Abstract

Under complex scattering conditions, it is very difficult to capture clear object images hidden behind the media by modelling the inverse problem. With regard to dynamic scattering media, the challenge increases. For solving the inverse problem, we propose a new class-specific image reconstruction algorithm. The method based on deep learning classifies blurred scattering images according to scattering conditions and then recovers to clear images hidden behind the media. The deep learning network is used to learn the mapping relationship between the object and the scattering image rather than characterizing the scattering media explicitly or parametrically. 25000 scattering images are obtained under five sets of dynamic scattering condition to verify the feasibility of the proposed method. In addition, the generalizability of the method has been verified successfully. Compared with common CNN method, it’s confirmed that our algorithm has better performance in reconstructing higher-quality images. Furthermore, for a given scattering image with unknown scattering condition, the closest scattering condition information can be given by classification network, and then the corresponding clear image is restored by reconstruction network.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photon-limited imaging through scattering medium based on deep learning

Lei Sun, Jianhong Shi, Xiaoyan Wu, Yiwei Sun, and Guihua Zeng
Opt. Express 27(23) 33120-33134 (2019)

Object classification through scattering media with deep learning on time resolved measurement

Guy Satat, Matthew Tancik, Otkrist Gupta, Barmak Heshmat, and Ramesh Raskar
Opt. Express 25(15) 17466-17479 (2017)

Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media

Yunzhe Li, Yujia Xue, and Lei Tian
Optica 5(10) 1181-1190 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Ishimaru, “Wave propagation and scattering in random media and rough surfaces,” Proc. IEEE 79, 1359–1366 (1991).
    [Crossref]
  2. A. Ishimaru, Wave propagation and scattering in random media(Academy Press, 1978).
  3. J. Goodman, W. Huntley, D. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
    [Crossref]
  4. R. Horisaki, R. Takagi, and J. Tanida, “Learning-based focusing through scattering media,” Appl. Opt. 56, 4358–4362 (2017).
    [Crossref] [PubMed]
  5. T. Ando, R. Horisaki, and J. Tanida, “Speckle-learning-based object recognition through scattering media,” Opt. Express 23, 33902–33910 (2015).
    [Crossref]
  6. G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in Computational Photography (ICCP), 2018 IEEE International Conference on, (IEEE, 2018), pp. 1–10.
  7. Y. Li, H. Lu, K.-C. Li, H. Kim, and S. Serikawa, “Non-uniform de-scattering and de-blurring of underwater images,” Mob. Networks Appl. 23, 352–362 (2018).
    [Crossref]
  8. M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv preprint arXiv:1708.07881 (2017).
  9. J. Tian, Z. Murez, T. Cui, Z. Zhang, D. Kriegman, and R. Ramamoorthi, “Depth and image restoration from light field in a scattering medium,” in 2017 IEEE International Conference on Computer Vision (ICCV), (IEEE, 2017), pp. 2420–2429.
  10. A. K. Pediredla, S. Zhang, B. Avants, Y. Fan, S. Nagayama, Z. Chen, C. Kemere, J. Robinson, and A. Veeraraghavan, “Deep imaging in scattering media with single photon selective plane illumination microscopy (spim),” J. Biomed. Opt. 21, 126009 (2016).
    [Crossref]
  11. R. Lan, H. Wang, S. Zhong, Z. Liu, and X. Luo, “An integrated scattering feature with application to medical image retrieval,” Comput. & Electr. Eng. 69, 669–675 (2018).
    [Crossref]
  12. L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
    [Crossref] [PubMed]
  13. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110 (2008).
    [Crossref] [PubMed]
  14. T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Reports 3, 1909 (2013).
    [Crossref]
  15. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232 (2012).
    [Crossref] [PubMed]
  16. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
    [Crossref]
  17. S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104,100601 (2010).
    [Crossref] [PubMed]
  18. H. B. de Aguiar, S. Gigan, and S. Brasselet, “Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping,” Phys. Rev. A 94, 043830 (2016).
    [Crossref]
  19. M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7, 919 (2013).
    [Crossref]
  20. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
    [Crossref] [PubMed]
  21. E. Tajahuerce, V. Durán, P. Clemente, E. Irles, F. Soldevila, P. Andrés, and J. Lancis, “Image transmission through dynamic scattering media by single-pixel photodetection,” Opt. Express 22, 16945–16955 (2014).
    [Crossref] [PubMed]
  22. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907–5925 (2008).
    [Crossref] [PubMed]
  23. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, (Neural Information Processing Systems Foundation, 2014), pp. 2672–2680.
  24. J. Shore and R. Johnson, “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,” IEEE Transactions on Inf. Theory 26, 26–37 (1980).
    [Crossref]
  25. A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th International Conference on Pattern Recognition (IEEE, 2010), pp. 2366–2369.

2018 (2)

Y. Li, H. Lu, K.-C. Li, H. Kim, and S. Serikawa, “Non-uniform de-scattering and de-blurring of underwater images,” Mob. Networks Appl. 23, 352–362 (2018).
[Crossref]

R. Lan, H. Wang, S. Zhong, Z. Liu, and X. Luo, “An integrated scattering feature with application to medical image retrieval,” Comput. & Electr. Eng. 69, 669–675 (2018).
[Crossref]

2017 (1)

2016 (2)

A. K. Pediredla, S. Zhang, B. Avants, Y. Fan, S. Nagayama, Z. Chen, C. Kemere, J. Robinson, and A. Veeraraghavan, “Deep imaging in scattering media with single photon selective plane illumination microscopy (spim),” J. Biomed. Opt. 21, 126009 (2016).
[Crossref]

H. B. de Aguiar, S. Gigan, and S. Brasselet, “Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping,” Phys. Rev. A 94, 043830 (2016).
[Crossref]

2015 (1)

2014 (1)

2013 (2)

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7, 919 (2013).
[Crossref]

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Reports 3, 1909 (2013).
[Crossref]

2012 (3)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20, 1733–1740 (2012).
[Crossref] [PubMed]

2010 (1)

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104,100601 (2010).
[Crossref] [PubMed]

2008 (2)

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16, 5907–5925 (2008).
[Crossref] [PubMed]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110 (2008).
[Crossref] [PubMed]

1991 (2)

A. Ishimaru, “Wave propagation and scattering in random media and rough surfaces,” Proc. IEEE 79, 1359–1366 (1991).
[Crossref]

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

1980 (1)

J. Shore and R. Johnson, “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,” IEEE Transactions on Inf. Theory 26, 26–37 (1980).
[Crossref]

1966 (1)

J. Goodman, W. Huntley, D. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Alfano, R.

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Ando, T.

Andrés, P.

Avants, B.

A. K. Pediredla, S. Zhang, B. Avants, Y. Fan, S. Nagayama, Z. Chen, C. Kemere, J. Robinson, and A. Veeraraghavan, “Deep imaging in scattering media with single photon selective plane illumination microscopy (spim),” J. Biomed. Opt. 21, 126009 (2016).
[Crossref]

Bengio, Y.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, (Neural Information Processing Systems Foundation, 2014), pp. 2672–2680.

Bertolotti, J.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232 (2012).
[Crossref] [PubMed]

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232 (2012).
[Crossref] [PubMed]

Boccara, A.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104,100601 (2010).
[Crossref] [PubMed]

Brasselet, S.

H. B. de Aguiar, S. Gigan, and S. Brasselet, “Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping,” Phys. Rev. A 94, 043830 (2016).
[Crossref]

Bromberg, Y.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7, 919 (2013).
[Crossref]

Caravaca-Aguirre, A. M.

Carminati, R.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104,100601 (2010).
[Crossref] [PubMed]

Chen, Z.

A. K. Pediredla, S. Zhang, B. Avants, Y. Fan, S. Nagayama, Z. Chen, C. Kemere, J. Robinson, and A. Veeraraghavan, “Deep imaging in scattering media with single photon selective plane illumination microscopy (spim),” J. Biomed. Opt. 21, 126009 (2016).
[Crossref]

Choi, W.

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Reports 3, 1909 (2013).
[Crossref]

Clemente, P.

Conkey, D. B.

Courville, A.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, (Neural Information Processing Systems Foundation, 2014), pp. 2672–2680.

Cui, T.

J. Tian, Z. Murez, T. Cui, Z. Zhang, D. Kriegman, and R. Ramamoorthi, “Depth and image restoration from light field in a scattering medium,” in 2017 IEEE International Conference on Computer Vision (ICCV), (IEEE, 2017), pp. 2420–2429.

Dasari, R. R.

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Reports 3, 1909 (2013).
[Crossref]

Davidson, N.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7, 919 (2013).
[Crossref]

de Aguiar, H. B.

H. B. de Aguiar, S. Gigan, and S. Brasselet, “Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping,” Phys. Rev. A 94, 043830 (2016).
[Crossref]

Durán, V.

Fan, Y.

A. K. Pediredla, S. Zhang, B. Avants, Y. Fan, S. Nagayama, Z. Chen, C. Kemere, J. Robinson, and A. Veeraraghavan, “Deep imaging in scattering media with single photon selective plane illumination microscopy (spim),” J. Biomed. Opt. 21, 126009 (2016).
[Crossref]

Feld, M. S.

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Reports 3, 1909 (2013).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110 (2008).
[Crossref] [PubMed]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104,100601 (2010).
[Crossref] [PubMed]

Foschum, F.

Friesem, A. A.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7, 919 (2013).
[Crossref]

Gigan, S.

H. B. de Aguiar, S. Gigan, and S. Brasselet, “Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping,” Phys. Rev. A 94, 043830 (2016).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104,100601 (2010).
[Crossref] [PubMed]

Goodfellow, I.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, (Neural Information Processing Systems Foundation, 2014), pp. 2672–2680.

Goodman, J.

J. Goodman, W. Huntley, D. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Hillman, T. R.

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Reports 3, 1909 (2013).
[Crossref]

Ho, P.

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Hore, A.

A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th International Conference on Pattern Recognition (IEEE, 2010), pp. 2366–2369.

Horisaki, R.

Huntley, W.

J. Goodman, W. Huntley, D. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Irles, E.

Ishimaru, A.

A. Ishimaru, “Wave propagation and scattering in random media and rough surfaces,” Proc. IEEE 79, 1359–1366 (1991).
[Crossref]

A. Ishimaru, Wave propagation and scattering in random media(Academy Press, 1978).

Jackson, D.

J. Goodman, W. Huntley, D. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Johnson, R.

J. Shore and R. Johnson, “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,” IEEE Transactions on Inf. Theory 26, 26–37 (1980).
[Crossref]

Katz, O.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7, 919 (2013).
[Crossref]

Kemere, C.

A. K. Pediredla, S. Zhang, B. Avants, Y. Fan, S. Nagayama, Z. Chen, C. Kemere, J. Robinson, and A. Veeraraghavan, “Deep imaging in scattering media with single photon selective plane illumination microscopy (spim),” J. Biomed. Opt. 21, 126009 (2016).
[Crossref]

Kienle, A.

Kim, H.

Y. Li, H. Lu, K.-C. Li, H. Kim, and S. Serikawa, “Non-uniform de-scattering and de-blurring of underwater images,” Mob. Networks Appl. 23, 352–362 (2018).
[Crossref]

Kriegman, D.

J. Tian, Z. Murez, T. Cui, Z. Zhang, D. Kriegman, and R. Ramamoorthi, “Depth and image restoration from light field in a scattering medium,” in 2017 IEEE International Conference on Computer Vision (ICCV), (IEEE, 2017), pp. 2420–2429.

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232 (2012).
[Crossref] [PubMed]

Lan, R.

R. Lan, H. Wang, S. Zhong, Z. Liu, and X. Luo, “An integrated scattering feature with application to medical image retrieval,” Comput. & Electr. Eng. 69, 669–675 (2018).
[Crossref]

Lancis, J.

Lehmann, M.

J. Goodman, W. Huntley, D. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104,100601 (2010).
[Crossref] [PubMed]

Li, G.

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv preprint arXiv:1708.07881 (2017).

Li, K.-C.

Y. Li, H. Lu, K.-C. Li, H. Kim, and S. Serikawa, “Non-uniform de-scattering and de-blurring of underwater images,” Mob. Networks Appl. 23, 352–362 (2018).
[Crossref]

Li, Y.

Y. Li, H. Lu, K.-C. Li, H. Kim, and S. Serikawa, “Non-uniform de-scattering and de-blurring of underwater images,” Mob. Networks Appl. 23, 352–362 (2018).
[Crossref]

Liu, C.

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Liu, Z.

R. Lan, H. Wang, S. Zhong, Z. Liu, and X. Luo, “An integrated scattering feature with application to medical image retrieval,” Comput. & Electr. Eng. 69, 669–675 (2018).
[Crossref]

Lu, H.

Y. Li, H. Lu, K.-C. Li, H. Kim, and S. Serikawa, “Non-uniform de-scattering and de-blurring of underwater images,” Mob. Networks Appl. 23, 352–362 (2018).
[Crossref]

Luo, X.

R. Lan, H. Wang, S. Zhong, Z. Liu, and X. Luo, “An integrated scattering feature with application to medical image retrieval,” Comput. & Electr. Eng. 69, 669–675 (2018).
[Crossref]

Lyu, M.

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv preprint arXiv:1708.07881 (2017).

Michels, R.

Mirza, M.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, (Neural Information Processing Systems Foundation, 2014), pp. 2672–2680.

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232 (2012).
[Crossref] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

Murez, Z.

J. Tian, Z. Murez, T. Cui, Z. Zhang, D. Kriegman, and R. Ramamoorthi, “Depth and image restoration from light field in a scattering medium,” in 2017 IEEE International Conference on Computer Vision (ICCV), (IEEE, 2017), pp. 2420–2429.

Nagayama, S.

A. K. Pediredla, S. Zhang, B. Avants, Y. Fan, S. Nagayama, Z. Chen, C. Kemere, J. Robinson, and A. Veeraraghavan, “Deep imaging in scattering media with single photon selective plane illumination microscopy (spim),” J. Biomed. Opt. 21, 126009 (2016).
[Crossref]

Nixon, M.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7, 919 (2013).
[Crossref]

Ozair, S.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, (Neural Information Processing Systems Foundation, 2014), pp. 2672–2680.

Park, Y.

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Reports 3, 1909 (2013).
[Crossref]

Pediredla, A. K.

A. K. Pediredla, S. Zhang, B. Avants, Y. Fan, S. Nagayama, Z. Chen, C. Kemere, J. Robinson, and A. Veeraraghavan, “Deep imaging in scattering media with single photon selective plane illumination microscopy (spim),” J. Biomed. Opt. 21, 126009 (2016).
[Crossref]

Piestun, R.

Popoff, S.

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104,100601 (2010).
[Crossref] [PubMed]

Pouget-Abadie, J.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, (Neural Information Processing Systems Foundation, 2014), pp. 2672–2680.

Psaltis, D.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110 (2008).
[Crossref] [PubMed]

Ramamoorthi, R.

J. Tian, Z. Murez, T. Cui, Z. Zhang, D. Kriegman, and R. Ramamoorthi, “Depth and image restoration from light field in a scattering medium,” in 2017 IEEE International Conference on Computer Vision (ICCV), (IEEE, 2017), pp. 2420–2429.

Raskar, R.

G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in Computational Photography (ICCP), 2018 IEEE International Conference on, (IEEE, 2018), pp. 1–10.

Robinson, J.

A. K. Pediredla, S. Zhang, B. Avants, Y. Fan, S. Nagayama, Z. Chen, C. Kemere, J. Robinson, and A. Veeraraghavan, “Deep imaging in scattering media with single photon selective plane illumination microscopy (spim),” J. Biomed. Opt. 21, 126009 (2016).
[Crossref]

Satat, G.

G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in Computational Photography (ICCP), 2018 IEEE International Conference on, (IEEE, 2018), pp. 1–10.

Serikawa, S.

Y. Li, H. Lu, K.-C. Li, H. Kim, and S. Serikawa, “Non-uniform de-scattering and de-blurring of underwater images,” Mob. Networks Appl. 23, 352–362 (2018).
[Crossref]

Shore, J.

J. Shore and R. Johnson, “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,” IEEE Transactions on Inf. Theory 26, 26–37 (1980).
[Crossref]

Silberberg, Y.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7, 919 (2013).
[Crossref]

Situ, G.

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv preprint arXiv:1708.07881 (2017).

Small, E.

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7, 919 (2013).
[Crossref]

Soldevila, F.

Tajahuerce, E.

Takagi, R.

Tancik, M.

G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in Computational Photography (ICCP), 2018 IEEE International Conference on, (IEEE, 2018), pp. 1–10.

Tanida, J.

Tian, J.

J. Tian, Z. Murez, T. Cui, Z. Zhang, D. Kriegman, and R. Ramamoorthi, “Depth and image restoration from light field in a scattering medium,” in 2017 IEEE International Conference on Computer Vision (ICCV), (IEEE, 2017), pp. 2420–2429.

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232 (2012).
[Crossref] [PubMed]

Veeraraghavan, A.

A. K. Pediredla, S. Zhang, B. Avants, Y. Fan, S. Nagayama, Z. Chen, C. Kemere, J. Robinson, and A. Veeraraghavan, “Deep imaging in scattering media with single photon selective plane illumination microscopy (spim),” J. Biomed. Opt. 21, 126009 (2016).
[Crossref]

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232 (2012).
[Crossref] [PubMed]

Wang, H.

R. Lan, H. Wang, S. Zhong, Z. Liu, and X. Luo, “An integrated scattering feature with application to medical image retrieval,” Comput. & Electr. Eng. 69, 669–675 (2018).
[Crossref]

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv preprint arXiv:1708.07881 (2017).

Wang, L.

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Warde-Farley, D.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, (Neural Information Processing Systems Foundation, 2014), pp. 2672–2680.

Xu, B.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, (Neural Information Processing Systems Foundation, 2014), pp. 2672–2680.

Yamauchi, T.

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Reports 3, 1909 (2013).
[Crossref]

Yang, C.

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110 (2008).
[Crossref] [PubMed]

Yaqoob, Z.

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Reports 3, 1909 (2013).
[Crossref]

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110 (2008).
[Crossref] [PubMed]

Zhang, G.

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Zhang, S.

A. K. Pediredla, S. Zhang, B. Avants, Y. Fan, S. Nagayama, Z. Chen, C. Kemere, J. Robinson, and A. Veeraraghavan, “Deep imaging in scattering media with single photon selective plane illumination microscopy (spim),” J. Biomed. Opt. 21, 126009 (2016).
[Crossref]

Zhang, Z.

J. Tian, Z. Murez, T. Cui, Z. Zhang, D. Kriegman, and R. Ramamoorthi, “Depth and image restoration from light field in a scattering medium,” in 2017 IEEE International Conference on Computer Vision (ICCV), (IEEE, 2017), pp. 2420–2429.

Zhong, S.

R. Lan, H. Wang, S. Zhong, Z. Liu, and X. Luo, “An integrated scattering feature with application to medical image retrieval,” Comput. & Electr. Eng. 69, 669–675 (2018).
[Crossref]

Ziou, D.

A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th International Conference on Pattern Recognition (IEEE, 2010), pp. 2366–2369.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Goodman, W. Huntley, D. Jackson, and M. Lehmann, “Wavefront-reconstruction imaging through random media,” Appl. Phys. Lett. 8, 311–313 (1966).
[Crossref]

Comput. & Electr. Eng. (1)

R. Lan, H. Wang, S. Zhong, Z. Liu, and X. Luo, “An integrated scattering feature with application to medical image retrieval,” Comput. & Electr. Eng. 69, 669–675 (2018).
[Crossref]

IEEE Transactions on Inf. Theory (1)

J. Shore and R. Johnson, “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,” IEEE Transactions on Inf. Theory 26, 26–37 (1980).
[Crossref]

J. Biomed. Opt. (1)

A. K. Pediredla, S. Zhang, B. Avants, Y. Fan, S. Nagayama, Z. Chen, C. Kemere, J. Robinson, and A. Veeraraghavan, “Deep imaging in scattering media with single photon selective plane illumination microscopy (spim),” J. Biomed. Opt. 21, 126009 (2016).
[Crossref]

Mob. Networks Appl. (1)

Y. Li, H. Lu, K.-C. Li, H. Kim, and S. Serikawa, “Non-uniform de-scattering and de-blurring of underwater images,” Mob. Networks Appl. 23, 352–362 (2018).
[Crossref]

Nat. Photonics (3)

Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110 (2008).
[Crossref] [PubMed]

M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7, 919 (2013).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283 (2012).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. A (1)

H. B. de Aguiar, S. Gigan, and S. Brasselet, “Enhanced nonlinear imaging through scattering media using transmission-matrix-based wave-front shaping,” Phys. Rev. A 94, 043830 (2016).
[Crossref]

Phys. Rev. Lett. (1)

S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104,100601 (2010).
[Crossref] [PubMed]

Proc. IEEE (1)

A. Ishimaru, “Wave propagation and scattering in random media and rough surfaces,” Proc. IEEE 79, 1359–1366 (1991).
[Crossref]

Sci. Reports (1)

T. R. Hillman, T. Yamauchi, W. Choi, R. R. Dasari, M. S. Feld, Y. Park, and Z. Yaqoob, “Digital optical phase conjugation for delivering two-dimensional images through turbid media,” Sci. Reports 3, 1909 (2013).
[Crossref]

Science (1)

L. Wang, P. Ho, C. Liu, G. Zhang, and R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical kerr gate,” Science 253, 769–771 (1991).
[Crossref] [PubMed]

Other (6)

M. Lyu, H. Wang, G. Li, and G. Situ, “Exploit imaging through opaque wall via deep learning,” arXiv preprint arXiv:1708.07881 (2017).

J. Tian, Z. Murez, T. Cui, Z. Zhang, D. Kriegman, and R. Ramamoorthi, “Depth and image restoration from light field in a scattering medium,” in 2017 IEEE International Conference on Computer Vision (ICCV), (IEEE, 2017), pp. 2420–2429.

G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in Computational Photography (ICCP), 2018 IEEE International Conference on, (IEEE, 2018), pp. 1–10.

A. Ishimaru, Wave propagation and scattering in random media(Academy Press, 1978).

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing Systems, (Neural Information Processing Systems Foundation, 2014), pp. 2672–2680.

A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th International Conference on Pattern Recognition (IEEE, 2010), pp. 2366–2369.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 The framework of reconstruction-only GAN network.
Fig. 3
Fig. 3 The structure of GAN network. (a) the structure of Generative network. (b) The structure of Discriminative network.
Fig. 4
Fig. 4 The structure of the classification network.
Fig. 5
Fig. 5 The correlation relationships between the multiple continuous shots of the same object.
Fig. 6
Fig. 6 The reconstruction results of multiple continuous shots which are captured with the same object under the same dynamic scattering media.
Fig. 7
Fig. 7 Reconstruction results without the classification network. The column (a)–(e) represent the scattering images. The column (f)–(j) represent the corresponding reconstructed images without using the classification network.
Fig. 8
Fig. 8 Reconstruction results of the proposed class-specific reconstruction method. The column (a)–(e) represent the scattering images. The column (f)–(j) represent the corresponding reconstructed images using the proposed class-specific reconstruction method.
Fig. 9
Fig. 9 Comparisons between reconstruction-only GAN network without classification and class-specific reconstruction method. The column (a)–(e) represent the reconstruction-only results without classification network. The column (f)–(j) represent the reconstructed results using the proposed class-specific reconstruction method.
Fig. 10
Fig. 10 The reconstruction results of given scattering images with unknown scattering condition. The first row represents the given scattering images. The second row to the sixth row represent the reconstruction results of reconstruction network trainedby the scattering images under different scattering conditions.
Fig. 11
Fig. 11 Comparison between class-specific method with frequently-used CNN method. Column (a)–(e) represent the reconstruction results of traditional CNN. Column   (f)–(j) represent the reconstruction results using proposed class-specific reconstruction method.
Fig. 12
Fig. 12 The reconstruction results of non-digit scattering images.
Fig. 13
Fig. 13 (a)The average PSNR of three methods under five kinds of scattering imaging conditions. (b)The average SSIM of three methods under five kinds of scattering imaging conditions.

Tables (2)

Tables Icon

Table 1 Average PSNR of Three Methods under Five Kinds of Scattering Conditions.

Tables Icon

Table 2 Average SSIM of Three Methods under Five Kinds of Scattering Conditions.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

O = F ( I )
I = F 1 ( O )
G l o s s = M S E + α H ( f a k e , r e a l )
D l o s s = H ( r e a l , r e a l ) + H ( f a k e , f a k e )
M S E = 1 M × N i = 1 M × N ( x i x i   ' ) 2
H ( p , q ) = x ( p ( x ) l o g q ( x ) + ( 1 p ( x ) ) l o g ( 1 q ( x ) ) )
P S N R = 10 × l o g 10 255 2 M S E
S S I M ( X , Y ) = ( 2 μ X μ Y + C 1 ) ( 2 σ X Y + C 2 ) ( μ X 2 + μ Y 2 + C 1 ) ( σ X 2 + σ Y 2 + C 2 )
μ X = 1 M × N i = 1 M j = 1 N X ( i , j )
σ X = ( 1 M × N 1 i = 1 M j = 1 N ( X ( i , j ) μ X ) 2 ) 1 2
σ X Y = 1 M × N 1 i = 1 M j = 1 N ( X ( i , j ) μ X ) ( Y ( i , j ) μ Y )

Metrics