Abstract

The Diamond Light Source (DLS) beamline I15-1 measures atomic pair distribution functions (PDF) using scattering of 40-80 keV X-rays. A unique focusing element was needed to condense these X-rays from an initial large cross section (11.0 mm H × 4.2 mm V) into a required spot size of FWHM ≈680 μm (H) × 20 μm (V) at a variable position between the sample and the detector. The large numerical aperture is achieved by coating a silicon substrate over 1 m long with three multilayer stripes of Bragg angle 4.2 mrad. One stripe selects X-rays of each energy 40.0, 65.4, and 76.6 keV. Sixteen piezoelectric bimorph actuators attached to the sides of the mirror substrate adjusted the reflecting surface’s shape. Focal spots of vertical width < 15 µm were obtained at three positions over a 0.92 m range, with fast, easy switching from one focal position to another. Minimized root mean square slope errors were close to 0.5 µrad after subtraction of a uniform curvature. Reflectivity curves taken along each stripe showed consistent high peaks with generally small angular variation of peak positions. This is the first application of a 1 m long multilayer-coated bimorph mirror at a synchrotron beamline. Data collected with its help on a slice of a lithium ion battery’s cathode are presented.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient blazed grating with multilayer coating for tender X-ray energies

F. Senf, F. Bijkerk, F. Eggenstein, G. Gwalt, Q. Huang, R. Kruijs, O. Kutz, S. Lemke, E. Louis, M. Mertin, I. Packe, I. Rudolph, F. Schäfers, F. Siewert, A. Sokolov, J. M. Sturm, Ch. Waberski, Z. Wang, J. Wolf, T. Zeschke, and A. Erko
Opt. Express 24(12) 13220-13230 (2016)

Tunable two-color hard x-ray multilayer Bragg mirrors

S. Roling, S. Braun, P. Gawlitza, M. Wöstmann, E. Ziegler, and H. Zacharias
Opt. Lett. 39(9) 2782-2785 (2014)

Multilayer Laue lenses at high X-ray energies: performance and applications

Kevin T. Murray, Anders F. Pedersen, Istvan Mohacsi, Carsten Detlefs, Andrew J. Morgan, Mauro Prasciolu, Can Yildirim, Hugh Simons, Anders C. Jakobsen, Henry N. Chapman, Henning F. Poulsen, and Saša Bajt
Opt. Express 27(5) 7120-7138 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey, and S. J. L. Billinge, “Rapid-acquisition pair distribution function (RA-PDF) analysis,” J. Appl. Cryst. 36(6), 1342–1347 (2003).
    [Crossref]
  2. J. P. Sutter, P. A. Chater, M. R. Hillman, D. S. Keeble, M. G. Tucker, and H. Wilhelm, “Three-energy focusing Laue monochromator for the Diamond Light Source X-Ray Pair Distribution Function Beamline I15-1,” AIP Conf. Proc. 1741, 040005 (2016).
    [Crossref]
  3. A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
    [Crossref] [PubMed]
  4. M. Störmer, H. Gabrisch, C. Horstmann, U. Heidorn, F. Hertlein, J. Wiesmann, F. Siewert, and A. Rack, “Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources,” Rev. Sci. Instrum. 87(5), 051804 (2016).
    [Crossref] [PubMed]
  5. M. Störmer, F. Siewert, C. Horstmann, J. Buchheim, and G. Gwalt, “Coatings for FEL optics: preparation and characterization of B4C and Pt,” J. Synchrotron Radiat. 25(1), 116–122 (2018).
    [Crossref] [PubMed]
  6. R. Signorato, O. Hignette, and J. Goulon, “Multi-segmented piezoelectric mirrors as active/adaptive optics components,” J. Synchrotron Radiat. 5(3), 797–800 (1998).
    [Crossref] [PubMed]
  7. J. P. Sutter, P. A. Chater, R. Signorato, D. S. Keeble, M. R. Hillman, M. G. Tucker, S. G. Alcock, I. Nistea, and H. Wilhelm, “A novel, 1 m long multilayer-coated piezo deformable bimorph mirror for focusing high-energy X-rays,” AIP Conf. Proc. 2054, 030005 (2019).
    [Crossref]
  8. D. L. Windt, “IMD – Software for modelling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
    [Crossref]
  9. S. G. Alcock, I.-T. Nistea, R. Signorato, and K. Sawhney, “Dynamic adaptive X-ray optics. Part I. Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors,” J. Synchrotron Radiat. 26(1), 36–44 (2019).
    [Crossref] [PubMed]
  10. S. G. Alcock, I.-T. Nistea, R. Signorato, R. L. Owen, D. Axford, J. P. Sutter, A. Foster, and K. Sawhney, “Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams,” J. Synchrotron Radiat. 26(1), 45–51 (2019).
    [Crossref] [PubMed]
  11. S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods Phys. Res. Sect A 616, 224–228 (2010).
  12. O. Hignette, A. K. Freund, and E. Chinchio, “Incoherent x-ray mirror surface metrology,” Proc. SPIE 3152, 188–199 (1997).
    [Crossref]
  13. M. L. Hart, M. Drakopoulos, C. Reinhard, and T. Connolley, “Complete elliptical ring geometry provides energy and instrument calibration for synchrotron-based two-dimensional X-ray diffraction,” J. Appl. Cryst. 46(5), 1249–1260 (2013).
    [Crossref] [PubMed]
  14. J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
    [Crossref] [PubMed]
  15. M. Sánchez del Río and R. J. Dejus, “Status of XOP: an x-ray optics software toolkit,” Proc. SPIE 5536, 171–174 (2004).
    [Crossref]

2019 (3)

J. P. Sutter, P. A. Chater, R. Signorato, D. S. Keeble, M. R. Hillman, M. G. Tucker, S. G. Alcock, I. Nistea, and H. Wilhelm, “A novel, 1 m long multilayer-coated piezo deformable bimorph mirror for focusing high-energy X-rays,” AIP Conf. Proc. 2054, 030005 (2019).
[Crossref]

S. G. Alcock, I.-T. Nistea, R. Signorato, and K. Sawhney, “Dynamic adaptive X-ray optics. Part I. Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors,” J. Synchrotron Radiat. 26(1), 36–44 (2019).
[Crossref] [PubMed]

S. G. Alcock, I.-T. Nistea, R. Signorato, R. L. Owen, D. Axford, J. P. Sutter, A. Foster, and K. Sawhney, “Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams,” J. Synchrotron Radiat. 26(1), 45–51 (2019).
[Crossref] [PubMed]

2018 (1)

M. Störmer, F. Siewert, C. Horstmann, J. Buchheim, and G. Gwalt, “Coatings for FEL optics: preparation and characterization of B4C and Pt,” J. Synchrotron Radiat. 25(1), 116–122 (2018).
[Crossref] [PubMed]

2017 (1)

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

2016 (2)

J. P. Sutter, P. A. Chater, M. R. Hillman, D. S. Keeble, M. G. Tucker, and H. Wilhelm, “Three-energy focusing Laue monochromator for the Diamond Light Source X-Ray Pair Distribution Function Beamline I15-1,” AIP Conf. Proc. 1741, 040005 (2016).
[Crossref]

M. Störmer, H. Gabrisch, C. Horstmann, U. Heidorn, F. Hertlein, J. Wiesmann, F. Siewert, and A. Rack, “Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources,” Rev. Sci. Instrum. 87(5), 051804 (2016).
[Crossref] [PubMed]

2013 (1)

M. L. Hart, M. Drakopoulos, C. Reinhard, and T. Connolley, “Complete elliptical ring geometry provides energy and instrument calibration for synchrotron-based two-dimensional X-ray diffraction,” J. Appl. Cryst. 46(5), 1249–1260 (2013).
[Crossref] [PubMed]

2010 (2)

S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods Phys. Res. Sect A 616, 224–228 (2010).

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

2004 (1)

M. Sánchez del Río and R. J. Dejus, “Status of XOP: an x-ray optics software toolkit,” Proc. SPIE 5536, 171–174 (2004).
[Crossref]

2003 (1)

P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey, and S. J. L. Billinge, “Rapid-acquisition pair distribution function (RA-PDF) analysis,” J. Appl. Cryst. 36(6), 1342–1347 (2003).
[Crossref]

1998 (2)

R. Signorato, O. Hignette, and J. Goulon, “Multi-segmented piezoelectric mirrors as active/adaptive optics components,” J. Synchrotron Radiat. 5(3), 797–800 (1998).
[Crossref] [PubMed]

D. L. Windt, “IMD – Software for modelling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[Crossref]

1997 (1)

O. Hignette, A. K. Freund, and E. Chinchio, “Incoherent x-ray mirror surface metrology,” Proc. SPIE 3152, 188–199 (1997).
[Crossref]

Alcock, S. G.

J. P. Sutter, P. A. Chater, R. Signorato, D. S. Keeble, M. R. Hillman, M. G. Tucker, S. G. Alcock, I. Nistea, and H. Wilhelm, “A novel, 1 m long multilayer-coated piezo deformable bimorph mirror for focusing high-energy X-rays,” AIP Conf. Proc. 2054, 030005 (2019).
[Crossref]

S. G. Alcock, I.-T. Nistea, R. Signorato, and K. Sawhney, “Dynamic adaptive X-ray optics. Part I. Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors,” J. Synchrotron Radiat. 26(1), 36–44 (2019).
[Crossref] [PubMed]

S. G. Alcock, I.-T. Nistea, R. Signorato, R. L. Owen, D. Axford, J. P. Sutter, A. Foster, and K. Sawhney, “Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams,” J. Synchrotron Radiat. 26(1), 45–51 (2019).
[Crossref] [PubMed]

S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods Phys. Res. Sect A 616, 224–228 (2010).

Ashton, A. W.

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

Axford, D.

S. G. Alcock, I.-T. Nistea, R. Signorato, R. L. Owen, D. Axford, J. P. Sutter, A. Foster, and K. Sawhney, “Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams,” J. Synchrotron Radiat. 26(1), 45–51 (2019).
[Crossref] [PubMed]

Baumbach, T.

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

Billinge, S. J. L.

P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey, and S. J. L. Billinge, “Rapid-acquisition pair distribution function (RA-PDF) analysis,” J. Appl. Cryst. 36(6), 1342–1347 (2003).
[Crossref]

Buchheim, J.

M. Störmer, F. Siewert, C. Horstmann, J. Buchheim, and G. Gwalt, “Coatings for FEL optics: preparation and characterization of B4C and Pt,” J. Synchrotron Radiat. 25(1), 116–122 (2018).
[Crossref] [PubMed]

Chang, P. C. Y.

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

Chater, P. A.

J. P. Sutter, P. A. Chater, R. Signorato, D. S. Keeble, M. R. Hillman, M. G. Tucker, S. G. Alcock, I. Nistea, and H. Wilhelm, “A novel, 1 m long multilayer-coated piezo deformable bimorph mirror for focusing high-energy X-rays,” AIP Conf. Proc. 2054, 030005 (2019).
[Crossref]

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

J. P. Sutter, P. A. Chater, M. R. Hillman, D. S. Keeble, M. G. Tucker, and H. Wilhelm, “Three-energy focusing Laue monochromator for the Diamond Light Source X-Ray Pair Distribution Function Beamline I15-1,” AIP Conf. Proc. 1741, 040005 (2016).
[Crossref]

Chinchio, E.

O. Hignette, A. K. Freund, and E. Chinchio, “Incoherent x-ray mirror surface metrology,” Proc. SPIE 3152, 188–199 (1997).
[Crossref]

Chupas, P. J.

P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey, and S. J. L. Billinge, “Rapid-acquisition pair distribution function (RA-PDF) analysis,” J. Appl. Cryst. 36(6), 1342–1347 (2003).
[Crossref]

Cloetens, P.

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

Connolley, T.

M. L. Hart, M. Drakopoulos, C. Reinhard, and T. Connolley, “Complete elliptical ring geometry provides energy and instrument calibration for synchrotron-based two-dimensional X-ray diffraction,” J. Appl. Cryst. 46(5), 1249–1260 (2013).
[Crossref] [PubMed]

Day, S. J.

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

Dejus, R. J.

M. Sánchez del Río and R. J. Dejus, “Status of XOP: an x-ray optics software toolkit,” Proc. SPIE 5536, 171–174 (2004).
[Crossref]

Dietsch, R.

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

Drakopoulos, M.

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

M. L. Hart, M. Drakopoulos, C. Reinhard, and T. Connolley, “Complete elliptical ring geometry provides energy and instrument calibration for synchrotron-based two-dimensional X-ray diffraction,” J. Appl. Cryst. 46(5), 1249–1260 (2013).
[Crossref] [PubMed]

Filik, J.

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

Foster, A.

S. G. Alcock, I.-T. Nistea, R. Signorato, R. L. Owen, D. Axford, J. P. Sutter, A. Foster, and K. Sawhney, “Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams,” J. Synchrotron Radiat. 26(1), 45–51 (2019).
[Crossref] [PubMed]

Freund, A. K.

O. Hignette, A. K. Freund, and E. Chinchio, “Incoherent x-ray mirror surface metrology,” Proc. SPIE 3152, 188–199 (1997).
[Crossref]

Gabrisch, H.

M. Störmer, H. Gabrisch, C. Horstmann, U. Heidorn, F. Hertlein, J. Wiesmann, F. Siewert, and A. Rack, “Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources,” Rev. Sci. Instrum. 87(5), 051804 (2016).
[Crossref] [PubMed]

Gerring, M. W.

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

Goulon, J.

R. Signorato, O. Hignette, and J. Goulon, “Multi-segmented piezoelectric mirrors as active/adaptive optics components,” J. Synchrotron Radiat. 5(3), 797–800 (1998).
[Crossref] [PubMed]

Grey, C. P.

P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey, and S. J. L. Billinge, “Rapid-acquisition pair distribution function (RA-PDF) analysis,” J. Appl. Cryst. 36(6), 1342–1347 (2003).
[Crossref]

Grigoriev, D.

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

Gwalt, G.

M. Störmer, F. Siewert, C. Horstmann, J. Buchheim, and G. Gwalt, “Coatings for FEL optics: preparation and characterization of B4C and Pt,” J. Synchrotron Radiat. 25(1), 116–122 (2018).
[Crossref] [PubMed]

Hanson, J. C.

P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey, and S. J. L. Billinge, “Rapid-acquisition pair distribution function (RA-PDF) analysis,” J. Appl. Cryst. 36(6), 1342–1347 (2003).
[Crossref]

Hart, M. L.

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

M. L. Hart, M. Drakopoulos, C. Reinhard, and T. Connolley, “Complete elliptical ring geometry provides energy and instrument calibration for synchrotron-based two-dimensional X-ray diffraction,” J. Appl. Cryst. 46(5), 1249–1260 (2013).
[Crossref] [PubMed]

Heidorn, U.

M. Störmer, H. Gabrisch, C. Horstmann, U. Heidorn, F. Hertlein, J. Wiesmann, F. Siewert, and A. Rack, “Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources,” Rev. Sci. Instrum. 87(5), 051804 (2016).
[Crossref] [PubMed]

Helfen, L.

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

Hertlein, F.

M. Störmer, H. Gabrisch, C. Horstmann, U. Heidorn, F. Hertlein, J. Wiesmann, F. Siewert, and A. Rack, “Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources,” Rev. Sci. Instrum. 87(5), 051804 (2016).
[Crossref] [PubMed]

Hignette, O.

R. Signorato, O. Hignette, and J. Goulon, “Multi-segmented piezoelectric mirrors as active/adaptive optics components,” J. Synchrotron Radiat. 5(3), 797–800 (1998).
[Crossref] [PubMed]

O. Hignette, A. K. Freund, and E. Chinchio, “Incoherent x-ray mirror surface metrology,” Proc. SPIE 3152, 188–199 (1997).
[Crossref]

Hillman, M. R.

J. P. Sutter, P. A. Chater, R. Signorato, D. S. Keeble, M. R. Hillman, M. G. Tucker, S. G. Alcock, I. Nistea, and H. Wilhelm, “A novel, 1 m long multilayer-coated piezo deformable bimorph mirror for focusing high-energy X-rays,” AIP Conf. Proc. 2054, 030005 (2019).
[Crossref]

J. P. Sutter, P. A. Chater, M. R. Hillman, D. S. Keeble, M. G. Tucker, and H. Wilhelm, “Three-energy focusing Laue monochromator for the Diamond Light Source X-Ray Pair Distribution Function Beamline I15-1,” AIP Conf. Proc. 1741, 040005 (2016).
[Crossref]

Holz, T.

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

Horstmann, C.

M. Störmer, F. Siewert, C. Horstmann, J. Buchheim, and G. Gwalt, “Coatings for FEL optics: preparation and characterization of B4C and Pt,” J. Synchrotron Radiat. 25(1), 116–122 (2018).
[Crossref] [PubMed]

M. Störmer, H. Gabrisch, C. Horstmann, U. Heidorn, F. Hertlein, J. Wiesmann, F. Siewert, and A. Rack, “Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources,” Rev. Sci. Instrum. 87(5), 051804 (2016).
[Crossref] [PubMed]

Keeble, D. S.

J. P. Sutter, P. A. Chater, R. Signorato, D. S. Keeble, M. R. Hillman, M. G. Tucker, S. G. Alcock, I. Nistea, and H. Wilhelm, “A novel, 1 m long multilayer-coated piezo deformable bimorph mirror for focusing high-energy X-rays,” AIP Conf. Proc. 2054, 030005 (2019).
[Crossref]

J. P. Sutter, P. A. Chater, M. R. Hillman, D. S. Keeble, M. G. Tucker, and H. Wilhelm, “Three-energy focusing Laue monochromator for the Diamond Light Source X-Ray Pair Distribution Function Beamline I15-1,” AIP Conf. Proc. 1741, 040005 (2016).
[Crossref]

Krämer, M.

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

Lammert, H.

S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods Phys. Res. Sect A 616, 224–228 (2010).

Lee, P. L.

P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey, and S. J. L. Billinge, “Rapid-acquisition pair distribution function (RA-PDF) analysis,” J. Appl. Cryst. 36(6), 1342–1347 (2003).
[Crossref]

Magdysyuk, O. V.

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

Meduna, M.

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

Michalik, S.

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

Nistea, I.

J. P. Sutter, P. A. Chater, R. Signorato, D. S. Keeble, M. R. Hillman, M. G. Tucker, S. G. Alcock, I. Nistea, and H. Wilhelm, “A novel, 1 m long multilayer-coated piezo deformable bimorph mirror for focusing high-energy X-rays,” AIP Conf. Proc. 2054, 030005 (2019).
[Crossref]

Nistea, I.-T.

S. G. Alcock, I.-T. Nistea, R. Signorato, R. L. Owen, D. Axford, J. P. Sutter, A. Foster, and K. Sawhney, “Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams,” J. Synchrotron Radiat. 26(1), 45–51 (2019).
[Crossref] [PubMed]

S. G. Alcock, I.-T. Nistea, R. Signorato, and K. Sawhney, “Dynamic adaptive X-ray optics. Part I. Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors,” J. Synchrotron Radiat. 26(1), 36–44 (2019).
[Crossref] [PubMed]

Noll, T.

S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods Phys. Res. Sect A 616, 224–228 (2010).

Owen, R. L.

S. G. Alcock, I.-T. Nistea, R. Signorato, R. L. Owen, D. Axford, J. P. Sutter, A. Foster, and K. Sawhney, “Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams,” J. Synchrotron Radiat. 26(1), 45–51 (2019).
[Crossref] [PubMed]

Pedersen, U.

S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods Phys. Res. Sect A 616, 224–228 (2010).

Qiu, X.

P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey, and S. J. L. Billinge, “Rapid-acquisition pair distribution function (RA-PDF) analysis,” J. Appl. Cryst. 36(6), 1342–1347 (2003).
[Crossref]

Rack, A.

M. Störmer, H. Gabrisch, C. Horstmann, U. Heidorn, F. Hertlein, J. Wiesmann, F. Siewert, and A. Rack, “Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources,” Rev. Sci. Instrum. 87(5), 051804 (2016).
[Crossref] [PubMed]

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

Rack, T.

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

Reinhard, C.

M. L. Hart, M. Drakopoulos, C. Reinhard, and T. Connolley, “Complete elliptical ring geometry provides energy and instrument calibration for synchrotron-based two-dimensional X-ray diffraction,” J. Appl. Cryst. 46(5), 1249–1260 (2013).
[Crossref] [PubMed]

Riotte, M.

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

Sánchez del Río, M.

M. Sánchez del Río and R. J. Dejus, “Status of XOP: an x-ray optics software toolkit,” Proc. SPIE 5536, 171–174 (2004).
[Crossref]

Sawhney, K.

S. G. Alcock, I.-T. Nistea, R. Signorato, R. L. Owen, D. Axford, J. P. Sutter, A. Foster, and K. Sawhney, “Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams,” J. Synchrotron Radiat. 26(1), 45–51 (2019).
[Crossref] [PubMed]

S. G. Alcock, I.-T. Nistea, R. Signorato, and K. Sawhney, “Dynamic adaptive X-ray optics. Part I. Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors,” J. Synchrotron Radiat. 26(1), 36–44 (2019).
[Crossref] [PubMed]

Sawhney, K. J. S.

S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods Phys. Res. Sect A 616, 224–228 (2010).

Scott, S.

S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods Phys. Res. Sect A 616, 224–228 (2010).

Senf, F.

S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods Phys. Res. Sect A 616, 224–228 (2010).

Siewert, F.

M. Störmer, F. Siewert, C. Horstmann, J. Buchheim, and G. Gwalt, “Coatings for FEL optics: preparation and characterization of B4C and Pt,” J. Synchrotron Radiat. 25(1), 116–122 (2018).
[Crossref] [PubMed]

M. Störmer, H. Gabrisch, C. Horstmann, U. Heidorn, F. Hertlein, J. Wiesmann, F. Siewert, and A. Rack, “Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources,” Rev. Sci. Instrum. 87(5), 051804 (2016).
[Crossref] [PubMed]

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods Phys. Res. Sect A 616, 224–228 (2010).

Signorato, R.

S. G. Alcock, I.-T. Nistea, R. Signorato, and K. Sawhney, “Dynamic adaptive X-ray optics. Part I. Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors,” J. Synchrotron Radiat. 26(1), 36–44 (2019).
[Crossref] [PubMed]

S. G. Alcock, I.-T. Nistea, R. Signorato, R. L. Owen, D. Axford, J. P. Sutter, A. Foster, and K. Sawhney, “Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams,” J. Synchrotron Radiat. 26(1), 45–51 (2019).
[Crossref] [PubMed]

J. P. Sutter, P. A. Chater, R. Signorato, D. S. Keeble, M. R. Hillman, M. G. Tucker, S. G. Alcock, I. Nistea, and H. Wilhelm, “A novel, 1 m long multilayer-coated piezo deformable bimorph mirror for focusing high-energy X-rays,” AIP Conf. Proc. 2054, 030005 (2019).
[Crossref]

R. Signorato, O. Hignette, and J. Goulon, “Multi-segmented piezoelectric mirrors as active/adaptive optics components,” J. Synchrotron Radiat. 5(3), 797–800 (1998).
[Crossref] [PubMed]

Smith, A.

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

Störmer, M.

M. Störmer, F. Siewert, C. Horstmann, J. Buchheim, and G. Gwalt, “Coatings for FEL optics: preparation and characterization of B4C and Pt,” J. Synchrotron Radiat. 25(1), 116–122 (2018).
[Crossref] [PubMed]

M. Störmer, H. Gabrisch, C. Horstmann, U. Heidorn, F. Hertlein, J. Wiesmann, F. Siewert, and A. Rack, “Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources,” Rev. Sci. Instrum. 87(5), 051804 (2016).
[Crossref] [PubMed]

Sutter, J. P.

J. P. Sutter, P. A. Chater, R. Signorato, D. S. Keeble, M. R. Hillman, M. G. Tucker, S. G. Alcock, I. Nistea, and H. Wilhelm, “A novel, 1 m long multilayer-coated piezo deformable bimorph mirror for focusing high-energy X-rays,” AIP Conf. Proc. 2054, 030005 (2019).
[Crossref]

S. G. Alcock, I.-T. Nistea, R. Signorato, R. L. Owen, D. Axford, J. P. Sutter, A. Foster, and K. Sawhney, “Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams,” J. Synchrotron Radiat. 26(1), 45–51 (2019).
[Crossref] [PubMed]

J. P. Sutter, P. A. Chater, M. R. Hillman, D. S. Keeble, M. G. Tucker, and H. Wilhelm, “Three-energy focusing Laue monochromator for the Diamond Light Source X-Ray Pair Distribution Function Beamline I15-1,” AIP Conf. Proc. 1741, 040005 (2016).
[Crossref]

Tang, C. C.

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

Terrill, N. J.

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

Tucker, M. G.

J. P. Sutter, P. A. Chater, R. Signorato, D. S. Keeble, M. R. Hillman, M. G. Tucker, S. G. Alcock, I. Nistea, and H. Wilhelm, “A novel, 1 m long multilayer-coated piezo deformable bimorph mirror for focusing high-energy X-rays,” AIP Conf. Proc. 2054, 030005 (2019).
[Crossref]

J. P. Sutter, P. A. Chater, M. R. Hillman, D. S. Keeble, M. G. Tucker, and H. Wilhelm, “Three-energy focusing Laue monochromator for the Diamond Light Source X-Ray Pair Distribution Function Beamline I15-1,” AIP Conf. Proc. 1741, 040005 (2016).
[Crossref]

Walton, R.

S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods Phys. Res. Sect A 616, 224–228 (2010).

Weitkamp, T.

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

Wharmby, M. T.

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

Wiesmann, J.

M. Störmer, H. Gabrisch, C. Horstmann, U. Heidorn, F. Hertlein, J. Wiesmann, F. Siewert, and A. Rack, “Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources,” Rev. Sci. Instrum. 87(5), 051804 (2016).
[Crossref] [PubMed]

Wilhelm, H.

J. P. Sutter, P. A. Chater, R. Signorato, D. S. Keeble, M. R. Hillman, M. G. Tucker, S. G. Alcock, I. Nistea, and H. Wilhelm, “A novel, 1 m long multilayer-coated piezo deformable bimorph mirror for focusing high-energy X-rays,” AIP Conf. Proc. 2054, 030005 (2019).
[Crossref]

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

J. P. Sutter, P. A. Chater, M. R. Hillman, D. S. Keeble, M. G. Tucker, and H. Wilhelm, “Three-energy focusing Laue monochromator for the Diamond Light Source X-Ray Pair Distribution Function Beamline I15-1,” AIP Conf. Proc. 1741, 040005 (2016).
[Crossref]

Windt, D. L.

D. L. Windt, “IMD – Software for modelling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[Crossref]

Zeschke, T.

S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods Phys. Res. Sect A 616, 224–228 (2010).

Ziegler, E.

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

AIP Conf. Proc. (2)

J. P. Sutter, P. A. Chater, M. R. Hillman, D. S. Keeble, M. G. Tucker, and H. Wilhelm, “Three-energy focusing Laue monochromator for the Diamond Light Source X-Ray Pair Distribution Function Beamline I15-1,” AIP Conf. Proc. 1741, 040005 (2016).
[Crossref]

J. P. Sutter, P. A. Chater, R. Signorato, D. S. Keeble, M. R. Hillman, M. G. Tucker, S. G. Alcock, I. Nistea, and H. Wilhelm, “A novel, 1 m long multilayer-coated piezo deformable bimorph mirror for focusing high-energy X-rays,” AIP Conf. Proc. 2054, 030005 (2019).
[Crossref]

Comput. Phys. (1)

D. L. Windt, “IMD – Software for modelling the optical properties of multilayer films,” Comput. Phys. 12(4), 360–370 (1998).
[Crossref]

J. Appl. Cryst. (3)

M. L. Hart, M. Drakopoulos, C. Reinhard, and T. Connolley, “Complete elliptical ring geometry provides energy and instrument calibration for synchrotron-based two-dimensional X-ray diffraction,” J. Appl. Cryst. 46(5), 1249–1260 (2013).
[Crossref] [PubMed]

J. Filik, A. W. Ashton, P. C. Y. Chang, P. A. Chater, S. J. Day, M. Drakopoulos, M. W. Gerring, M. L. Hart, O. V. Magdysyuk, S. Michalik, A. Smith, C. C. Tang, N. J. Terrill, M. T. Wharmby, and H. Wilhelm, “Processing two-dimensional X-ray diffraction and small-angle scattering data in DAWN 2,” J. Appl. Cryst. 50(3), 959–966 (2017).
[Crossref] [PubMed]

P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey, and S. J. L. Billinge, “Rapid-acquisition pair distribution function (RA-PDF) analysis,” J. Appl. Cryst. 36(6), 1342–1347 (2003).
[Crossref]

J. Synchrotron Radiat. (5)

S. G. Alcock, I.-T. Nistea, R. Signorato, and K. Sawhney, “Dynamic adaptive X-ray optics. Part I. Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors,” J. Synchrotron Radiat. 26(1), 36–44 (2019).
[Crossref] [PubMed]

S. G. Alcock, I.-T. Nistea, R. Signorato, R. L. Owen, D. Axford, J. P. Sutter, A. Foster, and K. Sawhney, “Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams,” J. Synchrotron Radiat. 26(1), 45–51 (2019).
[Crossref] [PubMed]

A. Rack, T. Weitkamp, M. Riotte, D. Grigoriev, T. Rack, L. Helfen, T. Baumbach, R. Dietsch, T. Holz, M. Krämer, F. Siewert, M. Meduňa, P. Cloetens, and E. Ziegler, “Comparative study of multilayers used in monochromators for synchrotron-based coherent hard X-ray imaging,” J. Synchrotron Radiat. 17(4), 496–510 (2010).
[Crossref] [PubMed]

M. Störmer, F. Siewert, C. Horstmann, J. Buchheim, and G. Gwalt, “Coatings for FEL optics: preparation and characterization of B4C and Pt,” J. Synchrotron Radiat. 25(1), 116–122 (2018).
[Crossref] [PubMed]

R. Signorato, O. Hignette, and J. Goulon, “Multi-segmented piezoelectric mirrors as active/adaptive optics components,” J. Synchrotron Radiat. 5(3), 797–800 (1998).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. Sect A (1)

S. G. Alcock, K. J. S. Sawhney, S. Scott, U. Pedersen, R. Walton, F. Siewert, T. Zeschke, F. Senf, T. Noll, and H. Lammert, “The Diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nanometre repeatability,” Nucl. Instrum. Methods Phys. Res. Sect A 616, 224–228 (2010).

Proc. SPIE (2)

O. Hignette, A. K. Freund, and E. Chinchio, “Incoherent x-ray mirror surface metrology,” Proc. SPIE 3152, 188–199 (1997).
[Crossref]

M. Sánchez del Río and R. J. Dejus, “Status of XOP: an x-ray optics software toolkit,” Proc. SPIE 5536, 171–174 (2004).
[Crossref]

Rev. Sci. Instrum. (1)

M. Störmer, H. Gabrisch, C. Horstmann, U. Heidorn, F. Hertlein, J. Wiesmann, F. Siewert, and A. Rack, “Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources,” Rev. Sci. Instrum. 87(5), 051804 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Schematic of the I15-1 side station. The main station I15 lies directly along the wiggler’s central axis. The I15-1 side station lies 1.5 mrad horizontally off the central axis. The divergent X-ray beam (0.5 mrad H × 0.2 mrad V) that enters I15-1 through the beam splitter is first collimated with white beam slits (typically 0.04 mrad H × 0.13 mrad V), horizontally focused by the bent Laue monochromator [2] and then vertically focused by the multilayer-coated mirror described in this paper.
Fig. 2
Fig. 2 Schematic of the complete multilayer-coated bimorph mirror of the Diamond Light Source beamline I15-1. An example of a local curvature introduced to the reflecting surface by one of the piezo actuators is shown.
Fig. 3
Fig. 3 Photograph of the vertically focusing, multilayer-coated bimorph mirror in its holder and UHV positioners in the DLS beamline I15-1. The three vertical jacks, one in the front of the photo and the other two in the rear, align the mirror in pitch, height, and roll. Stripe change (horizontal translation) and yaw are actuated by means of two in-air translations (upstream and downstream, not shown). The positioning jacks and stages are directly connected to the granite support and decoupled from the vacuum vessel. The Cu braids visible in the photo are used for thermal stabilization of the mirror.
Fig. 4
Fig. 4 Theoretical transmission of X-rays of the three operational energies as a function of distance from the edge of an ideal gold cylinder of 5.08 mm diameter. The width of the X-ray beam is neglected. Positive values of position are oriented into the cylinder. Attenuation lengths of 39.9 µm for 40.0 keV, 134.8 µm for 65.4 keV, and 212.8 µm for 76.6 keV were obtained from the software package XOP [15].
Fig. 5
Fig. 5 (a) Vertical knife-edge scan (circles) compared with its Gaussian fit (solid curve, FWHM = 9.7 µm) and a SHADOW ray-tracing simulation (dashed curve, FWHM = 12.6 µm) for the Pt/B4C stripe at the focus 3.82 m downstream from the multilayer mirror. In the SHADOW simulation, the vertically focusing mirror is assumed to have a rms tangential slope error of 0.8 mrad and to be focusing the beam 3.5 m downstream. The SHADOW simulation has been smoothed so that statistical noise is removed without altering the overall width of the theoretical beam profile. (b) Horizontal focused profile of 76.6 keV X-rays measured by an X-ray imaging camera with a spatial resolution of 5.2 µm/pixel at the Near position.
Fig. 6
Fig. 6 Example of deconvolution of knife-edge scan using gold rod: (a) raw data and (b) deconvoluted result of the rising-edge scan of the 76.6 keV X-ray focus at the Mid focal position.
Fig. 7
Fig. 7 Rising-edge knife-edge scans of focused X-rays using a gold rod. (a)-(c): Deconvoluted scans for 76.6 keV X-rays focused at Far, Mid, and Near focal positions, respectively. (d)-(f) Deconvoluted scans for 65.4 keV X-rays focused at Far, Mid, and Near focal positions, respectively. (g)-(i) Scans for 40.0 keV X-rays focused at Far, Mid, and Near focal positions, respectively. For these no deconvolution was required (see text).
Fig. 8
Fig. 8 (a) Slope errors determined from X-ray pencil beam scans on all three stripes. Successive plots are displaced vertically in steps of 1 µrad for clarity. (b) Same slope errors as in (a) after mathematically subtracting the best fit cylinder. (c) Slope errors measured ex situ on the Diamond-NOM assuming a focal distance of 3.827 m before and after mathematical subtraction of best fit cylinder. The residual is displaced upward by 1 µrad for clarity. (d) Voltage sets applied to the piezoelectric bimorph actuators on the Diamond-NOM, for all focal distances at which X-ray knife-edge scans were taken, and for the X-ray pencil beam and reflectivity scans.
Fig. 9
Fig. 9 Contour plots of multilayer reflectivity as a function of position along the mirror and mirror pitch angle with respect to the incident beam: (a) Ni/B4C at 40.0 keV (b) W/B4C at 65.4 keV (c) Pt/B4C at 76.6 keV. The top and bottom edges of each contour plot are slanted because the beam footprint on the mirror changes its position along the mirror’s length as the mirror’s pitch angle is scanned.
Fig. 10
Fig. 10 Rocking curves of multilayer reflectivity at center of mirror for each stripe: (a) Ni/B4C at 40.0 keV (b) W/B4C at 65.4 keV and (c) Pt/B4C at 76.6 keV.
Fig. 11
Fig. 11 Maximum reflectivity of the rocking curve taken from each multilayer stripe versus the position along the mirror.
Fig. 12
Fig. 12 Slope error measured by pencil beam scans (black + ’s) compared with peak pitch angles of the reflectivity curve (red × ’s) for (a) Ni/B4C at 40.0 keV (b) W/B4C at 65.4 keV, and (c) Pt/B4C at 76.6 keV. Both the slope errors and the reflectivity peak angles in each graph are plotted on intervals of equal width for easy comparison. The gaps on the left-hand side of the graph in (c) are at points where the reflected intensity was too low to allow accurate determination of the beam position on the X-ray imaging scintillator. Not coincidentally, they are located where the peak pitch angle of the reflectivity deviates most strongly from its average value. The rms slope error within the active region is indicated in each graph.
Fig. 13
Fig. 13 Relative variation of the multilayer d-spacing along the length of each stripe of the multilayer bimorph mirror. Consecutive plots are vertically displaced in steps of 0.01.
Fig. 14
Fig. 14 Comparison of slope errors measured using X-ray pencil beam scans on each stripe with a measurement made ex situ on the Diamond-NOM [11] when all voltages on the bimorph actuators were set to 0 V. A best-fit linear slope, which corresponds to a uniform curvature, was subtracted from each data set to make the local slope variations clearer. On the Pt/B4C stripe there are gaps in the data where the reflected beam was below detectable levels. Consecutive data plots are shifted upward in steps of 5 µrad.
Fig. 15
Fig. 15 (a) Comparison of the slope error of the Ni/B4C stripe with the bimorph kept inactive and with an optimized bimorph, as measured by pencil beam scans using 40.0 keV X-rays. These results include the far edges outside the active area (not displayed in Fig. 8) for completeness, although these are not generally illuminated. (b) Vertical knife-edge scans taken of the 76.6 keV X-ray spot at the Near position after focusing by the Pt/B4C stripe with an optimized bimorph and with an inactive bimorph. The profiles have purposely not been deconvoluted, as this is not necessary to demonstrate how effectively the bimorph improves the focus.
Fig. 16
Fig. 16 Example of X-ray scattering data and corresponding PDF: (a,b) A Si standard collected in capillary geometry while focusing on the PDF detector, 200 mm downstream of the sample; (c,d) A 20 μm thick layer of a Li2MnO3 cathode within a battery cell collected using the mirror to focus on the cathode layer.

Tables (2)

Tables Icon

Table 1 Specifications of the three multilayer coatings on the I15-1 vertically focusing bimorph mirror as determined by Rigaku Innovative Technologies. The grazing angle of incidence at the center of the mirror’s active area is 4.2 mrad. The gradient of each multilayer’s period was calculated for a focal distance of 4 m from the mirror’s center. Γ is the ratio of the high-density layer’s thickness to the multilayer period.

Tables Icon

Table 2 Statistics of measured rocking curves shown in Fig. 9.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ=2d n 2 co s 2 θ B ,
Δd d ( 1+ 2δ sin 2 θ B )cot θ B Δ θ B .
Δ θ rock =Δ θ slope + Δd d tan θ B .

Metrics