Abstract

A single spatial-light-modulator (SLM) full-color holographic 3-D video display based on image and frequency-shift multiplexing (IFSM) is proposed. In the frequency-shift multiplexing (FSM), three-color holograms are multiplied with their respective phase factors for shifted-separations of their corresponding frequency-spectrums on the Fourier plane. This FSM process, however, causes three-color images to be reconstructed at the center-shifted locations depending on their multiplied phase factors. Center-shifts of those color images due to the FSM can be balanced out just by generation of three-color holograms whose centers are pre-shifted to the opposite directions to those of the image shifts with the novel-look-up-table (NLUT) based on its shift-invariance property, which is called image-shift multiplexing (ISM). These image and frequency-shifted holograms are then multiplexed into a single color-multiplexed hologram and loaded on the SLM, and from which a full-color 3-D image can be reconstructed on the optical 4-f lens system without any color dispersion just by employing a simple pinhole filter mask. Fourier-optical analysis and experiments with 3-D objects in motion confirm the feasibility of the proposed system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single SLM full-color holographic 3-D display based on sampling and selective frequency-filtering methods

Shu-Feng Lin and Eun-Soo Kim
Opt. Express 25(10) 11389-11404 (2017)

Color holographic display with white light LED source and single phase only SLM

Tomasz Kozacki and Maksymilian Chlipala
Opt. Express 24(3) 2189-2199 (2016)

Multiplexing encoding method for full-color dynamic 3D holographic display

Gaolei Xue, Juan Liu, Xin Li, Jia Jia, Zhao Zhang, Bin Hu, and Yongtian Wang
Opt. Express 22(15) 18473-18482 (2014)

References

  • View by:
  • |
  • |
  • |

  1. P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind’l. Info. 12(3), 886–901 (2016).
    [Crossref]
  2. Ag, HoloEye Photonics, GAEA 10 Megapixel Phase Only Spatial Light Modulator (Reflective), http://holoeye.com/spatial-light-modulators/gaea-4k-phase-only-spatial-light-modulator/ .
  3. H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
    [Crossref] [PubMed]
  4. T. Kozacki, M. Kujawińska, G. Finke, B. Hennelly, and N. Pandey, “Extended viewing angle holographic display system with tilted SLMs in a circular configuration,” Appl. Opt. 51(11), 1771–1780 (2012).
    [Crossref] [PubMed]
  5. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
    [Crossref] [PubMed]
  6. K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
    [Crossref] [PubMed]
  7. K. Wakunami, Y. Ichihashi, R. Oi, M. Okui, B. J. Jackin, and K. Yamamoto, “Geometric Deformation Analysis of Ray-Sampling Plane Method for Projection-Type Holographic Display,” IEICE Trans. Electron. E101(11), 863–869 (2018).
    [Crossref]
  8. M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21(8), 9636–9642 (2013).
    [Crossref] [PubMed]
  9. P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12(12), 1688–1694 (2016).
    [Crossref]
  10. T. Zhao, J. Liu, Q. Gao, P. He, Y. Han, and Y. Wang, “Accelerating computation of CGH using symmetric compressed look-up-table in color holographic display,” Opt. Express 26(13), 16063–16073 (2018).
    [Crossref] [PubMed]
  11. Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
    [Crossref] [PubMed]
  12. T. Shimobaba and T. Ito, “Fast generation of computer-generated holograms using wavelet shrinkage,” Opt. Express 25(1), 77–87 (2017).
    [Crossref] [PubMed]
  13. D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
    [Crossref] [PubMed]
  14. K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
    [Crossref] [PubMed]
  15. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [Crossref]
  16. Y. Zhao, K. C. Kwon, M. U. Erdenebat, M. S. Islam, S. H. Jeon, and N. Kim, “Quality enhancement and GPU acceleration for a full-color holographic system using a relocated point cloud gridding method,” Appl. Opt. 57(15), 4253–4262 (2018).
    [Crossref] [PubMed]
  17. T. Shimobaba, N. Masuda, and T. Ito, “Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane,” Opt. Lett. 34(20), 3133–3135 (2009).
    [Crossref] [PubMed]
  18. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).
  19. J. Roh, K. Kim, E. Moon, S. Kim, B. Yang, J. Hahn, and H. Kim, “Full-color holographic projection display system featuring an achromatic Fourier filter,” Opt. Express 25(13), 14774–14782 (2017).
    [Crossref] [PubMed]
  20. Z. Han, B. Yan, Y. Qi, Y. Wang, and Y. Wang, “Color holographic display using single chip LCOS,” Appl. Opt. 58(1), 69–75 (2019).
    [Crossref] [PubMed]
  21. Z. Zeng, H. Zheng, Y. Yu, A. K. Asundi, and S. Valyukh, “Full-color holographic display with increased-viewing-angle [Invited],” Appl. Opt. 56(13), F112–F120 (2017).
    [Crossref] [PubMed]
  22. T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10(5), 339–341 (2003).
    [Crossref]
  23. W. Zaperty, T. Kozacki, and M. Kujawińska, “Native frame rate single SLM color holographic 3D display,” Photonics Lett. Pol. 6(3), 93–95 (2014).
    [Crossref]
  24. M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16(15), 11618–11623 (2008).
    [PubMed]
  25. G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22(15), 18473–18482 (2014).
    [Crossref] [PubMed]
  26. T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, “Numerical study of color holographic projection using space-division method,” Opt. Express 19(11), 10287–10292 (2011).
    [Crossref] [PubMed]
  27. T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
    [Crossref] [PubMed]
  28. S. F. Lin and E. S. Kim, “Single SLM full-color holographic 3-D display based on sampling and selective frequency-filtering methods,” Opt. Express 25(10), 11389–11404 (2017).
    [Crossref] [PubMed]
  29. S. F. Lin, Y. S. Hwang, and E. S. Kim, “Full-color holographic 3D display on a single SLM based on sampling and selective frequency-filtering of color holograms,” Proc. SPIE 10558, 22 (2018).
    [Crossref]
  30. S.-C. Kim and E.-S. Kim, “Effective generation of digital holograms of three-dimensional objects using a novel look-up table method,” Appl. Opt. 47(19), D55–D62 (2008).
    [Crossref] [PubMed]
  31. S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
    [Crossref] [PubMed]
  32. X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel-look-up-table method for accelerated computation of digital video holograms of three-dimensional objects in motion,” Opt. Express 22(7), 8047–8067 (2014).
    [Crossref] [PubMed]
  33. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 1991).

2019 (1)

2018 (4)

S. F. Lin, Y. S. Hwang, and E. S. Kim, “Full-color holographic 3D display on a single SLM based on sampling and selective frequency-filtering of color holograms,” Proc. SPIE 10558, 22 (2018).
[Crossref]

K. Wakunami, Y. Ichihashi, R. Oi, M. Okui, B. J. Jackin, and K. Yamamoto, “Geometric Deformation Analysis of Ray-Sampling Plane Method for Projection-Type Holographic Display,” IEICE Trans. Electron. E101(11), 863–869 (2018).
[Crossref]

T. Zhao, J. Liu, Q. Gao, P. He, Y. Han, and Y. Wang, “Accelerating computation of CGH using symmetric compressed look-up-table in color holographic display,” Opt. Express 26(13), 16063–16073 (2018).
[Crossref] [PubMed]

Y. Zhao, K. C. Kwon, M. U. Erdenebat, M. S. Islam, S. H. Jeon, and N. Kim, “Quality enhancement and GPU acceleration for a full-color holographic system using a relocated point cloud gridding method,” Appl. Opt. 57(15), 4253–4262 (2018).
[Crossref] [PubMed]

2017 (4)

2016 (5)

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12(12), 1688–1694 (2016).
[Crossref]

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind’l. Info. 12(3), 886–901 (2016).
[Crossref]

2015 (1)

2014 (4)

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22(15), 18473–18482 (2014).
[Crossref] [PubMed]

W. Zaperty, T. Kozacki, and M. Kujawińska, “Native frame rate single SLM color holographic 3D display,” Photonics Lett. Pol. 6(3), 93–95 (2014).
[Crossref]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel-look-up-table method for accelerated computation of digital video holograms of three-dimensional objects in motion,” Opt. Express 22(7), 8047–8067 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

2011 (2)

2009 (1)

2008 (3)

2003 (1)

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10(5), 339–341 (2003).
[Crossref]

1993 (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Asundi, A. K.

Cao, L.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12(12), 1688–1694 (2016).
[Crossref]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref] [PubMed]

Cao, W.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12(12), 1688–1694 (2016).
[Crossref]

Cheng, B.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12(12), 1688–1694 (2016).
[Crossref]

Chlipala, M.

Dong, X.-B.

Erdenebat, M. U.

Finke, G.

Gao, Q.

Hahn, J.

Han, Y.

Han, Z.

He, P.

Hennelly, B.

Hsieh, P. Y.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

Hu, B.

Huang, Y. P.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

Hwang, Y. S.

S. F. Lin, Y. S. Hwang, and E. S. Kim, “Full-color holographic 3D display on a single SLM based on sampling and selective frequency-filtering of color holograms,” Proc. SPIE 10558, 22 (2018).
[Crossref]

Ichihashi, Y.

K. Wakunami, Y. Ichihashi, R. Oi, M. Okui, B. J. Jackin, and K. Yamamoto, “Geometric Deformation Analysis of Ray-Sampling Plane Method for Projection-Type Holographic Display,” IEICE Trans. Electron. E101(11), 863–869 (2018).
[Crossref]

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

Islam, M. S.

Ito, T.

Jackin, B. J.

K. Wakunami, Y. Ichihashi, R. Oi, M. Okui, B. J. Jackin, and K. Yamamoto, “Geometric Deformation Analysis of Ray-Sampling Plane Method for Projection-Type Holographic Display,” IEICE Trans. Electron. E101(11), 863–869 (2018).
[Crossref]

Jeon, S. H.

Jia, J.

Jin, G.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12(12), 1688–1694 (2016).
[Crossref]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref] [PubMed]

Kim, E. S.

S. F. Lin, Y. S. Hwang, and E. S. Kim, “Full-color holographic 3D display on a single SLM based on sampling and selective frequency-filtering of color holograms,” Proc. SPIE 10558, 22 (2018).
[Crossref]

S. F. Lin and E. S. Kim, “Single SLM full-color holographic 3-D display based on sampling and selective frequency-filtering methods,” Opt. Express 25(10), 11389–11404 (2017).
[Crossref] [PubMed]

Kim, E.-S.

Kim, H.

Kim, J.-M.

Kim, K.

Kim, M. K.

Kim, N.

Kim, S.

Kim, S.-C.

Kolodziejczyk, A.

Kong, D.

Kozacki, T.

Kujawinska, M.

Kwon, K. C.

Lee, B.

Li, L.

Li, X.

Liang, X.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12(12), 1688–1694 (2016).
[Crossref]

Lim, Y.

Lin, S. F.

S. F. Lin, Y. S. Hwang, and E. S. Kim, “Full-color holographic 3D display on a single SLM based on sampling and selective frequency-filtering of color holograms,” Proc. SPIE 10558, 22 (2018).
[Crossref]

S. F. Lin and E. S. Kim, “Single SLM full-color holographic 3-D display based on sampling and selective frequency-filtering methods,” Opt. Express 25(10), 11389–11404 (2017).
[Crossref] [PubMed]

Liu, C.

Liu, J.

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Ma, J.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12(12), 1688–1694 (2016).
[Crossref]

Makowski, M.

Masuda, N.

Moon, E.

Oi, R.

K. Wakunami, Y. Ichihashi, R. Oi, M. Okui, B. J. Jackin, and K. Yamamoto, “Geometric Deformation Analysis of Ray-Sampling Plane Method for Projection-Type Holographic Display,” IEICE Trans. Electron. E101(11), 863–869 (2018).
[Crossref]

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

Okui, M.

K. Wakunami, Y. Ichihashi, R. Oi, M. Okui, B. J. Jackin, and K. Yamamoto, “Geometric Deformation Analysis of Ray-Sampling Plane Method for Projection-Type Holographic Display,” IEICE Trans. Electron. E101(11), 863–869 (2018).
[Crossref]

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

Pandey, N.

Park, G.

Poon, T. C.

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind’l. Info. 12(3), 886–901 (2016).
[Crossref]

Qi, Y.

Roh, J.

Sasaki, H.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

Senoh, T.

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

Shimobaba, T.

Su, P.

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12(12), 1688–1694 (2016).
[Crossref]

Sypek, M.

Takahashi, T.

Tsang, P. W. M.

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind’l. Info. 12(3), 886–901 (2016).
[Crossref]

Valyukh, S.

Wakunami, K.

K. Wakunami, Y. Ichihashi, R. Oi, M. Okui, B. J. Jackin, and K. Yamamoto, “Geometric Deformation Analysis of Ray-Sampling Plane Method for Projection-Type Holographic Display,” IEICE Trans. Electron. E101(11), 863–869 (2018).
[Crossref]

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
[Crossref] [PubMed]

Wang, D.

Wang, Q. H.

Wang, Y.

Xue, G.

Yamaguchi, M.

Yamamoto, K.

K. Wakunami, Y. Ichihashi, R. Oi, M. Okui, B. J. Jackin, and K. Yamamoto, “Geometric Deformation Analysis of Ray-Sampling Plane Method for Projection-Type Holographic Display,” IEICE Trans. Electron. E101(11), 863–869 (2018).
[Crossref]

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

Yan, B.

Yang, B.

Yu, Y.

Zaperty, W.

W. Zaperty, T. Kozacki, and M. Kujawińska, “Native frame rate single SLM color holographic 3D display,” Photonics Lett. Pol. 6(3), 93–95 (2014).
[Crossref]

Zeng, Z.

Zhang, H.

Zhang, Z.

Zhao, T.

Zhao, Y.

Zheng, H.

Zhou, X.

Appl. Opt. (5)

IEEE Trans. Ind’l. Info. (1)

P. W. M. Tsang and T. C. Poon, “Review on the state-of-the-art technologies for acquisition and display of digital holograms,” IEEE Trans. Ind’l. Info. 12(3), 886–901 (2016).
[Crossref]

IEICE Trans. Electron. (1)

K. Wakunami, Y. Ichihashi, R. Oi, M. Okui, B. J. Jackin, and K. Yamamoto, “Geometric Deformation Analysis of Ray-Sampling Plane Method for Projection-Type Holographic Display,” IEICE Trans. Electron. E101(11), 863–869 (2018).
[Crossref]

J. Disp. Technol. (1)

P. Su, W. Cao, J. Ma, B. Cheng, X. Liang, L. Cao, and G. Jin, “Fast computer-generated hologram generation method for three-dimensional point cloud model,” J. Disp. Technol. 12(12), 1688–1694 (2016).
[Crossref]

J. Electron. Imaging (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Nat. Commun. (1)

K. Wakunami, P. Y. Hsieh, R. Oi, T. Senoh, H. Sasaki, Y. Ichihashi, M. Okui, Y. P. Huang, and K. Yamamoto, “Projection-type see-through holographic three-dimensional display,” Nat. Commun. 7(1), 12954 (2016).
[Crossref] [PubMed]

Opt. Express (15)

M. K. Kim, “Full color natural light holographic camera,” Opt. Express 21(8), 9636–9642 (2013).
[Crossref] [PubMed]

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
[Crossref] [PubMed]

J. Roh, K. Kim, E. Moon, S. Kim, B. Yang, J. Hahn, and H. Kim, “Full-color holographic projection display system featuring an achromatic Fourier filter,” Opt. Express 25(13), 14774–14782 (2017).
[Crossref] [PubMed]

T. Zhao, J. Liu, Q. Gao, P. He, Y. Han, and Y. Wang, “Accelerating computation of CGH using symmetric compressed look-up-table in color holographic display,” Opt. Express 26(13), 16063–16073 (2018).
[Crossref] [PubMed]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref] [PubMed]

T. Shimobaba and T. Ito, “Fast generation of computer-generated holograms using wavelet shrinkage,” Opt. Express 25(1), 77–87 (2017).
[Crossref] [PubMed]

D. Wang, C. Liu, L. Li, X. Zhou, and Q. H. Wang, “Adjustable liquid aperture to eliminate undesirable light in holographic projection,” Opt. Express 24(3), 2098–2105 (2016).
[Crossref] [PubMed]

K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
[Crossref] [PubMed]

S.-C. Kim, J.-M. Kim, and E.-S. Kim, “Effective memory reduction of the novel look-up table with one-dimensional sub-principle fringe patterns in computer-generated holograms,” Opt. Express 20(11), 12021–12034 (2012).
[Crossref] [PubMed]

X.-B. Dong, S.-C. Kim, and E.-S. Kim, “MPEG-based novel-look-up-table method for accelerated computation of digital video holograms of three-dimensional objects in motion,” Opt. Express 22(7), 8047–8067 (2014).
[Crossref] [PubMed]

M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16(15), 11618–11623 (2008).
[PubMed]

G. Xue, J. Liu, X. Li, J. Jia, Z. Zhang, B. Hu, and Y. Wang, “Multiplexing encoding method for full-color dynamic 3D holographic display,” Opt. Express 22(15), 18473–18482 (2014).
[Crossref] [PubMed]

T. Shimobaba, T. Takahashi, N. Masuda, and T. Ito, “Numerical study of color holographic projection using space-division method,” Opt. Express 19(11), 10287–10292 (2011).
[Crossref] [PubMed]

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

S. F. Lin and E. S. Kim, “Single SLM full-color holographic 3-D display based on sampling and selective frequency-filtering methods,” Opt. Express 25(10), 11389–11404 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Rev. (1)

T. Shimobaba and T. Ito, “A color holographic reconstruction system by time division multiplexing with reference lights of laser,” Opt. Rev. 10(5), 339–341 (2003).
[Crossref]

Photonics Lett. Pol. (1)

W. Zaperty, T. Kozacki, and M. Kujawińska, “Native frame rate single SLM color holographic 3D display,” Photonics Lett. Pol. 6(3), 93–95 (2014).
[Crossref]

Proc. SPIE (1)

S. F. Lin, Y. S. Hwang, and E. S. Kim, “Full-color holographic 3D display on a single SLM based on sampling and selective frequency-filtering of color holograms,” Proc. SPIE 10558, 22 (2018).
[Crossref]

Sci. Rep. (1)

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

Other (3)

Ag, HoloEye Photonics, GAEA 10 Megapixel Phase Only Spatial Light Modulator (Reflective), http://holoeye.com/spatial-light-modulators/gaea-4k-phase-only-spatial-light-modulator/ .

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company Publishers, 2005).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 1991).

Supplementary Material (2)

NameDescription
» Visualization 1       Visualization 1
» Visualization 2       Visualization 2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Operational flowchart of the proposed single SLM full-color holographic 3-D video display system composed of digital and optical processes.
Fig. 2
Fig. 2 Two kinds of color dispersions in the CMH-based single SLM full-color holographic display: (a) Reconstructed three-color images due to the SLM-CD, (b) Reconstructed three-color images due to the CMH-CD, (c) Reconstructed nine-color images due to both of the SLM-CD and CMH-CD.
Fig. 3
Fig. 3 Operational configuration of the FSM process: (a) Shifted spatial position of the spectrum and center-shifted image due to the FSM process, (b) Propagation-direction rotation due to the FSM process (Dori: depth of original reconstruction, Drot: depth of rotated reconstruction).
Fig. 4
Fig. 4 Operational configuration of the ISM process for the R-hologram: (a) Conventional NLUT-based hologram generation and its reconstruction processes, (b) CS-NLUT-based hologram generation and its reconstruction processes.
Fig. 5
Fig. 5 Controlled IFSM process for selection of the wanted three-color spectrum spots just by using a single pinhole filter mask on the Fourier plane: (a) Three sets of three-color spectrum spots of the CMH without a ISFM process, (b) Controlled shifts of nine-color spectrum spots of the IFS-CMH, (c) Designed single-pinhole filer mask.
Fig. 6
Fig. 6 Optical configuration for reconstructing the IFS-CMH into a full-color 3-D image with a single-pinhole filter mask on the 4-f lens system.
Fig. 7
Fig. 7 Overall experiment setup: (a) Digital system for generation of the IFS-CMH based on the proposed IFSM method, (b) Optical system for reconstruction of the full-color 3-D object image on the 4-f lens system with a single-pinhole filter mask (BE: Beam expander, BS: Beam splitter, M: Mirror).
Fig. 8
Fig. 8 Experimental results of the ISM effect on the positions of three-color spectrum spots and reconstructed images for each color hologram on the Fourier and reconstruction planes.
Fig. 9
Fig. 9 Experimental results of the IFSM effect on the positions of three-color spectrums and reconstructed images for each color hologram on the Fourier and reconstruction planes.
Fig. 10
Fig. 10 Optical setup for full-color reconstruction of the CMH on the 4-f lens system with the fabricated optical filter mask.
Fig. 11
Fig. 11 Two kinds of test video scenarios composed of 100 frames: (a) Five sample video images of the self-revolving ‘3-D cube’ at the 1st, 25th, 50th, 75th and 100th frames, (b) Five sample images of the ‘Soccer ball’ rotating around the self-revolving 3-D ‘Cube’ along the clockwise direction at the 1st, 8th, 40th, 66th and 93rd frames.
Fig. 12
Fig. 12 Experimental results on the two kinds of test video scenarios of Fig. 10: (a) Five samples of the reconstructed self-revolving 3-D ‘Cube’ images at the 1st, 25th, 50th, 75th and 100th video frames (see Visualization 1), (b) Five samples of the reconstructed ‘Soccer ball’ rotating around the self-revolving 3-D ‘Cube’ along the clockwise direction at the 1st, 8th, 40th, 66th and 93rd (see Visualization 2).

Tables (1)

Tables Icon

Table 1 Spatial coordinates of the spectrums, center locations and diameter of the pinhole fabricated on the optical filter mask.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

h fs (x,y)= h ori (x,y)exp[j2π( f a x+ f b y)].
H fs ( f x , f y )=F{ h ori (x,y)exp[j2π( f a x+ f b y)]}= H ori ( f x + f a , f y + f b ).
sin θ a d x z , sin θ b d y z .
p x =exp( j2π f a x )=exp( j2π d x λz x ), p y =exp( +j2π f b y )=exp( +j2π d y λz y ).
f a = d x λz , f b = d y λz .
F x = f a Lλ, F y = f b Lλ,
D x =Δxtan θ a =Δxtan(arcsin Δx z ), D y =Δytan θ b =Δytan(arcsin Δy z ).
h(x d x ,y+ d y )= p=1 N a p PFP(x d x ,y+ d y ;s x p ,s y p , z p ) .
PFP(x d x ,y+ d y )=exp(j k 0 z 0 ) j k 0 2πz exp{ j k 0 [ (x d x ) 2 + (y+ d y ) 2 ] 2z }.
Horizontal resolution of the PFP:[ h x +( s× O x ) ]
Vertical resolution of the PFP:[ h y +( s× O y ) ]
f cs ( f x_c , f y_c )=F{ h ori (x d x ,y+ d y )}= f ori ( f x , f y )exp[j2π( f cs_x x+ f cs_y y)].

Metrics