Abstract

As a promising infrared optical material, the physical characteristics of patterned chalcogenide glass (ChG) membranes are of great importance for the improvement of device performances. In this work, based on the suspended membrane configuration, we have demonstrated the mechanical and thermal characterizations of the Ge11.5As24Se64.5 ChG optical microdisk resonator. By approximation of ChG cantilever configuration, the out-of-plane minimum mechanical strength of the microdisk membrane was measured to be 150 MPa by exploiting atom force microscope (AFM). This value is two orders of magnitude smaller than that of the bulk material, which is beneficial to achieve better mechanical compliance in terms of the ChG membrane sensors. To illustrate the effect of environmental temperature variation on the optical response of the ChG microdisk membrane with quality factor (Q-factor) of 2.87 × 104, the thermal drift was characterized to be 90.2 pm/°C by changing the substrate temperature from 30 °C to 44 °C. The characterization of multi-parameters in combination with the ChG free-standing microdisk prototype is conducive to further expand the potentials of ChG membrane in the ultrasound and other cavity optomechanical sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and characterization of chalcogenide glass photonic crystal waveguides

Keijiro Suzuki, Yohei Hamachi, and Toshihiko Baba
Opt. Express 17(25) 22393-22400 (2009)

Improved nonlinear optical properties of chalcogenide glasses in Ge-Sn-Se ternary system by thermal treatment

Yicong Huang, Feifei Chen, Beijing Qiao, Shixun Dai, Qiuhua Nie, and Xianghua Zhang
Opt. Mater. Express 6(5) 1644-1652 (2016)

References

  • View by:
  • |
  • |
  • |

  1. X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G. L. Long, and H. Wang, “Chip-based silica microspheres for cavity optomechanics,” Opt. Express 23(21), 27260–27265 (2015).
    [Crossref] [PubMed]
  2. K. N. Dinyari, R. J. Barbour, D. A. Golter, and H. Wang, “Mechanical tuning of whispering gallery modes over a 0.5 THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures,” Opt. Express 19(19), 17966–17972 (2011).
    [Crossref] [PubMed]
  3. L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
    [Crossref]
  4. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
    [Crossref] [PubMed]
  5. C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
    [Crossref]
  6. D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” J. Optoelectron. Adv. Mater. 6(1), 133–137 (2004).
  7. G. Wang, Q. Nie, X. Wang, X. Shen, F. Chen, T. Xu, S. Dai, and X. Zhang, “New far-infrared transmitting Te-based chalcogenide glasses,” J. Appl. Phys. 110(4), 043536 (2011).
    [Crossref]
  8. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(1), 44–50 (1995).
    [Crossref]
  9. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1), 1–12 (2003).
    [Crossref]
  10. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
    [Crossref] [PubMed]
  11. P. Ma, D. Y. Choi, Y. Yu, Z. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, and S. Madden, “High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing,” Opt. Express 23(15), 19969–19979 (2015).
    [Crossref] [PubMed]
  12. S. M. Spearing, “Materials issues in microelectromechanical systems (MEMS),” Acta Mater. 48(1), 179–196 (2000).
    [Crossref]
  13. G. Carlotti, L. Doucet, and M. Dupeux, “Elastic properties of silicon dioxide films deposited by chemical vapour deposition from tetraethylorthosilicate,” Thin Solid Films 296(1), 102–105 (1997).
    [Crossref]
  14. M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
    [Crossref]
  15. T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. L. Davies, and I. Jackson, “Elastic Transition Thresholds in Ge-As(Sb)-Se Glasses,” J. Phys. D Appl. Phys. 46(16), 165302 (2013).
    [Crossref]
  16. F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 341–345 (2004).
    [Crossref]
  17. J. Yang, T. Ono, and M. Esashi, “Energy dissipation in submicrometer thick single-crystal silicon cantilevers,” J. Microelectromech. Syst. 11(6), 775–783 (2002).
    [Crossref]
  18. G. McShane, M. Boutchich, A. Phani, D. Moore, and T. Lu, “Young’s modulus measurement of thin-film materials using micro-cantilevers,” J. Micromech. Microeng. 16(10), 1926–1934 (2006).
    [Crossref]
  19. S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
    [Crossref] [PubMed]
  20. S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10(1), 132 (2019).
    [Crossref] [PubMed]
  21. A. Jonáš, Z. Pilát, J. Ježek, S. Bernatová, T. Fořt, P. Zemánek, M. Aas, and A. Kiraz, “Thermal tuning of spectral emission from optically trapped liquid-crystal droplet resonators,” J. Opt. Soc. Am. B 34(9), 1855–1864 (2017).
    [Crossref]
  22. V. R. Anand, S. Mathew, B. Samuel, P. Radhakrishnan, and M. Kailasnath, “Thermo-optic tuning of whispering gallery mode lasing from a dye-doped hollow polymer optical fiber,” Opt. Lett. 42(15), 2926–2929 (2017).
    [Crossref] [PubMed]
  23. Y. J. Rao, Z. L. Ran, X. Liao, and H. Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express 15(22), 14936–14941 (2007).
    [Crossref] [PubMed]
  24. G. Kang, M. R. Krogstad, M. Grayson, D. G. Kim, H. Lee, J. T. Gopinath, and W. Park, “High quality chalcogenide-silica hybrid wedge resonator,” Opt. Express 25(13), 15581–15589 (2017).
    [Crossref] [PubMed]
  25. T. Wang, O. Gulbiten, R. Wang, Z. Yang, A. Smith, B. Luther-Davies, and P. Lucas, “Relative contribution of stoichiometry and mean coordination to the fragility of Ge-As-Se glass forming liquids,” J. Phys. Chem. B 118(5), 1436–1442 (2014).
    [Crossref] [PubMed]
  26. D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
    [Crossref]
  27. X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1–x–y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
    [Crossref]
  28. N. Singh, D. D. Hudson, R. Wang, E. C. Mägi, D. Y. Choi, C. Grillet, B. Luther-Davies, S. Madden, and B. J. Eggleton, “Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator,” Opt. Express 23(7), 8681–8686 (2015).
    [Crossref] [PubMed]
  29. M. Oxborrow, “How to simulate the whispering-gallery modes of dielectric microresonators in FEMLAB/COMSOL,” Proc. SPIE 6452, 64520J (2007).
    [Crossref]
  30. M. I. Cheema and A. G. Kirk, “Accurate determination of the quality factor and tunneling distance of axisymmetric resonators for biosensing applications,” Opt. Express 21(7), 8724–8735 (2013).
    [Crossref] [PubMed]
  31. C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “Effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
    [Crossref] [PubMed]
  32. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
    [Crossref] [PubMed]
  33. S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, and I. A. Schaap, “Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations,” PLoS One 7(9), e45297 (2012).
    [Crossref] [PubMed]
  34. Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459(1), 88–93 (2017).
    [Crossref]

2019 (1)

S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10(1), 132 (2019).
[Crossref] [PubMed]

2018 (2)

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “Effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

2017 (5)

2015 (3)

2014 (2)

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

T. Wang, O. Gulbiten, R. Wang, Z. Yang, A. Smith, B. Luther-Davies, and P. Lucas, “Relative contribution of stoichiometry and mean coordination to the fragility of Ge-As-Se glass forming liquids,” J. Phys. Chem. B 118(5), 1436–1442 (2014).
[Crossref] [PubMed]

2013 (3)

X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1–x–y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
[Crossref]

M. I. Cheema and A. G. Kirk, “Accurate determination of the quality factor and tunneling distance of axisymmetric resonators for biosensing applications,” Opt. Express 21(7), 8724–8735 (2013).
[Crossref] [PubMed]

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. L. Davies, and I. Jackson, “Elastic Transition Thresholds in Ge-As(Sb)-Se Glasses,” J. Phys. D Appl. Phys. 46(16), 165302 (2013).
[Crossref]

2012 (2)

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref] [PubMed]

S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, and I. A. Schaap, “Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations,” PLoS One 7(9), e45297 (2012).
[Crossref] [PubMed]

2011 (3)

2009 (1)

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

2007 (3)

2006 (1)

G. McShane, M. Boutchich, A. Phani, D. Moore, and T. Lu, “Young’s modulus measurement of thin-film materials using micro-cantilevers,” J. Micromech. Microeng. 16(10), 1926–1934 (2006).
[Crossref]

2004 (2)

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 341–345 (2004).
[Crossref]

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” J. Optoelectron. Adv. Mater. 6(1), 133–137 (2004).

2003 (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1), 1–12 (2003).
[Crossref]

2002 (2)

J. Yang, T. Ono, and M. Esashi, “Energy dissipation in submicrometer thick single-crystal silicon cantilevers,” J. Microelectromech. Syst. 11(6), 775–783 (2002).
[Crossref]

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

2000 (1)

S. M. Spearing, “Materials issues in microelectromechanical systems (MEMS),” Acta Mater. 48(1), 179–196 (2000).
[Crossref]

1997 (1)

G. Carlotti, L. Doucet, and M. Dupeux, “Elastic properties of silicon dioxide films deposited by chemical vapour deposition from tetraethylorthosilicate,” Thin Solid Films 296(1), 102–105 (1997).
[Crossref]

1995 (1)

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(1), 44–50 (1995).
[Crossref]

Aas, M.

Agan, S.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 341–345 (2004).
[Crossref]

Anand, V. R.

Armin, A.

S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10(1), 132 (2019).
[Crossref] [PubMed]

Ay, F.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 341–345 (2004).
[Crossref]

Aydinli, A.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 341–345 (2004).
[Crossref]

Barbour, R. J.

Basiri-Esfahani, S.

S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10(1), 132 (2019).
[Crossref] [PubMed]

Bernatová, S.

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Bodensiek, K.

S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, and I. A. Schaap, “Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations,” PLoS One 7(9), e45297 (2012).
[Crossref] [PubMed]

Boutchich, M.

G. McShane, M. Boutchich, A. Phani, D. Moore, and T. Lu, “Young’s modulus measurement of thin-film materials using micro-cantilevers,” J. Micromech. Microeng. 16(10), 1926–1934 (2006).
[Crossref]

Bowen, W. P.

S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10(1), 132 (2019).
[Crossref] [PubMed]

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref] [PubMed]

Bramerie, L.

Brilland, L.

Bulla, D. A. P.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

Carlotti, G.

G. Carlotti, L. Doucet, and M. Dupeux, “Elastic properties of silicon dioxide films deposited by chemical vapour deposition from tetraethylorthosilicate,” Thin Solid Films 296(1), 102–105 (1997).
[Crossref]

Chandrahalim, H.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “Effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Chartier, T.

Cheema, M. I.

Chen, C.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “Effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Chen, F.

G. Wang, Q. Nie, X. Wang, X. Shen, F. Chen, T. Xu, S. Dai, and X. Zhang, “New far-infrared transmitting Te-based chalcogenide glasses,” J. Appl. Phys. 110(4), 043536 (2011).
[Crossref]

Chen, Q. S.

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Chen, S.-L.

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Cho, S.

Choi, D. Y.

Churbanov, M. F.

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Costa e Silva, M.

Dai, S.

G. Wang, Q. Nie, X. Wang, X. Shen, F. Chen, T. Xu, S. Dai, and X. Zhang, “New far-infrared transmitting Te-based chalcogenide glasses,” J. Appl. Phys. 110(4), 043536 (2011).
[Crossref]

Davies, B. L.

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. L. Davies, and I. Jackson, “Elastic Transition Thresholds in Ge-As(Sb)-Se Glasses,” J. Phys. D Appl. Phys. 46(16), 165302 (2013).
[Crossref]

Deng, H. Y.

Dinyari, K. N.

Doucet, L.

G. Carlotti, L. Doucet, and M. Dupeux, “Elastic properties of silicon dioxide films deposited by chemical vapour deposition from tetraethylorthosilicate,” Thin Solid Films 296(1), 102–105 (1997).
[Crossref]

Dupeux, M.

G. Carlotti, L. Doucet, and M. Dupeux, “Elastic properties of silicon dioxide films deposited by chemical vapour deposition from tetraethylorthosilicate,” Thin Solid Films 296(1), 102–105 (1997).
[Crossref]

Eggleton, B. J.

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1), 1–12 (2003).
[Crossref]

Esashi, M.

J. Yang, T. Ono, and M. Esashi, “Energy dissipation in submicrometer thick single-crystal silicon cantilevers,” J. Microelectromech. Syst. 11(6), 775–783 (2002).
[Crossref]

Fan, X.

Fan, X. D.

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Forstner, S.

S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10(1), 132 (2019).
[Crossref] [PubMed]

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref] [PubMed]

Fort, T.

Gay, M.

Gerasimenko, V. V.

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Golter, D. A.

Gopinath, J. T.

Grayson, M.

Grillet, C.

Gulbiten, O.

T. Wang, O. Gulbiten, R. Wang, Z. Yang, A. Smith, B. Luther-Davies, and P. Lucas, “Relative contribution of stoichiometry and mean coordination to the fragility of Ge-As-Se glass forming liquids,” J. Phys. Chem. B 118(5), 1436–1442 (2014).
[Crossref] [PubMed]

Guo, L. J.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “Effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

Harris, G. I.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref] [PubMed]

Hudson, D. D.

Jackson, I.

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. L. Davies, and I. Jackson, “Elastic Transition Thresholds in Ge-As(Sb)-Se Glasses,” J. Phys. D Appl. Phys. 46(16), 165302 (2013).
[Crossref]

Ježek, J.

Jiang, X.

Jonáš, A.

Kailasnath, M.

Kang, G.

Khan, M. H.

Kim, D. G.

Kiraz, A.

Kirk, A. G.

Knittel, J.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref] [PubMed]

Kocabas, A.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 341–345 (2004).
[Crossref]

Kocabas, C.

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 341–345 (2004).
[Crossref]

Krogstad, M. R.

Kuzyk, M. C.

Le, S. D.

Lee, H.

Lenglé, K.

Lezal, D.

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” J. Optoelectron. Adv. Mater. 6(1), 133–137 (2004).

Li, S.

S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, and I. A. Schaap, “Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations,” PLoS One 7(9), e45297 (2012).
[Crossref] [PubMed]

Liao, X.

Ling, T.

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

Loncar, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Long, G. L.

Lu, T.

G. McShane, M. Boutchich, A. Phani, D. Moore, and T. Lu, “Young’s modulus measurement of thin-film materials using micro-cantilevers,” J. Micromech. Microeng. 16(10), 1926–1934 (2006).
[Crossref]

Lucas, P.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459(1), 88–93 (2017).
[Crossref]

T. Wang, O. Gulbiten, R. Wang, Z. Yang, A. Smith, B. Luther-Davies, and P. Lucas, “Relative contribution of stoichiometry and mean coordination to the fragility of Ge-As-Se glass forming liquids,” J. Phys. Chem. B 118(5), 1436–1442 (2014).
[Crossref] [PubMed]

Luther-Davies, B.

N. Singh, D. D. Hudson, R. Wang, E. C. Mägi, D. Y. Choi, C. Grillet, B. Luther-Davies, S. Madden, and B. J. Eggleton, “Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator,” Opt. Express 23(7), 8681–8686 (2015).
[Crossref] [PubMed]

P. Ma, D. Y. Choi, Y. Yu, Z. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, and S. Madden, “High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing,” Opt. Express 23(15), 19969–19979 (2015).
[Crossref] [PubMed]

T. Wang, O. Gulbiten, R. Wang, Z. Yang, A. Smith, B. Luther-Davies, and P. Lucas, “Relative contribution of stoichiometry and mean coordination to the fragility of Ge-As-Se glass forming liquids,” J. Phys. Chem. B 118(5), 1436–1442 (2014).
[Crossref] [PubMed]

X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1–x–y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
[Crossref]

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

Ma, P.

Madden, S.

Madden, S. J.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

Mägi, E. C.

Mathew, S.

McShane, G.

G. McShane, M. Boutchich, A. Phani, D. Moore, and T. Lu, “Young’s modulus measurement of thin-film materials using micro-cantilevers,” J. Micromech. Microeng. 16(10), 1926–1934 (2006).
[Crossref]

Méchin, D.

Mei, T.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “Effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Mitchell, A.

Moore, D.

G. McShane, M. Boutchich, A. Phani, D. Moore, and T. Lu, “Young’s modulus measurement of thin-film materials using micro-cantilevers,” J. Micromech. Microeng. 16(10), 1926–1934 (2006).
[Crossref]

Nawaz, S.

S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, and I. A. Schaap, “Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations,” PLoS One 7(9), e45297 (2012).
[Crossref] [PubMed]

Nguyen, D. M.

Nguyen, T.

Nie, Q.

G. Wang, Q. Nie, X. Wang, X. Shen, F. Chen, T. Xu, S. Dai, and X. Zhang, “New far-infrared transmitting Te-based chalcogenide glasses,” J. Appl. Phys. 110(4), 043536 (2011).
[Crossref]

Nishimura, N.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “Effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Oki, Y.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “Effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Ono, T.

J. Yang, T. Ono, and M. Esashi, “Energy dissipation in submicrometer thick single-crystal silicon cantilevers,” J. Microelectromech. Syst. 11(6), 775–783 (2002).
[Crossref]

Oo, T.

Oxborrow, M.

M. Oxborrow, “How to simulate the whispering-gallery modes of dielectric microresonators in FEMLAB/COMSOL,” Proc. SPIE 6452, 64520J (2007).
[Crossref]

Park, W.

Pedlikova, J.

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” J. Optoelectron. Adv. Mater. 6(1), 133–137 (2004).

Phani, A.

G. McShane, M. Boutchich, A. Phani, D. Moore, and T. Lu, “Young’s modulus measurement of thin-film materials using micro-cantilevers,” J. Micromech. Microeng. 16(10), 1926–1934 (2006).
[Crossref]

Pilát, Z.

Plotnichenko, V. G.

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Prams, S.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref] [PubMed]

Prasad, A.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

Pushkin, A. A.

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Qi, M.

Qi, S.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459(1), 88–93 (2017).
[Crossref]

Radhakrishnan, P.

Ran, Z. L.

Rao, Y. J.

Rode, A. V.

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

Rubinsztein-Dunlop, H.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref] [PubMed]

Samuel, B.

Sánchez, P.

S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, and I. A. Schaap, “Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations,” PLoS One 7(9), e45297 (2012).
[Crossref] [PubMed]

Schaap, I. A.

S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, and I. A. Schaap, “Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations,” PLoS One 7(9), e45297 (2012).
[Crossref] [PubMed]

Seddon, A. B.

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(1), 44–50 (1995).
[Crossref]

Shams-Ansari, A.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Shen, H.

Shen, X.

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. L. Davies, and I. Jackson, “Elastic Transition Thresholds in Ge-As(Sb)-Se Glasses,” J. Phys. D Appl. Phys. 46(16), 165302 (2013).
[Crossref]

G. Wang, Q. Nie, X. Wang, X. Shen, F. Chen, T. Xu, S. Dai, and X. Zhang, “New far-infrared transmitting Te-based chalcogenide glasses,” J. Appl. Phys. 110(4), 043536 (2011).
[Crossref]

Shiryaev, V. S.

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Simons, M.

S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, and I. A. Schaap, “Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations,” PLoS One 7(9), e45297 (2012).
[Crossref] [PubMed]

Singh, N.

Skripachev, I. V.

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Smith, A.

T. Wang, O. Gulbiten, R. Wang, Z. Yang, A. Smith, B. Luther-Davies, and P. Lucas, “Relative contribution of stoichiometry and mean coordination to the fragility of Ge-As-Se glass forming liquids,” J. Phys. Chem. B 118(5), 1436–1442 (2014).
[Crossref] [PubMed]

Snopatin, G. E.

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Spearing, S. M.

S. M. Spearing, “Materials issues in microelectromechanical systems (MEMS),” Acta Mater. 48(1), 179–196 (2000).
[Crossref]

Su, X.

X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1–x–y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
[Crossref]

Swaim, J. D.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref] [PubMed]

Szorkovszky, A.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref] [PubMed]

Thual, M.

Tian, H.

Toupin, P.

Troles, J.

van Ooijen, E. D.

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref] [PubMed]

Vu, K.

Wan, L.

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “Effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Wang, C.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Wang, G.

G. Wang, Q. Nie, X. Wang, X. Shen, F. Chen, T. Xu, S. Dai, and X. Zhang, “New far-infrared transmitting Te-based chalcogenide glasses,” J. Appl. Phys. 110(4), 043536 (2011).
[Crossref]

Wang, H.

Wang, L.

X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1–x–y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
[Crossref]

Wang, M.

Wang, R.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459(1), 88–93 (2017).
[Crossref]

N. Singh, D. D. Hudson, R. Wang, E. C. Mägi, D. Y. Choi, C. Grillet, B. Luther-Davies, S. Madden, and B. J. Eggleton, “Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator,” Opt. Express 23(7), 8681–8686 (2015).
[Crossref] [PubMed]

T. Wang, O. Gulbiten, R. Wang, Z. Yang, A. Smith, B. Luther-Davies, and P. Lucas, “Relative contribution of stoichiometry and mean coordination to the fragility of Ge-As-Se glass forming liquids,” J. Phys. Chem. B 118(5), 1436–1442 (2014).
[Crossref] [PubMed]

X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1–x–y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
[Crossref]

Wang, R. P.

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. L. Davies, and I. Jackson, “Elastic Transition Thresholds in Ge-As(Sb)-Se Glasses,” J. Phys. D Appl. Phys. 46(16), 165302 (2013).
[Crossref]

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

Wang, T.

T. Wang, O. Gulbiten, R. Wang, Z. Yang, A. Smith, B. Luther-Davies, and P. Lucas, “Relative contribution of stoichiometry and mean coordination to the fragility of Ge-As-Se glass forming liquids,” J. Phys. Chem. B 118(5), 1436–1442 (2014).
[Crossref] [PubMed]

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. L. Davies, and I. Jackson, “Elastic Transition Thresholds in Ge-As(Sb)-Se Glasses,” J. Phys. D Appl. Phys. 46(16), 165302 (2013).
[Crossref]

Wang, X.

G. Wang, Q. Nie, X. Wang, X. Shen, F. Chen, T. Xu, S. Dai, and X. Zhang, “New far-infrared transmitting Te-based chalcogenide glasses,” J. Appl. Phys. 110(4), 043536 (2011).
[Crossref]

Wang, Y.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459(1), 88–93 (2017).
[Crossref]

Wei, W. H.

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. L. Davies, and I. Jackson, “Elastic Transition Thresholds in Ge-As(Sb)-Se Glasses,” J. Phys. D Appl. Phys. 46(16), 165302 (2013).
[Crossref]

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Xiao, S.

Xu, T.

G. Wang, Q. Nie, X. Wang, X. Shen, F. Chen, T. Xu, S. Dai, and X. Zhang, “New far-infrared transmitting Te-based chalcogenide glasses,” J. Appl. Phys. 110(4), 043536 (2011).
[Crossref]

Yang, A.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459(1), 88–93 (2017).
[Crossref]

Yang, J.

J. Yang, T. Ono, and M. Esashi, “Energy dissipation in submicrometer thick single-crystal silicon cantilevers,” J. Microelectromech. Syst. 11(6), 775–783 (2002).
[Crossref]

Yang, Z.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459(1), 88–93 (2017).
[Crossref]

P. Ma, D. Y. Choi, Y. Yu, Z. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, and S. Madden, “High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing,” Opt. Express 23(15), 19969–19979 (2015).
[Crossref] [PubMed]

T. Wang, O. Gulbiten, R. Wang, Z. Yang, A. Smith, B. Luther-Davies, and P. Lucas, “Relative contribution of stoichiometry and mean coordination to the fragility of Ge-As-Se glass forming liquids,” J. Phys. Chem. B 118(5), 1436–1442 (2014).
[Crossref] [PubMed]

Yoshioka, H.

Yu, Y.

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1), 1–12 (2003).
[Crossref]

Zavadil, J.

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” J. Optoelectron. Adv. Mater. 6(1), 133–137 (2004).

Zemánek, P.

Zhang, C.

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

Zhang, H.

Zhang, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Zhang, X.

G. Wang, Q. Nie, X. Wang, X. Shen, F. Chen, T. Xu, S. Dai, and X. Zhang, “New far-infrared transmitting Te-based chalcogenide glasses,” J. Appl. Phys. 110(4), 043536 (2011).
[Crossref]

Zhou, J.

ACS Photonics (1)

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

Acta Mater. (1)

S. M. Spearing, “Materials issues in microelectromechanical systems (MEMS),” Acta Mater. 48(1), 179–196 (2000).
[Crossref]

Appl. Phys. Lett. (1)

L. Wan, H. Chandrahalim, C. Chen, Q. S. Chen, T. Mei, Y. Oki, N. Nishimura, L. J. Guo, and X. D. Fan, “On-chip, high-sensitivity temperature sensors based on dye-doped solid-state polymer microring lasers,” Appl. Phys. Lett. 111(6), 061109 (2017).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

D. A. P. Bulla, R. P. Wang, A. Prasad, A. V. Rode, S. J. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process. 96(3), 615–625 (2009).
[Crossref]

X. Su, R. Wang, B. Luther-Davies, and L. Wang, “The dependence of photosensitivity on composition for thin films of GexAsySe1–x–y chalcogenide glasses,” Appl. Phys., A Mater. Sci. Process. 113(3), 575–581 (2013).
[Crossref]

Inorg. Mater. (1)

M. F. Churbanov, V. S. Shiryaev, V. V. Gerasimenko, A. A. Pushkin, I. V. Skripachev, G. E. Snopatin, and V. G. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

J. Appl. Phys. (2)

G. Wang, Q. Nie, X. Wang, X. Shen, F. Chen, T. Xu, S. Dai, and X. Zhang, “New far-infrared transmitting Te-based chalcogenide glasses,” J. Appl. Phys. 110(4), 043536 (2011).
[Crossref]

F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, and S. Agan, “Prism coupling technique investigation of elasto-optical properties of thin polymer films,” J. Appl. Phys. 96(12), 341–345 (2004).
[Crossref]

J. Microelectromech. Syst. (1)

J. Yang, T. Ono, and M. Esashi, “Energy dissipation in submicrometer thick single-crystal silicon cantilevers,” J. Microelectromech. Syst. 11(6), 775–783 (2002).
[Crossref]

J. Micromech. Microeng. (1)

G. McShane, M. Boutchich, A. Phani, D. Moore, and T. Lu, “Young’s modulus measurement of thin-film materials using micro-cantilevers,” J. Micromech. Microeng. 16(10), 1926–1934 (2006).
[Crossref]

J. Non-Cryst. Solids (3)

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(1), 44–50 (1995).
[Crossref]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: A review,” J. Non-Cryst. Solids 330(1), 1–12 (2003).
[Crossref]

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459(1), 88–93 (2017).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

D. Lezal, J. Pedlikova, and J. Zavadil, “Chalcogenide glasses for optical and photonics applications,” J. Optoelectron. Adv. Mater. 6(1), 133–137 (2004).

J. Phys. Chem. B (1)

T. Wang, O. Gulbiten, R. Wang, Z. Yang, A. Smith, B. Luther-Davies, and P. Lucas, “Relative contribution of stoichiometry and mean coordination to the fragility of Ge-As-Se glass forming liquids,” J. Phys. Chem. B 118(5), 1436–1442 (2014).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

T. Wang, W. H. Wei, X. Shen, R. P. Wang, B. L. Davies, and I. Jackson, “Elastic Transition Thresholds in Ge-As(Sb)-Se Glasses,” J. Phys. D Appl. Phys. 46(16), 165302 (2013).
[Crossref]

Nat. Commun. (1)

S. Basiri-Esfahani, A. Armin, S. Forstner, and W. P. Bowen, “Precision ultrasound sensing on a chip,” Nat. Commun. 10(1), 132 (2019).
[Crossref] [PubMed]

Nature (1)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562(7725), 101–104 (2018).
[Crossref] [PubMed]

Opt. Express (10)

X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G. L. Long, and H. Wang, “Chip-based silica microspheres for cavity optomechanics,” Opt. Express 23(21), 27260–27265 (2015).
[Crossref] [PubMed]

K. N. Dinyari, R. J. Barbour, D. A. Golter, and H. Wang, “Mechanical tuning of whispering gallery modes over a 0.5 THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures,” Opt. Express 19(19), 17966–17972 (2011).
[Crossref] [PubMed]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref] [PubMed]

P. Ma, D. Y. Choi, Y. Yu, Z. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, and S. Madden, “High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing,” Opt. Express 23(15), 19969–19979 (2015).
[Crossref] [PubMed]

Y. J. Rao, Z. L. Ran, X. Liao, and H. Y. Deng, “Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain,” Opt. Express 15(22), 14936–14941 (2007).
[Crossref] [PubMed]

G. Kang, M. R. Krogstad, M. Grayson, D. G. Kim, H. Lee, J. T. Gopinath, and W. Park, “High quality chalcogenide-silica hybrid wedge resonator,” Opt. Express 25(13), 15581–15589 (2017).
[Crossref] [PubMed]

N. Singh, D. D. Hudson, R. Wang, E. C. Mägi, D. Y. Choi, C. Grillet, B. Luther-Davies, S. Madden, and B. J. Eggleton, “Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator,” Opt. Express 23(7), 8681–8686 (2015).
[Crossref] [PubMed]

M. I. Cheema and A. G. Kirk, “Accurate determination of the quality factor and tunneling distance of axisymmetric resonators for biosensing applications,” Opt. Express 21(7), 8724–8735 (2013).
[Crossref] [PubMed]

C. Chen, L. Wan, H. Chandrahalim, J. Zhou, H. Zhang, S. Cho, T. Mei, H. Yoshioka, H. Tian, N. Nishimura, X. Fan, L. J. Guo, and Y. Oki, “Effects of edge inclination angles on whispering-gallery modes in printable wedge microdisk lasers,” Opt. Express 26(1), 233–241 (2018).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express 15(17), 10553–10561 (2007).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, “Cavity optomechanical magnetometer,” Phys. Rev. Lett. 108(12), 120801 (2012).
[Crossref] [PubMed]

PLoS One (1)

S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, and I. A. Schaap, “Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations,” PLoS One 7(9), e45297 (2012).
[Crossref] [PubMed]

Proc. SPIE (1)

M. Oxborrow, “How to simulate the whispering-gallery modes of dielectric microresonators in FEMLAB/COMSOL,” Proc. SPIE 6452, 64520J (2007).
[Crossref]

Thin Solid Films (1)

G. Carlotti, L. Doucet, and M. Dupeux, “Elastic properties of silicon dioxide films deposited by chemical vapour deposition from tetraethylorthosilicate,” Thin Solid Films 296(1), 102–105 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The fabrication schematic of the suspended ChG microdisk resonator. (b) SEM image of a suspended ChG microdisk membrane with a radius R = 40 μm and a thickness d = 650 nm.
Fig. 2
Fig. 2 The schematic of the experimental measurement setup. Inset was the optical image of a suspended ChG microdisk resonator evanescently coupling to a silica taper fiber under the test.
Fig. 3
Fig. 3 (a) Transmission spectrum of a suspended ChG microdisk resonator with the radius of 40 μm. (b) Zoomed-in transmission spectrum corresponding to a high-order mode given a loaded Q-factor ~2.87 × 104. Inset was the electric field distribution of TM resonance mode around 1556.7 nm.
Fig. 4
Fig. 4 (a) SEM image of the ChG cantilever with length of 30 μm and width of 20 μm. (b) Measured Young's moduli of the ChG cantilevers with different aspect ratios.
Fig. 5
Fig. 5 (a) Variations of transmission spectra of the suspended ChG microdisk resonator at the different temperatures (b) A linear fitting to the red-shift of the resonant wavelength as a function of temperature.

Tables (1)

Tables Icon

Table 1 Young's moduli of different materials.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q i = 2 π λ 0 / ( F S R × κ P 2 ) = λ 0 / ( Δ λ × γ t ) .
L = 10 × log ( 1 κ p 2 ) .
F = 4 3 × E σ 3 2 r 1 2 1 v 2 ,
d λ d T = λ 0 ( 1 n d n d T + 1 R d R d T ) = λ 0 ( 1 n δ + α ) ,

Metrics