[Crossref] [PubMed]

Loncar, M.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Lou, J.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Louie, S. G.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Lu, G.

P. Peng, Y. C. Liu, D. Xu, Q. T. Cao, G. Lu, Q. Gong, and Y. F. Xiao, “Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances,” Phys. Rev. Lett. 119(23), 233901 (2017).
[Crossref] [PubMed]

Lu, P.

X. Han, K. Wang, X. Xing, M. Wang, and P. Lu, “Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature,” ACS Photonics 5(10), 3970–3976 (2018).
[Crossref]

Lukin, M. D.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

Maiuri, M.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

Majer, J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[Crossref] [PubMed]

Mak, K. F.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe(2).,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

Malek, S. C.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

Manzoni, C.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

Maze, J. R.

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Mazur, Y. I.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

Mertens, J.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

Michetti, P.

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

Mikkelsen, M. H.

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. (2019).

Mirin, N. A.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Mlayah, A.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Mo, S.-K.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Möbius, D.

I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chern. Phys. 77(12), 6289–6295 (1982).
[Crossref]

Munkhbat, B.

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref] [PubMed]

Najmaei, S.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Narang, P.

J. Flick, N. Rivera, and P. Narang, “Strong light-matter coupling in quantum chemistry and quantum photonics,” Nanophotonics 7(9), 1479–1501 (2018).
[Crossref]

Naylor, C. H.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

W. Liu, B. Lee, C. H. Naylor, H.-S. Ee, J. Park, A. T. Johnson, and R. Agarwal, “Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref] [PubMed]

Neumann, O.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Nordlander, P.

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref] [PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Núñez-Sánchez, S.

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

O’Donnell, K.

K. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

Olsson, E.

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref] [PubMed]

Orgiu, E.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

Park, J.

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

W. Liu, B. Lee, C. H. Naylor, H.-S. Ee, J. Park, A. T. Johnson, and R. Agarwal, “Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref] [PubMed]

Park, T.-H.

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Péchou, R.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Pelton, M.

Peng, P.

P. Peng, Y. C. Liu, D. Xu, Q. T. Cao, G. Lu, Q. Gong, and Y. F. Xiao, “Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances,” Phys. Rev. Lett. 119(23), 233901 (2017).
[Crossref] [PubMed]

Peng, R.-W.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Png, C. E.

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-X. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photonics 10(4), 703–756 (2018).
[Crossref]

Pockrand, I.

I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chern. Phys. 77(12), 6289–6295 (1982).
[Crossref]

Pomraenke, R.

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

Pupillo, G.

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

Qiu, D. Y.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Reinhard, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Ren, X.-F.

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-X. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photonics 10(4), 703–756 (2018).
[Crossref]

Rigosi, A.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Rivera, N.

J. Flick, N. Rivera, and P. Narang, “Strong light-matter coupling in quantum chemistry and quantum photonics,” Nanophotonics 7(9), 1479–1501 (2018).
[Crossref]

Ruan, W.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Runge, E.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

Sadrieva, Z. F.

K. L. Koshelev, S. K. Sychev, Z. F. Sadrieva, A. A. Bogdanov, and I. V. Iorsh, “Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum,” Phys. Rev. B 98(16), 161113 (2018).
[Crossref]

Salamo, G.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

Salihoglu, O.

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235402 (2012).
[Crossref]

Samorì, P.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

Savvidis, P. G.

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

Schlather, A. E.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

Schoelkopf, R. J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[Crossref] [PubMed]

Schuster, D. I.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[Crossref] [PubMed]

Schwieger, S.

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

Sen, P.

M. Balasubrahmaniyam, D. Kar, P. Sen, P. B. Bisht, and S. Kasiviswanathan, “Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling,” Appl. Phys. Lett. 110(17), 171101 (2017).
[Crossref]

Shalabney, A.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

Shan, J.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe(2).,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

She, J.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

Shegai, T.

A. Bisht, J. Cuadra, M. Wersäll, A. Canales, T. J. Antosiewicz, and T. Shegai, “Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems,” Nano Lett. 19(1), 189–196 (2019).
[Crossref] [PubMed]

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref] [PubMed]

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light–matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2– plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref] [PubMed]

Shen, Z.-X.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Shi, S.-F.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Shi, W.-B.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Shih, E.-M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Smith, D. R.

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. (2019).

Smith, J. M.

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8(1), 14097 (2017).
[Crossref] [PubMed]

Smolka, S.

S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegscheider, and A. Imamoglu, “Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas,” Science 346(6207), 332–335 (2014).
[Crossref] [PubMed]

Somaschi, N.

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

Song, T.

T. Song, Z. Chen, W. Zhang, L. Lin, Y. Bao, L. Wu, and Z. K. Zhou, “Compounding Plasmon-Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting,” Nanomaterials (Basel) 9(4), 564(2019).
[Crossref]

Srinivasan, P.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

Stührenberg, M.

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref] [PubMed]

Sugawara, Y.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

Sun, J.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref] [PubMed]

Sychev, S. K.

K. L. Koshelev, S. K. Sychev, Z. F. Sadrieva, A. A. Bogdanov, and I. V. Iorsh, “Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum,” Phys. Rev. B 98(16), 161113 (2018).
[Crossref]

Tanji-Suzuki, H.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

Tartakovskii, A. I.

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

Taylor, R. A.

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8(1), 14097 (2017).
[Crossref] [PubMed]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Ugeda, M. M.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Urban, A. S.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

van der Zande, A. M.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Vasa, P.

P. Vasa and C. Lienau, “Strong light–matter interaction in quantum emitter/metal hybrid nanostructures,” ACS Photonics 5(1), 2–23 (2018).
[Crossref]

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

Verre, R.

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2– plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref] [PubMed]

Volz, T.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Vuletic, V.

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

Wallraff, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[Crossref] [PubMed]

Wang, D.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Wang, F.

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Wang, H.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref] [PubMed]

Wang, K.

X. Han, K. Wang, X. Xing, M. Wang, and P. Lu, “Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature,” ACS Photonics 5(10), 3970–3976 (2018).
[Crossref]

Wang, M.

X. Han, K. Wang, X. Xing, M. Wang, and P. Lu, “Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature,” ACS Photonics 5(10), 3970–3976 (2018).
[Crossref]

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Wang, Q.-J.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Wang, S.

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

Wang, W.

S. Zhang, H. Zhang, T. Xu, W. Wang, Y. Zhu, D. Li, Z. Zhang, J. Yi, and W. Wang, “Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves,” Phys. Rev. B 97(23), 235401 (2018).
[Crossref]

S. Zhang, H. Zhang, T. Xu, W. Wang, Y. Zhu, D. Li, Z. Zhang, J. Yi, and W. Wang, “Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves,” Phys. Rev. B 97(23), 235401 (2018).
[Crossref]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

Wang, X.-H.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref] [PubMed]

Wang, Z.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe(2).,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

Warner, J. H.

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8(1), 14097 (2017).
[Crossref] [PubMed]

Wegscheider, W.

S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegscheider, and A. Imamoglu, “Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas,” Science 346(6207), 332–335 (2014).
[Crossref] [PubMed]

Wei, Y.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref] [PubMed]

Wen, J.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

Wersäll, M.

A. Bisht, J. Cuadra, M. Wersäll, A. Canales, T. J. Antosiewicz, and T. Shegai, “Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems,” Nano Lett. 19(1), 189–196 (2019).
[Crossref] [PubMed]

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light–matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2– plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref] [PubMed]

Winger, M.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

Wu, D.-J.

H. Yang, J. Yao, X.-W. Wu, D.-J. Wu, and X.-J. Liu, “Strong Plasmon–Exciton–Plasmon Multimode Couplings in Three-Layered Ag–J-Aggregates–Ag Nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

Wu, L.

T. Song, Z. Chen, W. Zhang, L. Lin, Y. Bao, L. Wu, and Z. K. Zhou, “Compounding Plasmon-Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting,” Nanomaterials (Basel) 9(4), 564(2019).
[Crossref]

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-X. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photonics 10(4), 703–756 (2018).
[Crossref]

Wu, X.

Wu, X.-W.

H. Yang, J. Yao, X.-W. Wu, D.-J. Wu, and X.-J. Liu, “Strong Plasmon–Exciton–Plasmon Multimode Couplings in Three-Layered Ag–J-Aggregates–Ag Nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

Wuester, W.

S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegscheider, and A. Imamoglu, “Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas,” Science 346(6207), 332–335 (2014).
[Crossref] [PubMed]

Xiao, Y. F.

P. Peng, Y. C. Liu, D. Xu, Q. T. Cao, G. Lu, Q. Gong, and Y. F. Xiao, “Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances,” Phys. Rev. Lett. 119(23), 233901 (2017).
[Crossref] [PubMed]

Xiao, Y.-X.

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-X. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photonics 10(4), 703–756 (2018).
[Crossref]

Xing, X.

X. Han, K. Wang, X. Xing, M. Wang, and P. Lu, “Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature,” ACS Photonics 5(10), 3970–3976 (2018).
[Crossref]

Xiong, X.

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-X. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photonics 10(4), 703–756 (2018).
[Crossref]

Xu, D.

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-X. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photonics 10(4), 703–756 (2018).
[Crossref]

P. Peng, Y. C. Liu, D. Xu, Q. T. Cao, G. Lu, Q. Gong, and Y. F. Xiao, “Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances,” Phys. Rev. Lett. 119(23), 233901 (2017).
[Crossref] [PubMed]

Xu, H.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref] [PubMed]

Xu, N.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

Xu, T.

S. Zhang, H. Zhang, T. Xu, W. Wang, Y. Zhu, D. Li, Z. Zhang, J. Yi, and W. Wang, “Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves,” Phys. Rev. B 97(23), 235401 (2018).
[Crossref]

Xu, Y.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Yang, H.

H. Yang, J. Yao, X.-W. Wu, D.-J. Wu, and X.-J. Liu, “Strong Plasmon–Exciton–Plasmon Multimode Couplings in Three-Layered Ag–J-Aggregates–Ag Nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

Yankovich, A. B.

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref] [PubMed]

Yao, J.

H. Yang, J. Yao, X.-W. Wu, D.-J. Wu, and X.-J. Liu, “Strong Plasmon–Exciton–Plasmon Multimode Couplings in Three-Layered Ag–J-Aggregates–Ag Nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

Yi, J.

S. Zhang, H. Zhang, T. Xu, W. Wang, Y. Zhu, D. Li, Z. Zhang, J. Yi, and W. Wang, “Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves,” Phys. Rev. B 97(23), 235401 (2018).
[Crossref]

Yu, Y.-C.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref] [PubMed]

Yuan, J.

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

Zhang, D.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref] [PubMed]

Zhang, H.

S. Zhang, H. Zhang, T. Xu, W. Wang, Y. Zhu, D. Li, Z. Zhang, J. Yi, and W. Wang, “Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves,” Phys. Rev. B 97(23), 235401 (2018).
[Crossref]

Zhang, K.

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

Zhang, S.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref] [PubMed]

S. Zhang, H. Zhang, T. Xu, W. Wang, Y. Zhu, D. Li, Z. Zhang, J. Yi, and W. Wang, “Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves,” Phys. Rev. B 97(23), 235401 (2018).
[Crossref]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref] [PubMed]

Zhang, T.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref] [PubMed]

Zhang, W.

T. Song, Z. Chen, W. Zhang, L. Lin, Y. Bao, L. Wu, and Z. K. Zhou, “Compounding Plasmon-Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting,” Nanomaterials (Basel) 9(4), 564(2019).
[Crossref]

Zhang, X.

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

Zhang, Y.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Zhang, Z.

S. Zhang, H. Zhang, T. Xu, W. Wang, Y. Zhu, D. Li, Z. Zhang, J. Yi, and W. Wang, “Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves,” Phys. Rev. B 97(23), 235401 (2018).
[Crossref]

Zhao, H.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe(2).,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

Zhao, L.

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe(2).,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

Zheng, D.

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref] [PubMed]

Zhou, Z. K.

T. Song, Z. Chen, W. Zhang, L. Lin, Y. Bao, L. Wu, and Z. K. Zhou, “Compounding Plasmon-Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting,” Nanomaterials (Basel) 9(4), 564(2019).
[Crossref]

Zhou, Z.-K.

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref] [PubMed]

Zhu, Y.

S. Zhang, H. Zhang, T. Xu, W. Wang, Y. Zhu, D. Li, Z. Zhang, J. Yi, and W. Wang, “Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves,” Phys. Rev. B 97(23), 235401 (2018).
[Crossref]

Zhuang, C.

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

ACS Nano (2)

J. Sun, H. Hu, D. Zheng, D. Zhang, Q. Deng, S. Zhang, and H. Xu, “Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime,” ACS Nano 12(10), 10393–10402 (2018).
[Crossref] [PubMed]

P. Vasa, R. Pomraenke, G. Cirmi, E. De Re, W. Wang, S. Schwieger, D. Leipold, E. Runge, G. Cerullo, and C. Lienau, “Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures,” ACS Nano 4(12), 7559–7565 (2010).
[Crossref] [PubMed]

ACS Photonics (4)

I. Abid, W. Chen, J. Yuan, A. Bohloul, S. Najmaei, C. Avendano, R. Péchou, A. Mlayah, and J. Lou, “Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures,” ACS Photonics 4(7), 1653–1660 (2017).
[Crossref]

X. Han, K. Wang, X. Xing, M. Wang, and P. Lu, “Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature,” ACS Photonics 5(10), 3970–3976 (2018).
[Crossref]

D. G. Baranov, M. Wersäll, J. Cuadra, T. J. Antosiewicz, and T. Shegai, “Novel nanostructures and materials for strong light–matter interactions,” ACS Photonics 5(1), 24–42 (2018).
[Crossref]

P. Vasa and C. Lienau, “Strong light–matter interaction in quantum emitter/metal hybrid nanostructures,” ACS Photonics 5(1), 2–23 (2018).
[Crossref]

Adv. Opt. Photonics (1)

D. Xu, X. Xiong, L. Wu, X.-F. Ren, C. E. Png, G.-C. Guo, Q. Gong, and Y.-X. Xiao, “Quantum plasmonics: new opportunity in fundamental and applied photonics,” Adv. Opt. Photonics 10(4), 703–756 (2018).
[Crossref]

Appl. Phys. Lett. (3)

K. Zhang, W.-B. Shi, D. Wang, Y. Xu, R.-W. Peng, R.-H. Fan, Q.-J. Wang, and M. Wang, “Couple molecular excitons to surface plasmon polaritons in an organic-dye-doped nanostructured cavity,” Appl. Phys. Lett. 108(19), 193111 (2016).
[Crossref]

M. Balasubrahmaniyam, D. Kar, P. Sen, P. B. Bisht, and S. Kasiviswanathan, “Observation of subwavelength localization of cavity plasmons induced by ultra-strong exciton coupling,” Appl. Phys. Lett. 110(17), 171101 (2017).
[Crossref]

K. O’Donnell and X. Chen, “Temperature dependence of semiconductor band gaps,” Appl. Phys. Lett. 58(25), 2924–2926 (1991).
[Crossref]

J. Chern. Phys. (1)

I. Pockrand, A. Brillante, and D. Möbius, “Exciton–surface plasmon coupling: An experimental investigation,” J. Chern. Phys. 77(12), 6289–6295 (1982).
[Crossref]

J. Phys. Chem. C (1)

H. Yang, J. Yao, X.-W. Wu, D.-J. Wu, and X.-J. Liu, “Strong Plasmon–Exciton–Plasmon Multimode Couplings in Three-Layered Ag–J-Aggregates–Ag Nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

Nano Lett. (12)

S. Wang, S. Li, T. Chervy, A. Shalabney, S. Azzini, E. Orgiu, J. A. Hutchison, C. Genet, P. Samorì, and T. W. Ebbesen, “Coherent coupling of WS2 monolayers with metallic photonic nanostructures at room temperature,” Nano Lett. 16(7), 4368–4374 (2016).
[Crossref] [PubMed]

N. T. Fofang, T.-H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13(7), 3281–3286 (2013).
[Crossref] [PubMed]

M. J. Gentile, S. Núñez-Sánchez, and W. L. Barnes, “Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures,” Nano Lett. 14(5), 2339–2344 (2014).
[Crossref] [PubMed]

D. Zheng, S. Zhang, Q. Deng, M. Kang, P. Nordlander, and H. Xu, “Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2,” Nano Lett. 17(6), 3809–3814 (2017).
[Crossref] [PubMed]

J. Cuadra, D. G. Baranov, M. Wersäll, R. Verre, T. J. Antosiewicz, and T. Shegai, “Observation of tunable charged exciton polaritons in hybrid monolayer WS2– plasmonic nanoantenna system,” Nano Lett. 18(3), 1777–1785 (2018).
[Crossref] [PubMed]

M. J. Holmes, K. Choi, S. Kako, M. Arita, and Y. Arakawa, “Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot,” Nano Lett. 14(2), 982–986 (2014).
[Crossref] [PubMed]

M. Stührenberg, B. Munkhbat, D. G. Baranov, J. Cuadra, A. B. Yankovich, T. J. Antosiewicz, E. Olsson, and T. Shegai, “Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe2,” Nano Lett. 18(9), 5938–5945 (2018).
[Crossref] [PubMed]

A. Bisht, J. Cuadra, M. Wersäll, A. Canales, T. J. Antosiewicz, and T. Shegai, “Collective strong light-matter coupling in hierarchical microcavity-plasmon-exciton systems,” Nano Lett. 19(1), 189–196 (2019).
[Crossref] [PubMed]

B. Lee, W. Liu, C. H. Naylor, J. Park, S. C. Malek, J. S. Berger, A. T. C. Johnson, and R. Agarwal, “Electrical tuning of exciton–plasmon polariton coupling in monolayer MoS2 integrated with plasmonic nanoantenna lattice,” Nano Lett. 17(7), 4541–4547 (2017).
[Crossref] [PubMed]

W. Liu, B. Lee, C. H. Naylor, H.-S. Ee, J. Park, A. T. Johnson, and R. Agarwal, “Strong exciton–plasmon coupling in MoS2 coupled with plasmonic lattice,” Nano Lett. 16(2), 1262–1269 (2016).
[Crossref] [PubMed]

J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, and N. Xu, “Room-temperature strong light–matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals,” Nano Lett. 17(8), 4689–4697 (2017).
[Crossref] [PubMed]

Nanomaterials (Basel) (1)

T. Song, Z. Chen, W. Zhang, L. Lin, Y. Bao, L. Wu, and Z. K. Zhou, “Compounding Plasmon-Exciton Strong Coupling System with Gold Nanofilm to Boost Rabi Splitting,” Nanomaterials (Basel) 9(4), 564(2019).
[Crossref]

Nanophotonics (1)

J. Flick, N. Rivera, and P. Narang, “Strong light-matter coupling in quantum chemistry and quantum photonics,” Nanophotonics 7(9), 1479–1501 (2018).
[Crossref]

Nat. Commun. (3)

M. E. Kleemann, R. Chikkaraddy, E. M. Alexeev, D. Kos, C. Carnegie, W. Deacon, A. C. de Pury, C. Große, B. de Nijs, J. Mertens, A. I. Tartakovskii, and J. J. Baumberg, “Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature,” Nat. Commun. 8(1), 1296 (2017).
[Crossref] [PubMed]

L. C. Flatten, D. M. Coles, Z. He, D. G. Lidzey, R. A. Taylor, J. H. Warner, and J. M. Smith, “Electrically tunable organic-inorganic hybrid polaritons with monolayer WS2,” Nat. Commun. 8(1), 14097 (2017).
[Crossref] [PubMed]

A. Shalabney, J. George, J. Hutchison, G. Pupillo, C. Genet, and T. W. Ebbesen, “Coherent coupling of molecular resonators with a microcavity mode,” Nat. Commun. 6(1), 5981 (2015).
[Crossref] [PubMed]

Nat. Mater. (2)

D. M. Coles, N. Somaschi, P. Michetti, C. Clark, P. G. Lagoudakis, P. G. Savvidis, and D. G. Lidzey, “Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity,” Nat. Mater. 13(7), 712–719 (2014).
[Crossref] [PubMed]

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor,” Nat. Mater. 13(12), 1091–1095 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

T. M. Babinec, B. J. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Lončar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Ultrafast all-optical switching by single photons,” Nat. Photonics 6(9), 605–609 (2012).
[Crossref]

P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, and C. Lienau, “Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates,” Nat. Photonics 7(2), 128–132 (2013).
[Crossref]

Nature (2)

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425(6955), 268–271 (2003).
[Crossref] [PubMed]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature 431(7005), 162–167 (2004).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (3)

S. Zhang, H. Zhang, T. Xu, W. Wang, Y. Zhu, D. Li, Z. Zhang, J. Yi, and W. Wang, “Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves,” Phys. Rev. B 97(23), 235401 (2018).
[Crossref]

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

K. L. Koshelev, S. K. Sychev, Z. F. Sadrieva, A. A. Bogdanov, and I. V. Iorsh, “Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum,” Phys. Rev. B 98(16), 161113 (2018).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.-M. Shih, J. Hone, and T. F. Heinz, “Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(20), 205422 (2014).
[Crossref]

S. Balci, C. Kocabas, S. Ates, E. Karademir, O. Salihoglu, and A. Aydinli, “Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping,” Phys. Rev. B Condens. Matter Mater. Phys. 86(23), 235402 (2012).
[Crossref]

Phys. Rev. Lett. (5)

K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan, “Tightly bound excitons in monolayer WSe(2).,” Phys. Rev. Lett. 113(2), 026803 (2014).
[Crossref] [PubMed]

P. Peng, Y. C. Liu, D. Xu, Q. T. Cao, G. Lu, Q. Gong, and Y. F. Xiao, “Enhancing Coherent Light-Matter Interactions through Microcavity-Engineered Plasmonic Resonances,” Phys. Rev. Lett. 119(23), 233901 (2017).
[Crossref] [PubMed]

R. Liu, Z.-K. Zhou, Y.-C. Yu, T. Zhang, H. Wang, G. Liu, Y. Wei, H. Chen, and X.-H. Wang, “Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit,” Phys. Rev. Lett. 118(23), 237401 (2017).
[Crossref] [PubMed]

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett. 97(26), 266808 (2006).
[Crossref] [PubMed]

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett. 101(11), 116801 (2008).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Science (2)

S. Smolka, W. Wuester, F. Haupt, S. Faelt, W. Wegscheider, and A. Imamoglu, “Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas,” Science 346(6207), 332–335 (2014).
[Crossref] [PubMed]

W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, and V. Vuletić, “All-optical switch and transistor gated by one stored photon,” Science 341(6147), 768–770 (2013).
[Crossref] [PubMed]

Other (4)

J. J. Baumberg, J. Aizpurua, M. H. Mikkelsen, and D. R. Smith, “Extreme nanophotonics from ultrathin metallic gaps,” Nat. Mater. (2019).

S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, 2007).

T. Kobayashi, J-aggregates (World Scientific, 2012).

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the Ag–J-aggregates–WS2 nanostructure. The inset shows the cross section of the hybrid nanostructure with the thickness of Ag nanoprism 10 nm. The thickness of J-aggregates and monolayer WS2 both are 1 nm.
Fig. 2
Fig. 2 (a) Scattering spectra of the Ag nanoprisms. The corresponding LSPRs energies are 1.93 eV, 1.99 eV, and 2.03 eV, respectively. (b) Simulated transmission spectrum of the monolayer WS2 flake. (c) The electric field distribution of the Ag nanoprism at wavelength of 624 nm (1.99 eV). (d) The corresponding charge distributions of the Ag nanoprism at 624 nm wavelength.
Fig. 3
Fig. 3 (a) Successive scattering spectra of J-aggregates coupled with Ag nanoprisms. The black scattered-diamonds and scattered-triangles represent simulated upper and lower plexciton branches as a function of plasmon resonance position extracted from scattering the spectrum of individual Ag–J-aggregates hybrids of various sizes. The solid white lines are fit to the coupled oscillator model, giving a splitting of 140 meV. The dashed diagonal line and horizontal line correspond to uncoupled LSPR mode and exciton resonance, respectively. The color scale represents the scattering efficiency. The “energy” axis of the horizontal represents plasmon resonance energy of Ag nanoprisms (plasmon resonance energy varies with the size of Ag nanoprisms). The “energy” axis of the vertical represents the incident light wavelength (“wavelength” is converted into “energy”). (b) Weighting efficiencies for LSPR mode and J-aggregates exciton contributions to UPB and LPB states as a function of plasmon resonance. (c) Successive scattering spectra of WS2 coupled with Ag nanoprisms. (d) Weighting efficiencies for LSPR mode and the A exciton contributions to UPB and LPB states as a function of plasmon resonance.
Fig. 4
Fig. 4 (a) Scattering cross sections spectra of J-aggregates and WS2 coupled with Ag nanoprisms. The black scattered-diamonds, scattered-circles and scattered-triangles represent simulated upper, middle and lower plexciton branches as a function of plasmon resonance position extracted from the scattering spectrum of individual Ag–J-aggregates–WS2 hybrid nanostructure of various sizes. The solid white lines are fit to the coupled oscillator model. The dashed diagonal line and horizontal line correspond to uncoupled LSPR mode and two different exciton resonances, respectively. (b) Normalized scattering spectrum of J-aggregates and WS2 coupled with Ag nanoprism simulated by FDTD solution (red solid line) and calculated by the coupled oscillator model (blue circle). (c) Weighting efficiencies for LSPR mode, the A exciton of WS2 and J-aggregates exciton contributions to UPB, MPB and LPB states as a function of plasmon resonance.
Fig. 5
Fig. 5 (a) Normalized scattering spectra of J-aggregates and WS2 coupled with Ag nanoprism for the thickness of Ag nanoprism in the range of 8-13 nm. The dashed vertical line correspond to uncoupled J-aggregates exciton and WS2 exciton modes, respectively. (b) Normalized scattering spectra of J-aggregates and WS2 coupled with Ag nanoprism for the thickness of J-aggregates layer in the range of 1-8 nm.
Fig. 6
Fig. 6 (a) Normalized scattering spectra of J-aggregates and WS2 coupled with Ag nanoprism for different temperature. (b) Normalized scattering spectra of J-aggregates and WS2 coupled with Ag nanoprism for different oscillator strength of J-aggregates.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε(E)= ε B j=1 N f j E 0j 2 E 2 E 0j 2 +i γ 0j E
E g (T)= E g (0)S ω { coth[ ω 2 k B T ]1 },
x ¨ PL (t)+ γ PL x ˙ PL (t)+ ω PL 2 x PL (t)+ g J x ˙ J (t)+ g X x ˙ X (t)= F PL (t),
x ¨ J (t)+ γ J x ˙ J (t)+ ω J 2 x J (t) g J x ˙ PL (t)= F J (t),
x ¨ X (t)+ γ X x ˙ X (t)+ ω X 2 x X (t) g X x ˙ PL (t)= F X (t),
σ scat (E)= 8π 3 k 4 | F PL x PL | 2 E 4 | ab ab( E 2 E PL 2 +iE γ PL ) E 2 g J 2 b E 2 g X 2 a | 2 ,
[ E PL g X g J g X E X 0 g J 0 E J ][ α 1 α 2 α 3 ]=E[ α 1 α 2 α 3 ],
[ E PL i γ PL 2 g g E t i γ t 2 ][ α β ]=E[ α β ],

Metrics