Abstract

In this paper, a full color holographic display system based on the intensity matching of the reconstructed image is proposed. The system consists of three color collimated beams, three spatial light modulators (SLMs), three beam splitters, three lenses, three irises, a prism and a receiving screen. The three SLMs are used to load three color holograms, respectively. In order to eliminate the undesirable light in the reconstructed images and adjust the light intensities, the irises which contain two functions of both light intensity attenuation and aperture variation are cleverly produced. Finally, by using the prism, three color images can be coincident on the receiving screen. Experimental results verify the feasibility of the proposed system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Holographic zoom micro-projection system based on three spatial light modulators

Di Wang, Chao Liu, and Qiong-Hua Wang
Opt. Express 27(6) 8048-8058 (2019)

Method of chromatic aberration elimination in holographic display based on zoomable liquid lens

Di Wang, Chao Liu, and Qiong-Hua Wang
Opt. Express 27(7) 10058-10066 (2019)

Single SLM full-color holographic three-dimensional video display based on image and frequency-shift multiplexing

Shu-Feng Lin, Hong-Kun Cao, and Eun-Soo Kim
Opt. Express 27(11) 15926-15942 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
    [Crossref] [PubMed]
  2. H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
    [Crossref]
  3. G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
    [Crossref] [PubMed]
  4. Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
    [Crossref] [PubMed]
  5. T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
    [Crossref] [PubMed]
  6. J. Roh, K. Kim, E. Moon, S. Kim, B. Yang, J. Hahn, and H. Kim, “Full-color holographic projection display system featuring an achromatic Fourier filter,” Opt. Express 25(13), 14774–14782 (2017).
    [Crossref] [PubMed]
  7. T. Zhao, J. Liu, Q. Gao, P. He, Y. Han, and Y. Wang, “Accelerating computation of CGH using symmetric compressed look-up-table in color holographic display,” Opt. Express 26(13), 16063–16073 (2018).
    [Crossref] [PubMed]
  8. Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56(13), F112–F120 (2017).
    [Crossref] [PubMed]
  9. Y. Matsumoto and Y. Takaki, “Time‐multiplexed color image generation by viewing‐zone scanning holographic display employing MEMS‐SLM,” J. Soc. Inf. Disp. 25(8), 515–523 (2017).
    [Crossref]
  10. T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10(5), 339–341 (2003).
    [Crossref]
  11. D. Wang, C. Liu, and Q. H. Wang, “Holographic zoom micro-projection system based on three spatial light modulators,” Opt. Express 27(6), 8048–8058 (2019).
    [Crossref] [PubMed]
  12. H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49(31), 5993–5996 (2010).
    [Crossref]
  13. W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” J. Disp. Technol. 12(12), 1724–1731 (2016).
    [Crossref]
  14. T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, “Numerical study of color holographic projection using space-division method,” Opt. Express 19(11), 10287–10292 (2011).
    [Crossref] [PubMed]
  15. M. Makowski, I. Ducin, M. Sypek, A. Siemion, A. Siemion, J. Suszek, and A. Kolodziejczyk, “Color image projection based on Fourier holograms,” Opt. Lett. 35(8), 1227–1229 (2010).
    [Crossref] [PubMed]
  16. T. Mishina, M. Okui, and F. Okano, “Viewing-zone enlargement method for sampled hologram that uses high-order diffraction,” Appl. Opt. 41(8), 1489–1499 (2002).
    [Crossref] [PubMed]
  17. H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
    [Crossref] [PubMed]
  18. F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt. 48(34), H48–H53 (2009).
    [Crossref] [PubMed]
  19. H. Zhang, J. Xie, J. Liu, and Y. Wang, “Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection,” Appl. Opt. 48(30), 5834–5841 (2009).
    [Crossref] [PubMed]
  20. T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
    [Crossref]
  21. M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
    [Crossref]
  22. D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
    [Crossref] [PubMed]
  23. L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
    [Crossref] [PubMed]
  24. I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
    [Crossref]
  25. A. Y. Malyuk and N. A. Ivanova, “Varifocal liquid lens actuated by laser-induced thermal Marangoni forces,” Appl. Phys. Lett. 112(10), 103701 (2018).
    [Crossref]
  26. J. S. Lee, Y. K. Kim, and Y. H. Won, “See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens,” Opt. Express 26(15), 19341–19355 (2018).
    [Crossref] [PubMed]
  27. S. C. Kim and E. S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
    [Crossref] [PubMed]

2019 (1)

2018 (5)

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

T. Zhao, J. Liu, Q. Gao, P. He, Y. Han, and Y. Wang, “Accelerating computation of CGH using symmetric compressed look-up-table in color holographic display,” Opt. Express 26(13), 16063–16073 (2018).
[Crossref] [PubMed]

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

A. Y. Malyuk and N. A. Ivanova, “Varifocal liquid lens actuated by laser-induced thermal Marangoni forces,” Appl. Phys. Lett. 112(10), 103701 (2018).
[Crossref]

J. S. Lee, Y. K. Kim, and Y. H. Won, “See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens,” Opt. Express 26(15), 19341–19355 (2018).
[Crossref] [PubMed]

2017 (4)

Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56(13), F112–F120 (2017).
[Crossref] [PubMed]

Y. Matsumoto and Y. Takaki, “Time‐multiplexed color image generation by viewing‐zone scanning holographic display employing MEMS‐SLM,” J. Soc. Inf. Disp. 25(8), 515–523 (2017).
[Crossref]

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

J. Roh, K. Kim, E. Moon, S. Kim, B. Yang, J. Hahn, and H. Kim, “Full-color holographic projection display system featuring an achromatic Fourier filter,” Opt. Express 25(13), 14774–14782 (2017).
[Crossref] [PubMed]

2016 (6)

2014 (1)

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

2012 (1)

2011 (2)

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, “Numerical study of color holographic projection using space-division method,” Opt. Express 19(11), 10287–10292 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (2)

2008 (1)

2003 (1)

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10(5), 339–341 (2003).
[Crossref]

2002 (1)

Asundi, A. K.

Awazu, S.

Cao, Y.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Chen, M. S.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Cheng, X.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Chlipala, M.

Cho, J.

Chung, S. K.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Collings, N.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Deng, J.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Deng, Z. L.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Ducin, I.

Gao, Q.

Hahn, J.

Han, Y.

He, P.

Hsieh, P. Y.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

Huang, Y. P.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

Ichihashi, Y.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

H. Nakayama, N. Takada, Y. Ichihashi, S. Awazu, S. Awazu, T. Shimobaba, N. Masuda, and T. Ito, “Real-time color electroholography using multiple graphics processing units and multiple high-definition liquid-crystal display panels,” Appl. Opt. 49(31), 5993–5996 (2010).
[Crossref]

Ito, T.

Ivanova, N. A.

A. Y. Malyuk and N. A. Ivanova, “Varifocal liquid lens actuated by laser-induced thermal Marangoni forces,” Appl. Phys. Lett. 112(10), 103701 (2018).
[Crossref]

Jeong, Y.

Kang, H.

Kim, E. S.

Kim, H.

Kim, K.

Kim, S.

Kim, S. C.

Kim, Y. K.

Kolodziejczyk, A.

Kozacki, T.

W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” J. Disp. Technol. 12(12), 1724–1731 (2016).
[Crossref]

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

Kujawinska, M.

W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” J. Disp. Technol. 12(12), 1724–1731 (2016).
[Crossref]

Kurita, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Lee, B.

Lee, D.

Lee, J. S.

Lee, K.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Li, G.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

G. Li, D. Lee, Y. Jeong, J. Cho, and B. Lee, “Holographic display for see-through augmented reality using mirror-lens holographic optical element,” Opt. Lett. 41(11), 2486–2489 (2016).
[Crossref] [PubMed]

Li, L.

Li, X.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Lin, H. C.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Lin, Y. H.

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

Liu, C.

Liu, J.

Makowski, M.

Malyuk, A. Y.

A. Y. Malyuk and N. A. Ivanova, “Varifocal liquid lens actuated by laser-induced thermal Marangoni forces,” Appl. Phys. Lett. 112(10), 103701 (2018).
[Crossref]

Masuda, N.

Matsumoto, Y.

Y. Matsumoto and Y. Takaki, “Time‐multiplexed color image generation by viewing‐zone scanning holographic display employing MEMS‐SLM,” J. Soc. Inf. Disp. 25(8), 515–523 (2017).
[Crossref]

Mishina, T.

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

T. Mishina, M. Okui, and F. Okano, “Viewing-zone enlargement method for sampled hologram that uses high-order diffraction,” Appl. Opt. 41(8), 1489–1499 (2002).
[Crossref] [PubMed]

Moon, E.

Nakayama, H.

Oh, S. H.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Oi, R.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Okano, F.

Okui, M.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

T. Mishina, M. Okui, and F. Okano, “Viewing-zone enlargement method for sampled hologram that uses high-order diffraction,” Appl. Opt. 41(8), 1489–1499 (2002).
[Crossref] [PubMed]

Onural, L.

Park, I. S.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Park, J.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Park, Y.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Roh, J.

Sasaki, H.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

Senoh, T.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Shi, T.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Shimobaba, T.

Siemion, A.

Suszek, J.

Sypek, M.

Takada, N.

Takahashi, T.

Takaki, Y.

Y. Matsumoto and Y. Takaki, “Time‐multiplexed color image generation by viewing‐zone scanning holographic display employing MEMS‐SLM,” J. Soc. Inf. Disp. 25(8), 515–523 (2017).
[Crossref]

Valyukh, S.

Wakunami, K.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

Wang, D.

Wang, G. P.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Wang, Q. H.

Wang, S.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Wang, X.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Wang, Y.

Won, Y. H.

Xie, J.

Xu, J.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Yamamoto, K.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

Yang, B.

Yang, J. W.

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Yaras, F.

Yu, H.

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Yu, Y.

Zaperty, W.

W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” J. Disp. Technol. 12(12), 1724–1731 (2016).
[Crossref]

Zeng, Z.

Zhang, H.

Zhao, T.

Zheng, H.

Zhou, X.

Zhuang, X.

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

A. Y. Malyuk and N. A. Ivanova, “Varifocal liquid lens actuated by laser-induced thermal Marangoni forces,” Appl. Phys. Lett. 112(10), 103701 (2018).
[Crossref]

J. Disp. Technol. (3)

W. Zaperty, T. Kozacki, and M. Kujawińska, “Multi-SLM color holographic 3D display based on RGB spatial filter,” J. Disp. Technol. 12(12), 1724–1731 (2016).
[Crossref]

T. Senoh, T. Mishina, K. Yamamoto, R. Oi, and T. Kurita, “Viewing- zone-angle-expanded color electronic holography system using ultra-high-definition liquid crystal displays with undesirable light elimination,” J. Disp. Technol. 7(7), 382–390 (2011).
[Crossref]

M. S. Chen, N. Collings, H. C. Lin, and Y. H. Lin, “A holographic projection system with an electrically adjustable optical zoom and a fixed location of zeroth-order diffraction,” J. Disp. Technol. 10(6), 450–455 (2014).
[Crossref]

J. Soc. Inf. Disp. (1)

Y. Matsumoto and Y. Takaki, “Time‐multiplexed color image generation by viewing‐zone scanning holographic display employing MEMS‐SLM,” J. Soc. Inf. Disp. 25(8), 515–523 (2017).
[Crossref]

Light Sci. Appl. (1)

Z. L. Deng, J. Deng, X. Zhuang, S. Wang, T. Shi, G. P. Wang, Y. Wang, J. Xu, Y. Cao, X. Wang, X. Cheng, G. Li, and X. Li, “Facile metagrating holograms with broadband and extreme angle tolerance,” Light Sci. Appl. 7(1), 78 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

Nat. Photonics (1)

H. Yu, K. Lee, J. Park, and Y. Park, “Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields,” Nat. Photonics 11(3), 186–192 (2017).
[Crossref]

Opt. Express (9)

T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, “Numerical study of color holographic projection using space-division method,” Opt. Express 19(11), 10287–10292 (2011).
[Crossref] [PubMed]

H. C. Lin, N. Collings, M. S. Chen, and Y. H. Lin, “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express 20(25), 27222–27229 (2012).
[Crossref] [PubMed]

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

L. Li, D. Wang, C. Liu, and Q. H. Wang, “Zoom microscope objective using electrowetting lenses,” Opt. Express 24(3), 2931–2940 (2016).
[Crossref] [PubMed]

J. Roh, K. Kim, E. Moon, S. Kim, B. Yang, J. Hahn, and H. Kim, “Full-color holographic projection display system featuring an achromatic Fourier filter,” Opt. Express 25(13), 14774–14782 (2017).
[Crossref] [PubMed]

T. Zhao, J. Liu, Q. Gao, P. He, Y. Han, and Y. Wang, “Accelerating computation of CGH using symmetric compressed look-up-table in color holographic display,” Opt. Express 26(13), 16063–16073 (2018).
[Crossref] [PubMed]

J. S. Lee, Y. K. Kim, and Y. H. Won, “See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens,” Opt. Express 26(15), 19341–19355 (2018).
[Crossref] [PubMed]

D. Wang, C. Liu, and Q. H. Wang, “Holographic zoom micro-projection system based on three spatial light modulators,” Opt. Express 27(6), 8048–8058 (2019).
[Crossref] [PubMed]

Opt. Lett. (2)

Opt. Rev. (1)

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10(5), 339–341 (2003).
[Crossref]

Sens. Actuators A Phys. (1)

I. S. Park, Y. Park, S. H. Oh, J. W. Yang, and S. K. Chung, “Multifunctional liquid lens for variable focus and zoom,” Sens. Actuators A Phys. 273, 317–323 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1 Schematic diagram of the proposed system.
Fig. 2
Fig. 2 Process of the holographic reproduction. (a) Principle of the monochrome holographic reconstruction; (b) focal lengths of the lens for different wavelengths.
Fig. 3
Fig. 3 Structure of the proposed iris. (a) Iris without the voltage; (b) iris with voltage; (c) LC cell without voltage; (d) LC cell with voltage.
Fig. 4
Fig. 4 Principle of the light intensity attenuation.
Fig. 5
Fig. 5 State of the LC molecules. (a) State when U = 0; (b)-(c) the states when different voltages are applied.
Fig. 6
Fig. 6 Photomicrographs of 90° and 0° twist states of the TN cell. (a) Voltage-off state; (b) voltage-on state.
Fig. 7
Fig. 7 Relationship between the transmittance and the voltage.
Fig. 8
Fig. 8 Results of the light intensity attenuation. (a) U = 0 V; (b) U = 3 V; (c) U = 4.8V.
Fig. 9
Fig. 9 Results of the aperture size changes of the iris when we apply voltages on the electrode. (a) U = 0 V; (b) U = 40 V; (c) U = 50 V; (d) U = 70 V.
Fig. 10
Fig. 10 Relationship between the aperture size and the voltage.
Fig. 11
Fig. 11 Transmittance of the iris.
Fig. 12
Fig. 12 Monochromatic reconstruction of the holographic system. (a) Traditional system without using the iris; (b) system by using the proposed iris.
Fig. 13
Fig. 13 Results of the green image. (a) Results of the reconstructed image by using the traditional holographic system; (b)-(d) results when the size of the iris changes by using the proposed system.
Fig. 14
Fig. 14 (a)-(c) Green results with different light intensities.
Fig. 15
Fig. 15 (a)-(c) Red results with different light intensities.
Fig. 16
Fig. 16 (a)-(c) Blue results with different light intensities.
Fig. 17
Fig. 17 (a)-(c) zero-order lights of three colors; (d)-(f) white light when the intensities of three color lights changes; (g) color reconstructed image of the teapot.
Fig. 18
Fig. 18 Holographic zoom system.
Fig. 19
Fig. 19 (a)-(c) Red results of the holographic zoom system with different size.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

S r = λ r f r d 2 p( r r + d 1 ) ,
S g = λ g f g d 2 p( r g + d 1 ) ,
S b = λ b f b d 2 p( r b + d 1 ) ,
cosθ= γ 1 γ 2 γ 12 + ε 2 γ 12 d U 2 ,

Metrics