Abstract

We present a single-frequency thulium-doped fiber laser (TDFL) with a narrow linewidth of 20 kHz. Stable single-longitudinal-mode (SLM) lasing operation at 1957 nm is achieved using a segment of un-pumped polarization-maintaining thulium-doped fiber (PM-TDF) as an ultra-narrow bandwidth filter. A high optical signal-to-noise ratio (OSNR) of over 60 dB is obtained and a high power of over 400 mW is achieved with a high slope-efficiency (~45.8%) thulium-doped fiber amplifier (TDFA).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Widely tunable single-/dual-wavelength fiber lasers with ultra-narrow linewidth and high OSNR using high quality passive subring cavity and novel tuning method

Ting Feng, Dongliang Ding, Fengping Yan, Ziwei Zhao, Hongxin Su, and X. Steve Yao
Opt. Express 24(17) 19760-19768 (2016)

Widely wavelength-tunable 2  μm Brillouin fiber laser incorporating a highly germania-doped fiber

Taoce Yin, Barerem-Melgueba Mao, Yizhen Wei, and Daru Chen
Appl. Opt. 57(23) 6831-6834 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. M. Taczak and D. K. Killinger, “Development of a tunable, narrow-linewidth, cw 2.066-μm Ho:YLF laser for remote sensing of atmospheric CO2 and H2O,” Appl. Opt. 37(36), 8460–8476 (1998).
    [Crossref] [PubMed]
  2. C.-C. Lee, Y.-K. Chen, and S.-K. Liaw, “Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission,” Opt. Lett. 23(5), 358–360 (1998).
    [Crossref] [PubMed]
  3. S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29(13), 1503–1505 (2004).
    [Crossref] [PubMed]
  4. S. Fu, W. Shi, J. Lin, Q. Fang, Q. Sheng, H. Zhang, J. Wen, and J. Yao, “Single-frequency fiber laser at 1950 nm based on thulium-doped silica fiber,” Opt. Lett. 40(22), 5283–5286 (2015).
    [Crossref] [PubMed]
  5. S. Fu, W. Shi, Q. Sheng, G. Shi, H. Zhang, and J. Yao, “Extended linear cavity 2 μm single-frequency fiber laser using Tm-doped fiber saturable absorber,” in Proceedings of the Conference on Lasers and Electro-Optics USA, 2017 CLEO/USA, JW2A.64 (2017).
    [Crossref]
  6. M. Horowitz, R. Daisy, B. Fischer, and J. L. Zyskind, “Linewidth-narrowing mechanism in lasers by nonlinear wave mixing,” Opt. Lett. 19(18), 1406–1408 (1994).
    [Crossref] [PubMed]
  7. S. Stepanov, “Dynamic population gratings in rare-earth-doped optical fibres,” J. Phys. D Appl. Phys. 41(22), 224002 (2008).
    [Crossref]
  8. Z. Meng, G. Stewart, and G. Whitenett, “Stable single-mode operation of a narrow-linewidth, linearly polarized, erbium-fiber ring laser using a saturable absorber,” J. Lightwave Technol. 24(5), 2179 (2006).
  9. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
    [Crossref]
  10. T. Yin, B.-M. Mao, Y. Wei, and D. Chen, “Widely wavelength-tunable 2 μm Brillouin fiber laser incorporating a highly germania-doped fiber,” Appl. Opt. 57(23), 6831–6834 (2018).
    [Crossref] [PubMed]
  11. A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
    [Crossref]

2018 (1)

2015 (1)

2008 (1)

S. Stepanov, “Dynamic population gratings in rare-earth-doped optical fibres,” J. Phys. D Appl. Phys. 41(22), 224002 (2008).
[Crossref]

2006 (1)

2004 (1)

2000 (1)

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

1998 (2)

1994 (1)

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Agger, S.

Chen, D.

Chen, Y.-K.

Daisy, R.

Debut, A.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

Fang, Q.

Fischer, B.

Fu, S.

Horowitz, M.

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Killinger, D. K.

Lee, C.-C.

Liaw, S.-K.

Lin, J.

Mao, B.-M.

Meng, Z.

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

Povlsen, J. H.

Randoux, S.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

Sheng, Q.

Shi, W.

Stepanov, S.

S. Stepanov, “Dynamic population gratings in rare-earth-doped optical fibres,” J. Phys. D Appl. Phys. 41(22), 224002 (2008).
[Crossref]

Stewart, G.

Taczak, T. M.

Varming, P.

Wei, Y.

Wen, J.

Whitenett, G.

Yao, J.

Yin, T.

Zemmouri, J.

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

Zhang, H.

Zyskind, J. L.

Appl. Opt. (2)

Electron. Lett. (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. D Appl. Phys. (1)

S. Stepanov, “Dynamic population gratings in rare-earth-doped optical fibres,” J. Phys. D Appl. Phys. 41(22), 224002 (2008).
[Crossref]

Opt. Lett. (4)

Phys. Rev. A (1)

A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: Theoretical analysis,” Phys. Rev. A 62(2), 023803 (2000).
[Crossref]

Other (1)

S. Fu, W. Shi, Q. Sheng, G. Shi, H. Zhang, and J. Yao, “Extended linear cavity 2 μm single-frequency fiber laser using Tm-doped fiber saturable absorber,” in Proceedings of the Conference on Lasers and Electro-Optics USA, 2017 CLEO/USA, JW2A.64 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagrams for the single-frequency TDFL and TDFA (Pump1/Pump2: 1580 nm pump laser, SM-TDF: single-mode thulium-dope fiber, WDM: wavelength-division multiplexing coupler, HR-FBG: high-reflection fiber Bragg grating, OC: optical coupler, ISO: isolator, PC: polarization controller, PM-TDF: polarization-maintaining Tm-doped fiber, CIR: circulator).
Fig. 2
Fig. 2 (a) Output spectrum of the single-frequency TDFL when pump1 is at 226 mW, (b) 1957 nm laser output power when the launched pump1 power increases.
Fig. 3
Fig. 3 (a) Beat frequency signal spectrum when the pump1 power is over 431 mW, (b) Homodyne frequency spectra of 1957 nm laser measured every 5 minutes when the pump1 power is below 431 mW.
Fig. 4
Fig. 4 (a) Amplified laser output power as the launched pump2 power increases, (b) Amplified laser spectra at different pump2 power.
Fig. 5
Fig. 5 Beat frequency signal spectrum between the Brillouin laser and Brillouin pump (the linewidth of present amplified fiber laser).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ= λ 2 2Ln

Metrics