Abstract

We propose and numerically analyze an integrated metal-semiconductor Schottky photodetector consisting of a tapered metal nanoblock chain on a silicon ridge waveguide. The metal-semiconductor junctions allow broadband sub-bandgap photodetection through the internal photoemission effects. The tapered array structures with different block widths can gradually tailor the cut-off frequencies and group velocities of the tightly confined plasmonic modes for enhanced light absorption and suppressed reflection of the photonic mode in the silicon waveguide. As a result, according to our simulations, six metal nanobricks with a total device length of 830 nm can almost perfectly absorb the incident sub-bandgap light and subsequently generate photocurrents with a peak responsivity value of 0.125 A/W at 1550 nm. We believe that the proposed design can provide a simple and viable solution for broadband and compact photodetection in the integrated silicon photonics platform.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced light absorption in waveguide Schottky photodetector integrated with ultrathin metal/silicide stripe

Jingshu Guo, Zhiwei Wu, and Yanli Zhao
Opt. Express 25(9) 10057-10069 (2017)

Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band

Ilya Goykhman, Boris Desiatov, Jacob Khurgin, Joseph Shappir, and Uriel Levy
Opt. Express 20(27) 28594-28602 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
    [Crossref]
  2. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express 17(7), 5193–5204 (2009).
    [Crossref] [PubMed]
  3. H. Chen and A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
    [Crossref]
  4. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
    [Crossref]
  5. J.-B. You, H. Kwon, J. Kim, H.-H. Park, and K. Yu, “Photon-assisted tunneling for sub-bandgap light detection in silicon PN-doped waveguides,” Opt. Express 25(4), 4284–4297 (2017).
    [Crossref] [PubMed]
  6. Y. Zhou, Y.-H. Liu, J. Cheng, and Y.-H. Lo, “Bias dependence of sub-bandgap light detection for core-shell silicon nanowires,” Nano Lett. 12(11), 5929–5935 (2012).
    [Crossref] [PubMed]
  7. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
    [Crossref] [PubMed]
  8. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4(1), 1643 (2013).
    [Crossref] [PubMed]
  9. M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
    [Crossref] [PubMed]
  10. M. Alavirad, A. Olivieri, L. Roy, and P. Berini, “High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors,” Opt. Express 24(20), 22544–22554 (2016).
    [Crossref] [PubMed]
  11. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
    [Crossref] [PubMed]
  12. B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335–338 (2015).
    [Crossref]
  13. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20(27), 28594–28602 (2012).
    [Crossref] [PubMed]
  14. C. Scales, I. Breukelaar, and P. Berini, “Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon,” Opt. Lett. 35(4), 529–531 (2010).
    [Crossref] [PubMed]
  15. A. R. Zali, M. K. Moravvej-Farshi, and G. Abaeiani, “Internal photoemission-based photodetector on Si microring resonator,” Opt. Lett. 37(23), 4925–4927 (2012).
    [Crossref] [PubMed]
  16. J. Guo, Z. Wu, and Y. Zhao, “Enhanced light absorption in waveguide Schottky photodetector integrated with ultrathin metal/silicide stripe,” Opt. Express 25(9), 10057–10069 (2017).
    [Crossref] [PubMed]
  17. S. Muehlbrandt, A. Melikyan, T. Harter, K. Köhnle, A. Muslija, P. Vincze, S. Wolf, P. Jakobs, Y. Fedoryshyn, W. Freude, J. Leuthold, C. Koos, and M. Kohl, “Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception,” Optica 3(7), 741–747 (2016).
    [Crossref]
  18. M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21(23), 28072–28082 (2013).
    [Crossref] [PubMed]
  19. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
    [Crossref] [PubMed]
  20. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
    [Crossref] [PubMed]
  21. A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
    [Crossref] [PubMed]
  22. B. Dagens, M. Février, P. Gogol, S. Blaize, A. Apuzzo, G. Magno, R. Mégy, and G. Lerondel, “Direct observation of optical field phase carving in the vicinity of plasmonic metasurfaces,” Nano Lett. 16(7), 4014–4018 (2016).
    [Crossref] [PubMed]
  23. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
    [Crossref] [PubMed]
  24. J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
    [Crossref]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  26. E. D. Palik, Handbook of optical constants of solids (Academic press, 1998).
  27. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 033402 (2006).
    [Crossref]
  28. J. He and S. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Compon. Lett. 16(2), 96–98 (2006).
    [Crossref]
  29. L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14(23), 11184–11193 (2006).
    [Crossref] [PubMed]
  30. S. M. Sze and K. K. Ng, Physics of semiconductor devices (John wiley & sons, 2006).
  31. C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
    [Crossref]
  32. H. Elabd, “Theory and Measurements of Photoresponse for Thin Film Pd2Si and PtSi Infrared Schottky-Barrier Detectors with Optical Cavity,” RCA Review 143, 569–589 (1982).
  33. L. Yang, P. Kou, J. Shen, E. H. Lee, and S. He, “Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide,” J. Opt. 17(12), 125010 (2015).
    [Crossref]
  34. M. Casalino, “Internal photoemission theory: comments and theoretical limitations on the performance of near-infrared silicon schottky photodetectors,” IEEE J. Quantum Electron. 52(4), 1–10 (2016).
    [Crossref]
  35. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express 15(26), 17482–17493 (2007).
    [Crossref] [PubMed]
  36. N. Tōyama, “Variation in the effective Richardson constant of a metal‐silicon contact due to metal‐film thickness,” J. Appl. Phys. 63(8), 2720–2724 (1988).
    [Crossref]
  37. M. Casalino, G. Coppola, R. M. La Rue, and D. F. Logan, “State‐of‐the‐art all‐silicon sub‐bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
    [Crossref]
  38. C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photonics Technol. Lett. 15(11), 1585–1587 (2003).
    [Crossref]

2017 (2)

2016 (5)

B. Dagens, M. Février, P. Gogol, S. Blaize, A. Apuzzo, G. Magno, R. Mégy, and G. Lerondel, “Direct observation of optical field phase carving in the vicinity of plasmonic metasurfaces,” Nano Lett. 16(7), 4014–4018 (2016).
[Crossref] [PubMed]

M. Casalino, “Internal photoemission theory: comments and theoretical limitations on the performance of near-infrared silicon schottky photodetectors,” IEEE J. Quantum Electron. 52(4), 1–10 (2016).
[Crossref]

M. Casalino, G. Coppola, R. M. La Rue, and D. F. Logan, “State‐of‐the‐art all‐silicon sub‐bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

S. Muehlbrandt, A. Melikyan, T. Harter, K. Köhnle, A. Muslija, P. Vincze, S. Wolf, P. Jakobs, Y. Fedoryshyn, W. Freude, J. Leuthold, C. Koos, and M. Kohl, “Silicon-plasmonic internal-photoemission detector for 40 Gbit/s data reception,” Optica 3(7), 741–747 (2016).
[Crossref]

M. Alavirad, A. Olivieri, L. Roy, and P. Berini, “High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors,” Opt. Express 24(20), 22544–22554 (2016).
[Crossref] [PubMed]

2015 (3)

L. Yang, P. Kou, J. Shen, E. H. Lee, and S. He, “Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide,” J. Opt. 17(12), 125010 (2015).
[Crossref]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335–338 (2015).
[Crossref]

2014 (2)

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

2013 (4)

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21(23), 28072–28082 (2013).
[Crossref] [PubMed]

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4(1), 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

2012 (5)

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Y. Zhou, Y.-H. Liu, J. Cheng, and Y.-H. Lo, “Bias dependence of sub-bandgap light detection for core-shell silicon nanowires,” Nano Lett. 12(11), 5929–5935 (2012).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

A. R. Zali, M. K. Moravvej-Farshi, and G. Abaeiani, “Internal photoemission-based photodetector on Si microring resonator,” Opt. Lett. 37(23), 4925–4927 (2012).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20(27), 28594–28602 (2012).
[Crossref] [PubMed]

2011 (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

2010 (3)

H. Chen and A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[Crossref]

C. Scales, I. Breukelaar, and P. Berini, “Surface-plasmon Schottky contact detector based on a symmetric metal stripe in silicon,” Opt. Lett. 35(4), 529–531 (2010).
[Crossref] [PubMed]

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

2009 (1)

2007 (1)

2006 (3)

L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14(23), 11184–11193 (2006).
[Crossref] [PubMed]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 033402 (2006).
[Crossref]

J. He and S. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Compon. Lett. 16(2), 96–98 (2006).
[Crossref]

2005 (1)

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[Crossref]

2003 (1)

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photonics Technol. Lett. 15(11), 1585–1587 (2003).
[Crossref]

2002 (1)

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

1988 (1)

N. Tōyama, “Variation in the effective Richardson constant of a metal‐silicon contact due to metal‐film thickness,” J. Appl. Phys. 63(8), 2720–2724 (1988).
[Crossref]

1982 (1)

H. Elabd, “Theory and Measurements of Photoresponse for Thin Film Pd2Si and PtSi Infrared Schottky-Barrier Detectors with Optical Cavity,” RCA Review 143, 569–589 (1982).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aassime, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Abaeiani, G.

Alavirad, M.

Alekseyev, L. V.

Apuzzo, A.

B. Dagens, M. Février, P. Gogol, S. Blaize, A. Apuzzo, G. Magno, R. Mégy, and G. Lerondel, “Direct observation of optical field phase carving in the vicinity of plasmonic metasurfaces,” Nano Lett. 16(7), 4014–4018 (2016).
[Crossref] [PubMed]

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Asghari, M.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

Berini, P.

Blaize, S.

B. Dagens, M. Février, P. Gogol, S. Blaize, A. Apuzzo, G. Magno, R. Mégy, and G. Lerondel, “Direct observation of optical field phase carving in the vicinity of plasmonic metasurfaces,” Nano Lett. 16(7), 4014–4018 (2016).
[Crossref] [PubMed]

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Bradley, J. B. D.

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[Crossref]

Breukelaar, I.

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4(1), 1643 (2013).
[Crossref] [PubMed]

Bruyant, A.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

Casalino, M.

M. Casalino, “Internal photoemission theory: comments and theoretical limitations on the performance of near-infrared silicon schottky photodetectors,” IEEE J. Quantum Electron. 52(4), 1–10 (2016).
[Crossref]

M. Casalino, G. Coppola, R. M. La Rue, and D. F. Logan, “State‐of‐the‐art all‐silicon sub‐bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21(23), 28072–28082 (2013).
[Crossref] [PubMed]

Chelnokov, A.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Chen, H.

H. Chen and A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[Crossref]

Chen, L.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Cheng, J.

Y. Zhou, Y.-H. Liu, J. Cheng, and Y.-H. Lo, “Bias dependence of sub-bandgap light detection for core-shell silicon nanowires,” Nano Lett. 12(11), 5929–5935 (2012).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chui, C. O.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photonics Technol. Lett. 15(11), 1585–1587 (2003).
[Crossref]

Coppola, G.

M. Casalino, G. Coppola, R. M. La Rue, and D. F. Logan, “State‐of‐the‐art all‐silicon sub‐bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21(23), 28072–28082 (2013).
[Crossref] [PubMed]

Crozier, K. B.

Cui, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Dagens, B.

B. Dagens, M. Février, P. Gogol, S. Blaize, A. Apuzzo, G. Magno, R. Mégy, and G. Lerondel, “Direct observation of optical field phase carving in the vicinity of plasmonic metasurfaces,” Nano Lett. 16(7), 4014–4018 (2016).
[Crossref] [PubMed]

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Day, I. E.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

Delacour, C.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Desiatov, B.

Drake, J.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

Elabd, H.

H. Elabd, “Theory and Measurements of Photoresponse for Thin Film Pd2Si and PtSi Infrared Schottky-Barrier Detectors with Optical Cavity,” RCA Review 143, 569–589 (1982).

Fang, N. X.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4(1), 1643 (2013).
[Crossref] [PubMed]

Fedoryshyn, Y.

Février, M.

B. Dagens, M. Février, P. Gogol, S. Blaize, A. Apuzzo, G. Magno, R. Mégy, and G. Lerondel, “Direct observation of optical field phase carving in the vicinity of plasmonic metasurfaces,” Nano Lett. 16(7), 4014–4018 (2016).
[Crossref] [PubMed]

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Freude, W.

Fung, K. H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Geis, M. W.

Gogol, P.

B. Dagens, M. Février, P. Gogol, S. Blaize, A. Apuzzo, G. Magno, R. Mégy, and G. Lerondel, “Direct observation of optical field phase carving in the vicinity of plasmonic metasurfaces,” Nano Lett. 16(7), 4014–4018 (2016).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Goykhman, I.

Grein, M. E.

Guo, J.

Guo, L. J.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Halas, N. J.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4(1), 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Harter, T.

He, J.

J. He and S. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Compon. Lett. 16(2), 96–98 (2006).
[Crossref]

He, S.

L. Yang, P. Kou, J. Shen, E. H. Lee, and S. He, “Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide,” J. Opt. 17(12), 125010 (2015).
[Crossref]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

J. He and S. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Compon. Lett. 16(2), 96–98 (2006).
[Crossref]

Iodice, M.

Jakobs, P.

Jessop, P. E.

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[Crossref]

Jin, Y.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaplan, A. F.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Khurgin, J.

Khurgin, J. B.

Kim, J.

King, N. S.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4(1), 1643 (2013).
[Crossref] [PubMed]

Knight, M. W.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4(1), 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Knights, A. P.

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[Crossref]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

Koenderink, A. F.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 033402 (2006).
[Crossref]

Kohl, M.

Köhnle, K.

Koos, C.

Kou, P.

L. Yang, P. Kou, J. Shen, E. H. Lee, and S. He, “Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide,” J. Opt. 17(12), 125010 (2015).
[Crossref]

Kwon, H.

La Rue, R. M.

M. Casalino, G. Coppola, R. M. La Rue, and D. F. Logan, “State‐of‐the‐art all‐silicon sub‐bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

Lee, E. H.

L. Yang, P. Kou, J. Shen, E. H. Lee, and S. He, “Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide,” J. Opt. 17(12), 125010 (2015).
[Crossref]

Lennon, D. M.

Lerondel, G.

B. Dagens, M. Février, P. Gogol, S. Blaize, A. Apuzzo, G. Magno, R. Mégy, and G. Lerondel, “Direct observation of optical field phase carving in the vicinity of plasmonic metasurfaces,” Nano Lett. 16(7), 4014–4018 (2016).
[Crossref] [PubMed]

Lérondel, G.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

Leuthold, J.

Levy, U.

Li, W.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Liang, T. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

Liu, Y.-H.

Y. Zhou, Y.-H. Liu, J. Cheng, and Y.-H. Lo, “Bias dependence of sub-bandgap light detection for core-shell silicon nanowires,” Nano Lett. 12(11), 5929–5935 (2012).
[Crossref] [PubMed]

Lo, Y.-H.

Y. Zhou, Y.-H. Liu, J. Cheng, and Y.-H. Lo, “Bias dependence of sub-bandgap light detection for core-shell silicon nanowires,” Nano Lett. 12(11), 5929–5935 (2012).
[Crossref] [PubMed]

Logan, D. F.

M. Casalino, G. Coppola, R. M. La Rue, and D. F. Logan, “State‐of‐the‐art all‐silicon sub‐bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

Lourtioz, J.-M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Lyszczarz, T. M.

Ma, H.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Magno, G.

B. Dagens, M. Février, P. Gogol, S. Blaize, A. Apuzzo, G. Magno, R. Mégy, and G. Lerondel, “Direct observation of optical field phase carving in the vicinity of plasmonic metasurfaces,” Nano Lett. 16(7), 4014–4018 (2016).
[Crossref] [PubMed]

Mazurski, N.

Mégy, R.

B. Dagens, M. Février, P. Gogol, S. Blaize, A. Apuzzo, G. Magno, R. Mégy, and G. Lerondel, “Direct observation of optical field phase carving in the vicinity of plasmonic metasurfaces,” Nano Lett. 16(7), 4014–4018 (2016).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

Melikyan, A.

Moravvej-Farshi, M. K.

Muehlbrandt, S.

Muslija, A.

Narimanov, E.

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4(1), 1643 (2013).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Okyay, A. K.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photonics Technol. Lett. 15(11), 1585–1587 (2003).
[Crossref]

Olivieri, A.

Park, H.-H.

Polman, A.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 033402 (2006).
[Crossref]

Poon, A. W.

H. Chen and A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[Crossref]

Rendina, I.

Roy, L.

Salas-Montiel, R.

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

Saraswat, K. C.

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photonics Technol. Lett. 15(11), 1585–1587 (2003).
[Crossref]

Scales, C.

Shappir, J.

Shen, J.

L. Yang, P. Kou, J. Shen, E. H. Lee, and S. He, “Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide,” J. Opt. 17(12), 125010 (2015).
[Crossref]

Simsek, E.

Sirleto, L.

Sobhani, A.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4(1), 1643 (2013).
[Crossref] [PubMed]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Spector, S. J.

Togan, E.

Toyama, N.

N. Tōyama, “Variation in the effective Richardson constant of a metal‐silicon contact due to metal‐film thickness,” J. Appl. Phys. 63(8), 2720–2724 (1988).
[Crossref]

Tsang, H. K.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

Urban, A. S.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Valentine, J.

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Vincze, P.

Wang, Y.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4(1), 1643 (2013).
[Crossref] [PubMed]

Wolf, S.

Wu, Z.

Xu, J.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Yang, L.

L. Yang, P. Kou, J. Shen, E. H. Lee, and S. He, “Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide,” J. Opt. 17(12), 125010 (2015).
[Crossref]

Yang, T.

Yoon, J. U.

You, J.-B.

Yu, K.

Zali, A. R.

Zhao, Y.

Zheng, B.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4(1), 1643 (2013).
[Crossref] [PubMed]

Zheng, B. Y.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Zhou, Y.

Y. Zhou, Y.-H. Liu, J. Cheng, and Y.-H. Lo, “Bias dependence of sub-bandgap light detection for core-shell silicon nanowires,” Nano Lett. 12(11), 5929–5935 (2012).
[Crossref] [PubMed]

ACS Photonics (1)

J. Zhou, A. F. Kaplan, L. Chen, and L. J. Guo, “Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array,” ACS Photonics 1(7), 618–624 (2014).
[Crossref]

Appl. Phys. Lett. (3)

J. B. D. Bradley, P. E. Jessop, and A. P. Knights, “Silicon waveguide-integrated optical power monitor with enhanced sensitivity at 1550 nm,” Appl. Phys. Lett. 86(24), 241103 (2005).
[Crossref]

H. Chen and A. W. Poon, “Two-photon absorption photocurrent in pin diode embedded silicon microdisk resonators,” Appl. Phys. Lett. 96(19), 191106 (2010).
[Crossref]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, “Silicon waveguide two-photon absorption detector at 1.5 μm wavelength for autocorrelation measurements,” Appl. Phys. Lett. 81(7), 1323–1325 (2002).
[Crossref]

IEEE J. Quantum Electron. (2)

C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

M. Casalino, “Internal photoemission theory: comments and theoretical limitations on the performance of near-infrared silicon schottky photodetectors,” IEEE J. Quantum Electron. 52(4), 1–10 (2016).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

J. He and S. He, “Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate,” IEEE Microw. Wirel. Compon. Lett. 16(2), 96–98 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C. O. Chui, A. K. Okyay, and K. C. Saraswat, “Effective dark current suppression with asymmetric MSM photodetectors in group IV semiconductors,” IEEE Photonics Technol. Lett. 15(11), 1585–1587 (2003).
[Crossref]

J. Appl. Phys. (1)

N. Tōyama, “Variation in the effective Richardson constant of a metal‐silicon contact due to metal‐film thickness,” J. Appl. Phys. 63(8), 2720–2724 (1988).
[Crossref]

J. Opt. (1)

L. Yang, P. Kou, J. Shen, E. H. Lee, and S. He, “Proposal of a broadband, polarization-insensitive and high-efficiency hot-carrier schottky photodetector integrated with a plasmonic silicon ridge waveguide,” J. Opt. 17(12), 125010 (2015).
[Crossref]

Laser Photonics Rev. (1)

M. Casalino, G. Coppola, R. M. La Rue, and D. F. Logan, “State‐of‐the‐art all‐silicon sub‐bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10(6), 895–921 (2016).
[Crossref]

Nano Lett. (7)

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Y. Zhou, Y.-H. Liu, J. Cheng, and Y.-H. Lo, “Bias dependence of sub-bandgap light detection for core-shell silicon nanowires,” Nano Lett. 12(11), 5929–5935 (2012).
[Crossref] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett. 12(2), 1032–1037 (2012).
[Crossref] [PubMed]

A. Apuzzo, M. Février, R. Salas-Montiel, A. Bruyant, A. Chelnokov, G. Lérondel, B. Dagens, and S. Blaize, “Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide,” Nano Lett. 13(3), 1000–1006 (2013).
[Crossref] [PubMed]

B. Dagens, M. Février, P. Gogol, S. Blaize, A. Apuzzo, G. Magno, R. Mégy, and G. Lerondel, “Direct observation of optical field phase carving in the vicinity of plasmonic metasurfaces,” Nano Lett. 16(7), 4014–4018 (2016).
[Crossref] [PubMed]

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4(1), 1643 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Opt. Express (8)

L. V. Alekseyev and E. Narimanov, “Slow light and 3D imaging with non-magnetic negative index systems,” Opt. Express 14(23), 11184–11193 (2006).
[Crossref] [PubMed]

K. B. Crozier, E. Togan, E. Simsek, and T. Yang, “Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains,” Opt. Express 15(26), 17482–17493 (2007).
[Crossref] [PubMed]

M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express 17(7), 5193–5204 (2009).
[Crossref] [PubMed]

M. Alavirad, A. Olivieri, L. Roy, and P. Berini, “High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors,” Opt. Express 24(20), 22544–22554 (2016).
[Crossref] [PubMed]

J.-B. You, H. Kwon, J. Kim, H.-H. Park, and K. Yu, “Photon-assisted tunneling for sub-bandgap light detection in silicon PN-doped waveguides,” Opt. Express 25(4), 4284–4297 (2017).
[Crossref] [PubMed]

J. Guo, Z. Wu, and Y. Zhao, “Enhanced light absorption in waveguide Schottky photodetector integrated with ultrathin metal/silicide stripe,” Opt. Express 25(9), 10057–10069 (2017).
[Crossref] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20(27), 28594–28602 (2012).
[Crossref] [PubMed]

M. Casalino, M. Iodice, L. Sirleto, I. Rendina, and G. Coppola, “Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current,” Opt. Express 21(23), 28072–28082 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (2)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B Condens. Matter Mater. Phys. 74(3), 033402 (2006).
[Crossref]

RCA Review (1)

H. Elabd, “Theory and Measurements of Photoresponse for Thin Film Pd2Si and PtSi Infrared Schottky-Barrier Detectors with Optical Cavity,” RCA Review 143, 569–589 (1982).

Science (1)

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011).
[Crossref] [PubMed]

Other (2)

S. M. Sze and K. K. Ng, Physics of semiconductor devices (John wiley & sons, 2006).

E. D. Palik, Handbook of optical constants of solids (Academic press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic view of a tapered metal nanobrick chain on a p-type silicon ridge waveguide and (b) Front view (500 nm waveguide width, 220 nm total height, and 90 nm slab height). (c) Top view of the proposed tapered metal nanobrick chain structure with a period of 150 nm and a short-axis length of 80 nm. The metal thinkness is 30 nm. (d) Cross-sectional view of an electric field intensity profile along the vertical dashed line in Fig. 1c. The white dashed lines represent the material interfaces.
Fig. 2
Fig. 2 (a) Schematic drawing of a non-tapered metal chain on the silicon ridge waveguide with a fixed width of L. (b) Log-scale dispersion diagram of a non-tapered metal chain with a constant width of L = 140 nm (L2). White dashed lines are the light lines of air, silicon dioxide, and silicon. Anti-crossing phenomenon occurs due to strong coupling between the silicon waveguide TE mode and the plasmonic mode along the metal nanobrick array. Electric field intensity profiles for (c) the silicon waveguide’s TE mode and (d) the plasmonic mode from the metal chain with a constant width of L = 140 nm (L2) at λ = 1530 nm. The complex effective index is 2.53 + j0 and 2.63 + j0.0146 for the photonic and plasmonic modes, respectively. (e)-(g) Dispersion curves for the TE mode as well as the plasmonic modes from the non-tapered metal chains with various widths (L = L0, L3, L4).
Fig. 3
Fig. 3 (a) Phase difference (black line) and group delay (blue line) from the tapered metal chain on the silicon ridge waveguide. (b) Group velocity in the tapered metal chain. The negative group velocity values were observed for a specific frequency range
Fig. 4
Fig. 4 (a)-(c) Top views of magnetic field profile for the tapered metal chain calculated at the middle of tapered metal chain (z = 235 nm) at different incident wavelengths: (a) λ = 1475 nm (203.4 THz), (b) λ = 1550 nm (193.5 THz), and (c) λ = 1600 nm (187.5 THz), respectively. (d) The absorptivity for waveguide perfect absorber consisting of a tapered metal chain of a silicon ridge waveguide. The inset shows the absorbed power per volume (inset) at an incident power of 1W for the wavelength of 1550 nm (193.5 THz).
Fig. 5
Fig. 5 (a) Schematic views of three different Schottky PD designs (Left: the tapered metal chain, center: metal strip with a width of 144 nm, Right: metal band). (b) Reflection, (c) Scattering and (d) Absorptivity of the three Schottky PD designs shown in Fig. 5(a). (e) Absorbed power density (cross-section veiw, x = 0 plane) of the proposed PD at the wavelength of 1550 nm (193.5 THz). The TE mode propagtes in the + y direction. (f) Estimated IQE of the Schottky PD. and (g) Responsivity of the three Schottky PD designs.
Fig. 6
Fig. 6 (a) Schematic views of the connected tapered metal chain. (b) Cross-sectional view of the electric field intensity profile at λ = 1525 nm (196.7 THz). Strong localization of the incident light still occurs at the metal nanobricks in the connected metal chain with W = 30 nm. (c) The absorptivity spectra for the discrete (W = 0 nm) and connected metal chains with various connection line widths.

Tables (1)

Tables Icon

Table 1 Estimated performance of silicon waveguide-based Schottky PDs at 1550 nm wavelength

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Responsivity = q hν ×A×IQE
Δ Φ B = q 4π ε Si V b W dep
I dark = C area A ** T 2 e (q Φ B / k B T)

Metrics