Abstract

In order to solve the problem of low sensitivity and poor selectivity in biochemical sensing using terahertz technology, a new sensing scheme based on photonic crystal cavity structure is proposed. It is composed of two identical photonic crystal slabs, each of which consists of a square lattice of silicon-based cylindrical pillars on a silicon substrate. The geometric parameters of the cavity are optimized to obtain a guided resonance peak at 529.2 GHz with a high quality factor of 529. The detected object is located in the middle of cavity where the electric field is strongly localized and confined. The effective detection of lactose with only a few microns thick is taken as an example to demonstrate the sensing performance of this cavity. A distinct decrease in transmittance at resonance peak is observed. The sensitivity using our proposed cavity is 31 times higher than that of using a substrate. Moreover, the selectivity of this photonic crystal cavity for the target is also verified by using fructose as the non-target. These results show that the photonic crystal cavity has potential to be applied for fingerprint detection with high sensitivity as well as selectivity in terahertz sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Planar antenna array as a highly sensitive terahertz sensor

Fei Shen, Jianyuan Qin, and Zhanghua Han
Appl. Opt. 58(3) 540-544 (2019)

Terahertz gas sensing based on a simple one-dimensional photonic crystal cavity with high-quality factors

Tao Chen, Zhanghua Han, Jianjun Liu, and Zhi Hong
Appl. Opt. 53(16) 3454-3458 (2014)

Simultaneously high-Q and high-sensitivity slotted photonic crystal nanofiber cavity for complex refractive index sensing

Chao-Sheng Deng, Ming-Jun Li, Jie Peng, Wen-Liang Liu, and Jian-Xin Zhong
J. Opt. Soc. Am. B 34(8) 1624-1631 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
    [Crossref]
  2. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  3. M. Massaouti, C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, and S. Tzortzakis, “Detection of harmful residues in honey using terahertz time-domain spectroscopy,” Appl. Spectrosc. 67(11), 1264–1269 (2013).
    [Crossref] [PubMed]
  4. H. B. Liu, Y. Chen, G. J. Bastiaans, and X. C. Zhang, “Detection and identification of explosive RDX by THz diffuse reflection spectroscopy,” Opt. Express 14(1), 415–423 (2006).
    [Crossref] [PubMed]
  5. L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2(9), 541–543 (2008).
    [Crossref]
  6. M. Zhang, Z. Yang, M. Tang, D. Wang, H. Wang, S. Yan, D. Wei, and H. L. Cui, “Terahertz Spectroscopic Signatures of Microcystin Aptamer Solution Probed with a Microfluidic Chip,” Sensors (Basel) 19(3), 534 (2019).
    [Crossref] [PubMed]
  7. X. Wang, H. Meng, S. Deng, C. Lao, Z. Wei, F. Wang, C. Tan, and X. Huang, “Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface,” Nanomaterials (Basel) 9(3), 385 (2019).
    [Crossref] [PubMed]
  8. R. Wang, Q. Wu, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai, J. Yao, and J. Xu, “Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures,” Appl. Phys. Lett. 114(12), 121102 (2019).
    [Crossref]
  9. P. G. Hermannsson, K. T. Sørensen, C. Vannahme, C. L. Smith, J. J. Klein, M. M. Russew, G. Grützner, and A. Kristensen, “All-polymer photonic crystal slab sensor,” Opt. Express 23(13), 16529–16539 (2015).
    [Crossref] [PubMed]
  10. S. Boonruang, N. Srisuai, R. Charlermroj, M. Makornwattana, A. Somboonkaew, M. Horprathum, and N. Karoonuthaisiri, “Excitation of multi-order guided mode resonance for multiple color fluorescence enhancement,” Opt. Laser Technol. 106, 410–416 (2018).
    [Crossref]
  11. G. Sancho-Fornes, M. Avella-Oliver, J. Carrascosa, E. Fernandez, E. M. Brun, and Á. Maquieira, “Disk-based one-dimensional photonic crystal slabs for label-free immunosensing,” Biosens. Bioelectron. 126, 315–323 (2019).
    [Crossref] [PubMed]
  12. O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 64470P (2007).
    [Crossref]
  13. B. You, J. Y. Lu, C. P. Yu, T. A. Liu, and J. L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012).
    [Crossref] [PubMed]
  14. S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
    [Crossref] [PubMed]
  15. D. K. Lee, J. H. Kang, J. S. Lee, H. S. Kim, C. Kim, J. H. Kim, T. Lee, J. H. Son, Q. H. Park, and M. Seo, “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep. 5(1), 15459 (2015).
    [Crossref] [PubMed]
  16. L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
    [Crossref] [PubMed]
  17. L. Chen, N. Xu, L. Singh, T. Cui, R. J. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
    [Crossref]
  18. A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
    [Crossref] [PubMed]
  19. A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
    [Crossref] [PubMed]
  20. W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
    [Crossref]
  21. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 65(23), 235112 (2002).
    [Crossref]
  22. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003).
    [Crossref]
  23. W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005).
    [Crossref]
  24. Y. Shuai, D. Zhao, Z. Tian, J. H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
    [Crossref] [PubMed]
  25. F. Fan, W. Gu, X. Wang, and S. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
    [Crossref]
  26. S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
    [Crossref]
  27. T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15(25), 16954–16965 (2007).
    [Crossref] [PubMed]
  28. X. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21(7), 1379–1386 (2004).
    [Crossref]
  29. E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett. 90(6), 061908 (2007).
    [Crossref]
  30. A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
    [Crossref]
  31. G. P. Kniffin and L. M. Zurk, “Model-based material parameter estimation for terahertz reflection spectroscopy,” IEEE T. THz Sci. Techn. 2(2), 231–241 (2012).
  32. A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
    [Crossref]
  33. X. Shi, Z. Zhao, and Z. Han, “Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity,” Sens. Actuators B Chem. 274, 188–193 (2018).
    [Crossref]
  34. A. Ahmadivand, R. Sinha, B. Gerislioglu, M. Karabiyik, N. Pala, and M. Shur, “Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies,” Opt. Lett. 41(22), 5333–5336 (2016).
    [Crossref] [PubMed]
  35. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
    [Crossref]

2019 (5)

M. Zhang, Z. Yang, M. Tang, D. Wang, H. Wang, S. Yan, D. Wei, and H. L. Cui, “Terahertz Spectroscopic Signatures of Microcystin Aptamer Solution Probed with a Microfluidic Chip,” Sensors (Basel) 19(3), 534 (2019).
[Crossref] [PubMed]

X. Wang, H. Meng, S. Deng, C. Lao, Z. Wei, F. Wang, C. Tan, and X. Huang, “Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface,” Nanomaterials (Basel) 9(3), 385 (2019).
[Crossref] [PubMed]

R. Wang, Q. Wu, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai, J. Yao, and J. Xu, “Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures,” Appl. Phys. Lett. 114(12), 121102 (2019).
[Crossref]

G. Sancho-Fornes, M. Avella-Oliver, J. Carrascosa, E. Fernandez, E. M. Brun, and Á. Maquieira, “Disk-based one-dimensional photonic crystal slabs for label-free immunosensing,” Biosens. Bioelectron. 126, 315–323 (2019).
[Crossref] [PubMed]

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

2018 (3)

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref] [PubMed]

X. Shi, Z. Zhao, and Z. Han, “Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity,” Sens. Actuators B Chem. 274, 188–193 (2018).
[Crossref]

S. Boonruang, N. Srisuai, R. Charlermroj, M. Makornwattana, A. Somboonkaew, M. Horprathum, and N. Karoonuthaisiri, “Excitation of multi-order guided mode resonance for multiple color fluorescence enhancement,” Opt. Laser Technol. 106, 410–416 (2018).
[Crossref]

2017 (3)

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

L. Chen, N. Xu, L. Singh, T. Cui, R. J. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (2)

D. K. Lee, J. H. Kang, J. S. Lee, H. S. Kim, C. Kim, J. H. Kim, T. Lee, J. H. Son, Q. H. Park, and M. Seo, “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep. 5(1), 15459 (2015).
[Crossref] [PubMed]

P. G. Hermannsson, K. T. Sørensen, C. Vannahme, C. L. Smith, J. J. Klein, M. M. Russew, G. Grützner, and A. Kristensen, “All-polymer photonic crystal slab sensor,” Opt. Express 23(13), 16529–16539 (2015).
[Crossref] [PubMed]

2014 (1)

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

2013 (4)

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

M. Massaouti, C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, and S. Tzortzakis, “Detection of harmful residues in honey using terahertz time-domain spectroscopy,” Appl. Spectrosc. 67(11), 1264–1269 (2013).
[Crossref] [PubMed]

Y. Shuai, D. Zhao, Z. Tian, J. H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[Crossref] [PubMed]

F. Fan, W. Gu, X. Wang, and S. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

2012 (2)

G. P. Kniffin and L. M. Zurk, “Model-based material parameter estimation for terahertz reflection spectroscopy,” IEEE T. THz Sci. Techn. 2(2), 231–241 (2012).

B. You, J. Y. Lu, C. P. Yu, T. A. Liu, and J. L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012).
[Crossref] [PubMed]

2011 (1)

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

2010 (2)

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

2008 (1)

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2(9), 541–543 (2008).
[Crossref]

2007 (3)

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 64470P (2007).
[Crossref]

T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15(25), 16954–16965 (2007).
[Crossref] [PubMed]

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett. 90(6), 061908 (2007).
[Crossref]

2006 (1)

2005 (2)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005).
[Crossref]

2004 (1)

2003 (1)

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003).
[Crossref]

2002 (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 65(23), 235112 (2002).
[Crossref]

Ahmadivand, A.

Ahn, Y. H.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Ambacher, O.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Antes, J.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Avella-Oliver, M.

G. Sancho-Fornes, M. Avella-Oliver, J. Carrascosa, E. Fernandez, E. M. Brun, and Á. Maquieira, “Disk-based one-dimensional photonic crystal slabs for label-free immunosensing,” Biosens. Bioelectron. 126, 315–323 (2019).
[Crossref] [PubMed]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Bastiaans, G. J.

Bhansali, S.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref] [PubMed]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

Bjarnason, J. E.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett. 90(6), 061908 (2007).
[Crossref]

Boes, F.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Boonruang, S.

S. Boonruang, N. Srisuai, R. Charlermroj, M. Makornwattana, A. Somboonkaew, M. Horprathum, and N. Karoonuthaisiri, “Excitation of multi-order guided mode resonance for multiple color fluorescence enhancement,” Opt. Laser Technol. 106, 410–416 (2018).
[Crossref]

Brown, E. R.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett. 90(6), 061908 (2007).
[Crossref]

Brueck, S. R. J.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 64470P (2007).
[Crossref]

Brun, E. M.

G. Sancho-Fornes, M. Avella-Oliver, J. Carrascosa, E. Fernandez, E. M. Brun, and Á. Maquieira, “Disk-based one-dimensional photonic crystal slabs for label-free immunosensing,” Biosens. Bioelectron. 126, 315–323 (2019).
[Crossref] [PubMed]

Cai, W.

R. Wang, Q. Wu, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai, J. Yao, and J. Xu, “Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures,” Appl. Phys. Lett. 114(12), 121102 (2019).
[Crossref]

Carrascosa, J.

G. Sancho-Fornes, M. Avella-Oliver, J. Carrascosa, E. Fernandez, E. M. Brun, and Á. Maquieira, “Disk-based one-dimensional photonic crystal slabs for label-free immunosensing,” Biosens. Bioelectron. 126, 315–323 (2019).
[Crossref] [PubMed]

Chang, S.

F. Fan, W. Gu, X. Wang, and S. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Charlermroj, R.

S. Boonruang, N. Srisuai, R. Charlermroj, M. Makornwattana, A. Somboonkaew, M. Horprathum, and N. Karoonuthaisiri, “Excitation of multi-order guided mode resonance for multiple color fluorescence enhancement,” Opt. Laser Technol. 106, 410–416 (2018).
[Crossref]

Chen, H.

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Chen, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. J. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Chen, Y.

Choi, S. J.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Colvin, V. L.

Cui, H. L.

M. Zhang, Z. Yang, M. Tang, D. Wang, H. Wang, S. Yan, D. Wei, and H. L. Cui, “Terahertz Spectroscopic Signatures of Microcystin Aptamer Solution Probed with a Microfluidic Chip,” Sensors (Basel) 19(3), 534 (2019).
[Crossref] [PubMed]

Cui, T.

L. Chen, N. Xu, L. Singh, T. Cui, R. J. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Cunningham, P. D.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Dai, X.

Daskalaki, C.

Deng, S.

X. Wang, H. Meng, S. Deng, C. Lao, Z. Wei, F. Wang, C. Tan, and X. Huang, “Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface,” Nanomaterials (Basel) 9(3), 385 (2019).
[Crossref] [PubMed]

Deninger, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Diaz, D. L.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Fan, F.

F. Fan, W. Gu, X. Wang, and S. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Fan, S.

Y. Shuai, D. Zhao, Z. Tian, J. H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[Crossref] [PubMed]

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 64470P (2007).
[Crossref]

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005).
[Crossref]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003).
[Crossref]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 65(23), 235112 (2002).
[Crossref]

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Fedor, A. M.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett. 90(6), 061908 (2007).
[Crossref]

Fernandez, E.

G. Sancho-Fornes, M. Avella-Oliver, J. Carrascosa, E. Fernandez, E. M. Brun, and Á. Maquieira, “Disk-based one-dimensional photonic crystal slabs for label-free immunosensing,” Biosens. Bioelectron. 126, 315–323 (2019).
[Crossref] [PubMed]

Freude, W.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Gerislioglu, B.

Gorodetsky, A.

Grischkowsky, D.

Grüninger, M.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Grützner, G.

Gu, W.

F. Fan, W. Gu, X. Wang, and S. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Güsten, R.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Han, S. T.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Han, Z.

X. Shi, Z. Zhao, and Z. Han, “Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity,” Sens. Actuators B Chem. 274, 188–193 (2018).
[Crossref]

Harris, J. S.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 64470P (2007).
[Crossref]

Hayden, L. M.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Hemberger, J.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Henneberger, R.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Hermannsson, P. G.

Hillerkuss, D.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Ho, L.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2(9), 541–543 (2008).
[Crossref]

Hong, J. T.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Horprathum, M.

S. Boonruang, N. Srisuai, R. Charlermroj, M. Makornwattana, A. Somboonkaew, M. Horprathum, and N. Karoonuthaisiri, “Excitation of multi-order guided mode resonance for multiple color fluorescence enhancement,” Opt. Laser Technol. 106, 410–416 (2018).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Huang, X.

X. Wang, H. Meng, S. Deng, C. Lao, Z. Wei, F. Wang, C. Tan, and X. Huang, “Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface,” Nanomaterials (Basel) 9(3), 385 (2019).
[Crossref] [PubMed]

Jen, A. K. Y.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 65(23), 235112 (2002).
[Crossref]

Kallfass, I.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Kang, J. H.

D. K. Lee, J. H. Kang, J. S. Lee, H. S. Kim, C. Kim, J. H. Kim, T. Lee, J. H. Son, Q. H. Park, and M. Seo, “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep. 5(1), 15459 (2015).
[Crossref] [PubMed]

Karabiyik, M.

Karoonuthaisiri, N.

S. Boonruang, N. Srisuai, R. Charlermroj, M. Makornwattana, A. Somboonkaew, M. Horprathum, and N. Karoonuthaisiri, “Excitation of multi-order guided mode resonance for multiple color fluorescence enhancement,” Opt. Laser Technol. 106, 410–416 (2018).
[Crossref]

Kaushik, A.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref] [PubMed]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

Kim, C.

D. K. Lee, J. H. Kang, J. S. Lee, H. S. Kim, C. Kim, J. H. Kim, T. Lee, J. H. Son, Q. H. Park, and M. Seo, “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep. 5(1), 15459 (2015).
[Crossref] [PubMed]

Kim, D. S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Kim, H. S.

D. K. Lee, J. H. Kang, J. S. Lee, H. S. Kim, C. Kim, J. H. Kim, T. Lee, J. H. Son, Q. H. Park, and M. Seo, “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep. 5(1), 15459 (2015).
[Crossref] [PubMed]

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Kim, J. H.

D. K. Lee, J. H. Kang, J. S. Lee, H. S. Kim, C. Kim, J. H. Kim, T. Lee, J. H. Son, Q. H. Park, and M. Seo, “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep. 5(1), 15459 (2015).
[Crossref] [PubMed]

Klein, J. J.

Kniffin, G. P.

G. P. Kniffin and L. M. Zurk, “Model-based material parameter estimation for terahertz reflection spectroscopy,” IEEE T. THz Sci. Techn. 2(2), 231–241 (2012).

Koenig, S.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Koos, C.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Korter, T. M.

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett. 90(6), 061908 (2007).
[Crossref]

Koulouklidis, A. D.

Kristensen, A.

Lao, C.

X. Wang, H. Meng, S. Deng, C. Lao, Z. Wei, F. Wang, C. Tan, and X. Huang, “Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface,” Nanomaterials (Basel) 9(3), 385 (2019).
[Crossref] [PubMed]

Lee, D. K.

D. K. Lee, J. H. Kang, J. S. Lee, H. S. Kim, C. Kim, J. H. Kim, T. Lee, J. H. Son, Q. H. Park, and M. Seo, “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep. 5(1), 15459 (2015).
[Crossref] [PubMed]

Lee, J. S.

D. K. Lee, J. H. Kang, J. S. Lee, H. S. Kim, C. Kim, J. H. Kim, T. Lee, J. H. Son, Q. H. Park, and M. Seo, “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep. 5(1), 15459 (2015).
[Crossref] [PubMed]

Lee, M. M.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 64470P (2007).
[Crossref]

Lee, S.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Lee, T.

D. K. Lee, J. H. Kang, J. S. Lee, H. S. Kim, C. Kim, J. H. Kim, T. Lee, J. H. Son, Q. H. Park, and M. Seo, “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep. 5(1), 15459 (2015).
[Crossref] [PubMed]

Leuther, A.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Leuthold, J.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Levi, O.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 64470P (2007).
[Crossref]

Liu, H. B.

Liu, T. A.

Liu, Y.

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

Lousse, V.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 64470P (2007).
[Crossref]

Lu, J. Y.

Luo, J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Ma, Y.

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Ma, Z.

Makornwattana, M.

S. Boonruang, N. Srisuai, R. Charlermroj, M. Makornwattana, A. Somboonkaew, M. Horprathum, and N. Karoonuthaisiri, “Excitation of multi-order guided mode resonance for multiple color fluorescence enhancement,” Opt. Laser Technol. 106, 410–416 (2018).
[Crossref]

Manickam, P.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref] [PubMed]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

Maquieira, Á.

G. Sancho-Fornes, M. Avella-Oliver, J. Carrascosa, E. Fernandez, E. M. Brun, and Á. Maquieira, “Disk-based one-dimensional photonic crystal slabs for label-free immunosensing,” Biosens. Bioelectron. 126, 315–323 (2019).
[Crossref] [PubMed]

Massaouti, M.

Mayorga, I. C.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Meng, H.

X. Wang, H. Meng, S. Deng, C. Lao, Z. Wei, F. Wang, C. Tan, and X. Huang, “Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface,” Nanomaterials (Basel) 9(3), 385 (2019).
[Crossref] [PubMed]

Mittleman, D. M.

Nair, M.

A. Ahmadivand, B. Gerislioglu, A. Tomitaka, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Extreme sensitive metasensor for targeted biomarkers identification using colloidal nanoparticles-integrated plasmonic unit cells,” Biomed. Opt. Express 9(2), 373–386 (2018).
[Crossref] [PubMed]

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Pala, N.

Palmer, R.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Park, J. Y.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Park, Q. H.

D. K. Lee, J. H. Kang, J. S. Lee, H. S. Kim, C. Kim, J. H. Kim, T. Lee, J. H. Son, Q. H. Park, and M. Seo, “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep. 5(1), 15459 (2015).
[Crossref] [PubMed]

Park, S. J.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Park, W. K.

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

Peng, J. L.

Pepper, M.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2(9), 541–543 (2008).
[Crossref]

Plant, D. V.

Polishak, B.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Prasad, T.

Roggenbuck, A.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Russew, M. M.

Sancho-Fornes, G.

G. Sancho-Fornes, M. Avella-Oliver, J. Carrascosa, E. Fernandez, E. M. Brun, and Á. Maquieira, “Disk-based one-dimensional photonic crystal slabs for label-free immunosensing,” Biosens. Bioelectron. 126, 315–323 (2019).
[Crossref] [PubMed]

Schmitz, H.

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Schmogrow, R.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Seo, J. H.

Seo, M.

D. K. Lee, J. H. Kang, J. S. Lee, H. S. Kim, C. Kim, J. H. Kim, T. Lee, J. H. Son, Q. H. Park, and M. Seo, “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep. 5(1), 15459 (2015).
[Crossref] [PubMed]

Shi, X.

X. Shi, Z. Zhao, and Z. Han, “Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity,” Sens. Actuators B Chem. 274, 188–193 (2018).
[Crossref]

Shuai, Y.

Shur, M.

Singh, L.

L. Chen, N. Xu, L. Singh, T. Cui, R. J. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Singh, R.

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Singh, R. J.

L. Chen, N. Xu, L. Singh, T. Cui, R. J. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Sinha, R.

Smith, C. L.

Solgaard, O.

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005).
[Crossref]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003).
[Crossref]

Somboonkaew, A.

S. Boonruang, N. Srisuai, R. Charlermroj, M. Makornwattana, A. Somboonkaew, M. Horprathum, and N. Karoonuthaisiri, “Excitation of multi-order guided mode resonance for multiple color fluorescence enhancement,” Opt. Laser Technol. 106, 410–416 (2018).
[Crossref]

Son, J. H.

D. K. Lee, J. H. Kang, J. S. Lee, H. S. Kim, C. Kim, J. H. Kim, T. Lee, J. H. Son, Q. H. Park, and M. Seo, “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep. 5(1), 15459 (2015).
[Crossref] [PubMed]

Sørensen, K. T.

Srisuai, N.

S. Boonruang, N. Srisuai, R. Charlermroj, M. Makornwattana, A. Somboonkaew, M. Horprathum, and N. Karoonuthaisiri, “Excitation of multi-order guided mode resonance for multiple color fluorescence enhancement,” Opt. Laser Technol. 106, 410–416 (2018).
[Crossref]

Suh, W.

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005).
[Crossref]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003).
[Crossref]

Sun, Y.

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

Taday, P.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2(9), 541–543 (2008).
[Crossref]

Tan, C.

X. Wang, H. Meng, S. Deng, C. Lao, Z. Wei, F. Wang, C. Tan, and X. Huang, “Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface,” Nanomaterials (Basel) 9(3), 385 (2019).
[Crossref] [PubMed]

Tang, L.

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Tang, M.

M. Zhang, Z. Yang, M. Tang, D. Wang, H. Wang, S. Yan, D. Wei, and H. L. Cui, “Terahertz Spectroscopic Signatures of Microcystin Aptamer Solution Probed with a Microfluidic Chip,” Sensors (Basel) 19(3), 534 (2019).
[Crossref] [PubMed]

Tessmann, A.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

Tian, Z.

Tomitaka, A.

Twieg, R. J.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Tzortzakis, S.

Valdes, N. N.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Vallejo, F. A.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Vannahme, C.

Wang, C.

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Wang, D.

M. Zhang, Z. Yang, M. Tang, D. Wang, H. Wang, S. Yan, D. Wei, and H. L. Cui, “Terahertz Spectroscopic Signatures of Microcystin Aptamer Solution Probed with a Microfluidic Chip,” Sensors (Basel) 19(3), 534 (2019).
[Crossref] [PubMed]

Wang, F.

X. Wang, H. Meng, S. Deng, C. Lao, Z. Wei, F. Wang, C. Tan, and X. Huang, “Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface,” Nanomaterials (Basel) 9(3), 385 (2019).
[Crossref] [PubMed]

Wang, H.

M. Zhang, Z. Yang, M. Tang, D. Wang, H. Wang, S. Yan, D. Wei, and H. L. Cui, “Terahertz Spectroscopic Signatures of Microcystin Aptamer Solution Probed with a Microfluidic Chip,” Sensors (Basel) 19(3), 534 (2019).
[Crossref] [PubMed]

Wang, R.

R. Wang, Q. Wu, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai, J. Yao, and J. Xu, “Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures,” Appl. Phys. Lett. 114(12), 121102 (2019).
[Crossref]

Wang, S.

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

Wang, X.

X. Wang, H. Meng, S. Deng, C. Lao, Z. Wei, F. Wang, C. Tan, and X. Huang, “Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface,” Nanomaterials (Basel) 9(3), 385 (2019).
[Crossref] [PubMed]

F. Fan, W. Gu, X. Wang, and S. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

Wei, D.

M. Zhang, Z. Yang, M. Tang, D. Wang, H. Wang, S. Yan, D. Wei, and H. L. Cui, “Terahertz Spectroscopic Signatures of Microcystin Aptamer Solution Probed with a Microfluidic Chip,” Sensors (Basel) 19(3), 534 (2019).
[Crossref] [PubMed]

Wei, Y.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Wei, Z.

X. Wang, H. Meng, S. Deng, C. Lao, Z. Wei, F. Wang, C. Tan, and X. Huang, “Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface,” Nanomaterials (Basel) 9(3), 385 (2019).
[Crossref] [PubMed]

Williams, J. C.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Wu, Q.

R. Wang, Q. Wu, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai, J. Yao, and J. Xu, “Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures,” Appl. Phys. Lett. 114(12), 121102 (2019).
[Crossref]

Xie, L.

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Xu, J.

R. Wang, Q. Wu, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai, J. Yao, and J. Xu, “Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures,” Appl. Phys. Lett. 114(12), 121102 (2019).
[Crossref]

Xu, N.

L. Chen, N. Xu, L. Singh, T. Cui, R. J. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Xu, W.

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Xu, X.

R. Wang, Q. Wu, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai, J. Yao, and J. Xu, “Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures,” Appl. Phys. Lett. 114(12), 121102 (2019).
[Crossref]

Yan, S.

M. Zhang, Z. Yang, M. Tang, D. Wang, H. Wang, S. Yan, D. Wei, and H. L. Cui, “Terahertz Spectroscopic Signatures of Microcystin Aptamer Solution Probed with a Microfluidic Chip,” Sensors (Basel) 19(3), 534 (2019).
[Crossref] [PubMed]

Yang, H.

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

Yang, Z.

M. Zhang, Z. Yang, M. Tang, D. Wang, H. Wang, S. Yan, D. Wei, and H. L. Cui, “Terahertz Spectroscopic Signatures of Microcystin Aptamer Solution Probed with a Microfluidic Chip,” Sensors (Basel) 19(3), 534 (2019).
[Crossref] [PubMed]

Yanik, M. F.

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003).
[Crossref]

Yao, J.

R. Wang, Q. Wu, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai, J. Yao, and J. Xu, “Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures,” Appl. Phys. Lett. 114(12), 121102 (2019).
[Crossref]

Ying, Y.

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

You, B.

Yu, C. P.

Zang, X.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zhang, B.

R. Wang, Q. Wu, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai, J. Yao, and J. Xu, “Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures,” Appl. Phys. Lett. 114(12), 121102 (2019).
[Crossref]

Zhang, J.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 64470P (2007).
[Crossref]

X. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21(7), 1379–1386 (2004).
[Crossref]

Zhang, M.

M. Zhang, Z. Yang, M. Tang, D. Wang, H. Wang, S. Yan, D. Wei, and H. L. Cui, “Terahertz Spectroscopic Signatures of Microcystin Aptamer Solution Probed with a Microfluidic Chip,” Sensors (Basel) 19(3), 534 (2019).
[Crossref] [PubMed]

Zhang, Q.

R. Wang, Q. Wu, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai, J. Yao, and J. Xu, “Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures,” Appl. Phys. Lett. 114(12), 121102 (2019).
[Crossref]

Zhang, W.

L. Chen, N. Xu, L. Singh, T. Cui, R. J. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

X. Dai, J. Zhang, W. Zhang, and D. Grischkowsky, “Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon,” J. Opt. Soc. Am. B 21(7), 1379–1386 (2004).
[Crossref]

Zhang, X. C.

Zhang, Y.

R. Wang, Q. Wu, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai, J. Yao, and J. Xu, “Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures,” Appl. Phys. Lett. 114(12), 121102 (2019).
[Crossref]

Zhao, D.

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

Y. Shuai, D. Zhao, Z. Tian, J. H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[Crossref] [PubMed]

Zhao, W.

R. Wang, Q. Wu, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai, J. Yao, and J. Xu, “Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures,” Appl. Phys. Lett. 114(12), 121102 (2019).
[Crossref]

Zhao, Z.

X. Shi, Z. Zhao, and Z. Han, “Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity,” Sens. Actuators B Chem. 274, 188–193 (2018).
[Crossref]

Zhou, W.

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

Y. Shuai, D. Zhao, Z. Tian, J. H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[Crossref] [PubMed]

Zhou, X. H.

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

Zhu, J.

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

Zhu, Y.

L. Chen, N. Xu, L. Singh, T. Cui, R. J. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zhuang, S.

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Zurk, L. M.

G. P. Kniffin and L. M. Zurk, “Model-based material parameter estimation for terahertz reflection spectroscopy,” IEEE T. THz Sci. Techn. 2(2), 231–241 (2012).

Zwick, T.

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

ACS Sens. (1)

A. Ahmadivand, B. Gerislioglu, P. Manickam, A. Kaushik, S. Bhansali, M. Nair, and N. Pala, “Rapid Detection of Infectious Envelope Proteins by Magnetoplasmonic Toroidal Metasensors,” ACS Sens. 2(9), 1359–1368 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

L. Chen, N. Xu, L. Singh, T. Cui, R. J. Singh, Y. Zhu, and W. Zhang, “Defect-induced fano resonances in corrugated plasmonic metamaterials,” Adv. Opt. Mater. 5(8), 1600960 (2017).
[Crossref]

Appl. Phys. Lett. (5)

R. Wang, Q. Wu, Y. Zhang, X. Xu, Q. Zhang, W. Zhao, B. Zhang, W. Cai, J. Yao, and J. Xu, “Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures,” Appl. Phys. Lett. 114(12), 121102 (2019).
[Crossref]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003).
[Crossref]

F. Fan, W. Gu, X. Wang, and S. Chang, “Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array,” Appl. Phys. Lett. 102(12), 121113 (2013).
[Crossref]

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, “On the strong and narrow absorption signature in lactose at 0.53THz,” Appl. Phys. Lett. 90(6), 061908 (2007).
[Crossref]

Appl. Spectrosc. (1)

Biomed. Opt. Express (1)

Biosens. Bioelectron. (1)

G. Sancho-Fornes, M. Avella-Oliver, J. Carrascosa, E. Fernandez, E. M. Brun, and Á. Maquieira, “Disk-based one-dimensional photonic crystal slabs for label-free immunosensing,” Biosens. Bioelectron. 126, 315–323 (2019).
[Crossref] [PubMed]

Carbon (1)

W. Xu, L. Xie, J. Zhu, L. Tang, R. Singh, C. Wang, Y. Ma, H. Chen, and Y. Ying, “Terahertz biosensing with a graphene-metamaterial heterostructure platform,” Carbon 141, 247–252 (2019).
[Crossref]

IEEE T. THz Sci. Techn. (1)

G. P. Kniffin and L. M. Zurk, “Model-based material parameter estimation for terahertz reflection spectroscopy,” IEEE T. THz Sci. Techn. 2(2), 231–241 (2012).

J. Appl. Phys. (2)

P. D. Cunningham, N. N. Valdes, F. A. Vallejo, L. M. Hayden, B. Polishak, X. H. Zhou, J. Luo, A. K. Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109(4), 043505 (2011).
[Crossref]

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98(3), 033102 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Nanomaterials (Basel) (1)

X. Wang, H. Meng, S. Deng, C. Lao, Z. Wei, F. Wang, C. Tan, and X. Huang, “Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface,” Nanomaterials (Basel) 9(3), 385 (2019).
[Crossref] [PubMed]

Nat. Photonics (2)

S. Koenig, D. L. Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, and I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013).
[Crossref]

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: Signatures and fingerprints,” Nat. Photonics 2(9), 541–543 (2008).
[Crossref]

New J. Phys. (2)

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten, and M. Grüninger, “Coherent broadband continuous-wave terahertz spectroscopy on solid-state samples,” New J. Phys. 12(4), 043017 (2010).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

S. Boonruang, N. Srisuai, R. Charlermroj, M. Makornwattana, A. Somboonkaew, M. Horprathum, and N. Karoonuthaisiri, “Excitation of multi-order guided mode resonance for multiple color fluorescence enhancement,” Opt. Laser Technol. 106, 410–416 (2018).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B Condens. Matter Mater. Phys. 65(23), 235112 (2002).
[Crossref]

Proc. SPIE (1)

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 64470P (2007).
[Crossref]

Sci. Rep. (3)

S. J. Park, J. T. Hong, S. J. Choi, H. S. Kim, W. K. Park, S. T. Han, J. Y. Park, S. Lee, D. S. Kim, and Y. H. Ahn, “Detection of microorganisms using terahertz metamaterials,” Sci. Rep. 4(1), 4988 (2014).
[Crossref] [PubMed]

D. K. Lee, J. H. Kang, J. S. Lee, H. S. Kim, C. Kim, J. H. Kim, T. Lee, J. H. Son, Q. H. Park, and M. Seo, “Highly sensitive and selective sugar detection by terahertz nano-antennas,” Sci. Rep. 5(1), 15459 (2015).
[Crossref] [PubMed]

L. Chen, Y. Wei, X. Zang, Y. Zhu, and S. Zhuang, “Excitation of dark multipolar plasmonic resonances at terahertz frequencies,” Sci. Rep. 6(1), 22027 (2016).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Sens. Actuators B Chem. (1)

X. Shi, Z. Zhao, and Z. Han, “Highly sensitive and selective gas sensing using the defect mode of a compact terahertz photonic crystal cavity,” Sens. Actuators B Chem. 274, 188–193 (2018).
[Crossref]

Sensors (Basel) (1)

M. Zhang, Z. Yang, M. Tang, D. Wang, H. Wang, S. Yan, D. Wei, and H. L. Cui, “Terahertz Spectroscopic Signatures of Microcystin Aptamer Solution Probed with a Microfluidic Chip,” Sensors (Basel) 19(3), 534 (2019).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) The schematic illustration of THz sensing using photonic crystal cavity. (b) Geometric parameters of a single PCS structure.
Fig. 2
Fig. 2 (a) The transmittance spectrum of the photonic crystal cavity ranging from 515 GHz to 550 GHz. (b) The electric field distribution as well as the electric field enhancement of the photonic crystal cavity at 529.2 GHz. (c) The transmittance spectra of the cavity with different H values. (d) The transmittance spectra of the cavity with three different substrates.
Fig. 3
Fig. 3 The transmittance spectra of the cavity without sample, the cavity with 1 μm lactose, and the cavity with 1 μm fructose.
Fig. 4
Fig. 4 (a) The absorbance spectra of lactose with different thicknesses coated on the PTFE substrate. (b) The transmittance spectra of lactose with different thicknesses coated on the PTFE substrate inserted into the cavity. (c) The absorbance change at peak versus lactose thickness without cavity. (d) The transmittance change at peak versus lactose thickness with cavity.

Tables (1)

Tables Icon

Table 1 The absorbance or transmittance change at peak versus lactose thickness of two cases without and with photonic crystal cavity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε r = ε + p=1 Δ ε p ω p 2 ω p 2 ω 2 j γ p ω .
T= e 4πk(ω) L eff /λ .

Metrics