Abstract

Parallel sorting of orbital angular momentum (OAM) and polarization has recently acquired paramount importance and interest in a wide range of fields ranging from telecommunications to high-dimensional quantum cryptography. Due to their inherently polarization-sensitive optical response, optical elements acting on the geometric phase prove to be useful for processing structured light beams with orthogonal polarization states by means of a single optical platform. In this work, we present the design, fabrication and test of a Pancharatnam-Berry optical element in silicon implementing a log-pol optical transformation at 1310 nm for the realization of an OAM sorter based on the conformal mapping between angular and linear momentum states. The metasurface is realized in the form of continuously variant subwavelength gratings, providing high-resolution in the definition of the phase pattern. A hybrid device is fabricated assembling the metasurface for the geometric-phase control with multi-level diffractive optics for the polarization-independent manipulation of the dynamic phase. The optical characterization confirms the capability to sort orbital angular momentum and circular polarization at the same time.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nano-fabrication and characterization of silicon meta-surfaces provided with Pancharatnam-Berry effect

Pietro Capaldo, Alessia Mezzadrelli, Alessandro Pozzato, Gianluca Ruffato, Michele Massari, and Filippo Romanato
Opt. Mater. Express 9(3) 1015-1032 (2019)

Pancharatnam-Berry optical element sorter of full angular momentum eigenstate

Gary F. Walsh
Opt. Express 24(6) 6689-6704 (2016)

Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography

Hugo Larocque, Jérémie Gagnon-Bischoff, Dominic Mortimer, Yingwen Zhang, Frédéric Bouchard, Jeremy Upham, Vincenzo Grillo, Robert W. Boyd, and Ebrahim Karimi
Opt. Express 25(17) 19832-19843 (2017)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, D. T. Neilson, and A. R. Chraplyvy, “Fiber-optic transmission and networking: the previous 20 and the next 20 years,” Opt. Express 26(18), 24190–24239 (2018).
    [Crossref] [PubMed]
  2. E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
    [Crossref]
  3. M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017).
    [Crossref] [PubMed]
  4. S. Yu, “Potentials and challenges of using orbital angular momentum communications in optical interconnects,” Opt. Express 23(3), 3075–3087 (2015).
    [Crossref] [PubMed]
  5. J. Wang, “Twisted optical communications using orbital angular momentum,” China Phys. Mech. Astron. 62(3), 34201 (2019).
    [Crossref]
  6. G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010).
    [Crossref] [PubMed]
  7. M. P. J. Lavery, D. J. Robertson, G. C. G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20(3), 2110–2115 (2012).
    [Crossref] [PubMed]
  8. M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4(1), 2781 (2013).
    [Crossref] [PubMed]
  9. C. Wan, J. Chen, and Q. Zhan, “Compact and high-resolution optical orbital angular momentum sorter,” APL Photonics 2(3), 031302 (2017).
    [Crossref]
  10. G. Ruffato, M. Massari, G. Parisi, and F. Romanato, “Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics,” Opt. Express 25(7), 7859–7868 (2017).
    [Crossref] [PubMed]
  11. G. Ruffato, M. Massari, and F. Romanato, “Compact sorting of optical vortices by means of diffractive transformation optics,” Opt. Lett. 42(3), 551–554 (2017).
    [Crossref] [PubMed]
  12. G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
    [Crossref] [PubMed]
  13. F. S. Roux, “Geometric phase lens,” J. Opt. Soc. Am. A 23(2), 476–482 (2006).
    [Crossref] [PubMed]
  14. A. Emoto, M. Nishi, M. Okada, S. Manabe, S. Matsui, N. Kawatsuki, and H. Ono, “Form birefringence in intrinsic birefringent media possessing a subwavelength structure,” Appl. Opt. 49(23), 4355–4361 (2010).
    [Crossref] [PubMed]
  15. B. Desiatov, N. Mazurski, Y. Fainman, and U. Levy, “Polarization selective beam shaping using nanoscale dielectric metasurfaces,” Opt. Express 23(17), 22611–22618 (2015).
    [Crossref] [PubMed]
  16. Z. Bomzon, V. Kleiner, and E. Hasman, “Space-variant polarization state manipulation with computer-generated subwavelength metal stripe gratings,” Opt. Commun. 192(3-6), 169–181 (2001).
    [Crossref]
  17. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
    [Crossref] [PubMed]
  18. A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements,” Opt. Lett. 29(3), 238–240 (2004).
    [Crossref] [PubMed]
  19. E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
    [Crossref]
  20. U. Levy, H.-C. Kim, C.-H. Tsai, and Y. Fainman, “Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation,” Opt. Lett. 30(16), 2089–2091 (2005).
    [Crossref] [PubMed]
  21. G. F. Walsh, “Pancharatnam-Berry optical element sorter of full angular momentum eigenstate,” Opt. Express 24(6), 6689–6704 (2016).
    [Crossref] [PubMed]
  22. H. Larocque, J. Gagnon-Bischoff, D. Mortimer, Y. Zhang, F. Bouchard, J. Upham, V. Grillo, R. W. Boyd, and E. Karimi, “Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography,” Opt. Express 25(17), 19832–19843 (2017).
    [Crossref] [PubMed]
  23. G. F. Walsh, L. Sio, D. E. Roberts, N. Tabiryan, F. J. Aranda, and B. R. Kimball, “Parallel sorting of orbital and spin angular momenta of light in a record large number of channels,” Opt. Lett. 43(10), 2256–2259 (2018).
    [Crossref] [PubMed]
  24. S. Zheng, Y. Li, Q. Lin, X. Zeng, G. Zheng, Y. Cai, Z. Chen, S. Xu, and D. Fan, “Experimental realization to efficiently sort vector beams by polarization topological charge via Pancharatnam–Berry phase modulation,” Photon. Res. 6(5), 385–389 (2018).
    [Crossref]
  25. S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7(6), 959–987 (2018).
    [Crossref]
  26. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
    [Crossref]
  27. M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
    [Crossref] [PubMed]
  28. P. Capaldo, A. Mezzadrelli, A. Pozzato, G. Ruffato, M. Massari, and F. Romanato, “Nano-fabrication and characterization of silicon meta-surfaces provided with Pancharatnam-Berry effect,” Opt. Mater. Express 9(3), 1015–1032 (2019).
    [Crossref]
  29. G. Ruffato, P. Capaldo, M. Massari, A. Mezzadrelli, and F. Romanato, “Pancharatnam–Berry optical elements for spin and orbital angular momentum division demultiplexing,” Photonics 5(4), 46 (2018).
    [Crossref]
  30. Y. Saito, S. Komatsu, and H. Ohzu, “Scale and rotation invariant real time optical correlator using computer generated hologram,” Opt. Commun. 47(1), 8–11 (1983).
    [Crossref]
  31. W. J. Hossack, A. M. Darling, and A. Dahdouh, “Coordinate transformations with multiple computer-generated optical elements,” J. Mod. Opt. 34(9), 1235–1250 (1987).
    [Crossref]
  32. Y. G. Soskind, Field guide to diffractive optics (SPIE Press, 2011).
  33. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [Crossref]
  34. P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14(7), 1592–1598 (1997).
    [Crossref]
  35. H. Kikuta, Y. Ohira, H. Kubo, and K. Iwata, “Effective medium theory of two-dimensional subwavelength gratings in the non-quasi-static limit,” J. Opt. Soc. Am. A 15(6), 1577–1585 (1998).
    [Crossref]
  36. M. Massari, G. Ruffato, M. Gintoli, F. Ricci, and F. Romanato, “Fabrication and characterization of high-quality spiral phase plates for optical applications,” Appl. Opt. 54(13), 4077–4083 (2015).
    [Crossref]
  37. M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61–62, 441–448 (2002).
    [Crossref]
  38. A. Pozzato, G. Grenci, G. Birarda, and M. Tormen, “Evaluation of a novolak based positive tone photoresist as NanoImprint Lithography resist,” Microelectron. Eng. 88(8), 2096–2099 (2011).
    [Crossref]
  39. V. DePalma and N. Tillman, “Friction and wear of self-assembled trichlorosilane monolayer films on silicon,” Langmuir 5(3), 868–872 (1989).
    [Crossref]
  40. C. Haensch, S. Hoeppener, and U. S. Schubert, “Chemical modification of self-assembled silane based monolayers by surface reactions,” Chem. Soc. Rev. 39(6), 2323–2334 (2010).
    [Crossref] [PubMed]
  41. C. Rosales-Guzmán and A. Forbes, How to Shape Light With Spatial Light Modulators (SPIE Press, 2017).
  42. S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).
  43. B. Ndagano, I. Nape, B. Perez-Garcia, S. Scholes, R. I. Hernandez-Aranda, T. Konrad, M. P. J. Lavery, and A. Forbes, “A deterministic detector for vector vortex states,” Sci. Rep. 7(1), 13882 (2017).
    [Crossref] [PubMed]

2019 (2)

2018 (6)

S. Zheng, Y. Li, Q. Lin, X. Zeng, G. Zheng, Y. Cai, Z. Chen, S. Xu, and D. Fan, “Experimental realization to efficiently sort vector beams by polarization topological charge via Pancharatnam–Berry phase modulation,” Photon. Res. 6(5), 385–389 (2018).
[Crossref]

G. F. Walsh, L. Sio, D. E. Roberts, N. Tabiryan, F. J. Aranda, and B. R. Kimball, “Parallel sorting of orbital and spin angular momenta of light in a record large number of channels,” Opt. Lett. 43(10), 2256–2259 (2018).
[Crossref] [PubMed]

P. J. Winzer, D. T. Neilson, and A. R. Chraplyvy, “Fiber-optic transmission and networking: the previous 20 and the next 20 years,” Opt. Express 26(18), 24190–24239 (2018).
[Crossref] [PubMed]

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7(6), 959–987 (2018).
[Crossref]

G. Ruffato, P. Capaldo, M. Massari, A. Mezzadrelli, and F. Romanato, “Pancharatnam–Berry optical elements for spin and orbital angular momentum division demultiplexing,” Photonics 5(4), 46 (2018).
[Crossref]

2017 (8)

C. Wan, J. Chen, and Q. Zhan, “Compact and high-resolution optical orbital angular momentum sorter,” APL Photonics 2(3), 031302 (2017).
[Crossref]

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref] [PubMed]

B. Ndagano, I. Nape, B. Perez-Garcia, S. Scholes, R. I. Hernandez-Aranda, T. Konrad, M. P. J. Lavery, and A. Forbes, “A deterministic detector for vector vortex states,” Sci. Rep. 7(1), 13882 (2017).
[Crossref] [PubMed]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139–152 (2017).
[Crossref]

G. Ruffato, M. Massari, and F. Romanato, “Compact sorting of optical vortices by means of diffractive transformation optics,” Opt. Lett. 42(3), 551–554 (2017).
[Crossref] [PubMed]

G. Ruffato, M. Massari, G. Parisi, and F. Romanato, “Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics,” Opt. Express 25(7), 7859–7868 (2017).
[Crossref] [PubMed]

M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017).
[Crossref] [PubMed]

H. Larocque, J. Gagnon-Bischoff, D. Mortimer, Y. Zhang, F. Bouchard, J. Upham, V. Grillo, R. W. Boyd, and E. Karimi, “Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography,” Opt. Express 25(17), 19832–19843 (2017).
[Crossref] [PubMed]

2016 (2)

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

G. F. Walsh, “Pancharatnam-Berry optical element sorter of full angular momentum eigenstate,” Opt. Express 24(6), 6689–6704 (2016).
[Crossref] [PubMed]

2015 (3)

2013 (2)

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4(1), 2781 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (1)

A. Pozzato, G. Grenci, G. Birarda, and M. Tormen, “Evaluation of a novolak based positive tone photoresist as NanoImprint Lithography resist,” Microelectron. Eng. 88(8), 2096–2099 (2011).
[Crossref]

2010 (3)

C. Haensch, S. Hoeppener, and U. S. Schubert, “Chemical modification of self-assembled silane based monolayers by surface reactions,” Chem. Soc. Rev. 39(6), 2323–2334 (2010).
[Crossref] [PubMed]

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref] [PubMed]

A. Emoto, M. Nishi, M. Okada, S. Manabe, S. Matsui, N. Kawatsuki, and H. Ono, “Form birefringence in intrinsic birefringent media possessing a subwavelength structure,” Appl. Opt. 49(23), 4355–4361 (2010).
[Crossref] [PubMed]

2006 (1)

2005 (1)

2004 (1)

2002 (3)

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
[Crossref] [PubMed]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[Crossref]

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61–62, 441–448 (2002).
[Crossref]

2001 (1)

Z. Bomzon, V. Kleiner, and E. Hasman, “Space-variant polarization state manipulation with computer-generated subwavelength metal stripe gratings,” Opt. Commun. 192(3-6), 169–181 (2001).
[Crossref]

1998 (1)

1997 (1)

1995 (1)

1989 (1)

V. DePalma and N. Tillman, “Friction and wear of self-assembled trichlorosilane monolayer films on silicon,” Langmuir 5(3), 868–872 (1989).
[Crossref]

1987 (1)

W. J. Hossack, A. M. Darling, and A. Dahdouh, “Coordinate transformations with multiple computer-generated optical elements,” J. Mod. Opt. 34(9), 1235–1250 (1987).
[Crossref]

1983 (1)

Y. Saito, S. Komatsu, and H. Ohzu, “Scale and rotation invariant real time optical correlator using computer generated hologram,” Opt. Commun. 47(1), 8–11 (1983).
[Crossref]

Agrell, E.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Aieta, F.

Aranda, F. J.

Beck, M.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61–62, 441–448 (2002).
[Crossref]

Beijersbergen, M. W.

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref] [PubMed]

Berkhout, G. C. G.

M. P. J. Lavery, D. J. Robertson, G. C. G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20(3), 2110–2115 (2012).
[Crossref] [PubMed]

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref] [PubMed]

Biener, G.

Birarda, G.

A. Pozzato, G. Grenci, G. Birarda, and M. Tormen, “Evaluation of a novolak based positive tone photoresist as NanoImprint Lithography resist,” Microelectron. Eng. 88(8), 2096–2099 (2011).
[Crossref]

Boltasseva, A.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7(6), 959–987 (2018).
[Crossref]

Bomzon, Z.

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[Crossref]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
[Crossref] [PubMed]

Z. Bomzon, V. Kleiner, and E. Hasman, “Space-variant polarization state manipulation with computer-generated subwavelength metal stripe gratings,” Opt. Commun. 192(3-6), 169–181 (2001).
[Crossref]

Bouchard, F.

Bowers, J. E.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Boyd, R. W.

Brandt-Pearce, M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Cai, Y.

Capaldo, P.

P. Capaldo, A. Mezzadrelli, A. Pozzato, G. Ruffato, M. Massari, and F. Romanato, “Nano-fabrication and characterization of silicon meta-surfaces provided with Pancharatnam-Berry effect,” Opt. Mater. Express 9(3), 1015–1032 (2019).
[Crossref]

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

G. Ruffato, P. Capaldo, M. Massari, A. Mezzadrelli, and F. Romanato, “Pancharatnam–Berry optical elements for spin and orbital angular momentum division demultiplexing,” Photonics 5(4), 46 (2018).
[Crossref]

Capasso, F.

Chaudhuri, K.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7(6), 959–987 (2018).
[Crossref]

Chen, J.

C. Wan, J. Chen, and Q. Zhan, “Compact and high-resolution optical orbital angular momentum sorter,” APL Photonics 2(3), 031302 (2017).
[Crossref]

Chen, Z.

Choudhury, S. M.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7(6), 959–987 (2018).
[Crossref]

Chraplyvy, A. R.

P. J. Winzer, D. T. Neilson, and A. R. Chraplyvy, “Fiber-optic transmission and networking: the previous 20 and the next 20 years,” Opt. Express 26(18), 24190–24239 (2018).
[Crossref] [PubMed]

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Courtial, J.

M. P. J. Lavery, D. J. Robertson, G. C. G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20(3), 2110–2115 (2012).
[Crossref] [PubMed]

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref] [PubMed]

Dahdouh, A.

W. J. Hossack, A. M. Darling, and A. Dahdouh, “Coordinate transformations with multiple computer-generated optical elements,” J. Mod. Opt. 34(9), 1235–1250 (1987).
[Crossref]

Darling, A. M.

W. J. Hossack, A. M. Darling, and A. Dahdouh, “Coordinate transformations with multiple computer-generated optical elements,” J. Mod. Opt. 34(9), 1235–1250 (1987).
[Crossref]

DePalma, V.

V. DePalma and N. Tillman, “Friction and wear of self-assembled trichlorosilane monolayer films on silicon,” Langmuir 5(3), 868–872 (1989).
[Crossref]

Desiatov, B.

DeVault, C.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7(6), 959–987 (2018).
[Crossref]

Devlin, R.

Eggleton, B. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Emoto, A.

Fainman, Y.

Fan, D.

Fischer, J. K.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Forbes, A.

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

B. Ndagano, I. Nape, B. Perez-Garcia, S. Scholes, R. I. Hernandez-Aranda, T. Konrad, M. P. J. Lavery, and A. Forbes, “A deterministic detector for vector vortex states,” Sci. Rep. 7(1), 13882 (2017).
[Crossref] [PubMed]

Gagnon-Bischoff, J.

Gaylord, T. K.

Genevet, P.

Gintoli, M.

Girardi, M.

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

Gisin, N.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Graczyk, M.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61–62, 441–448 (2002).
[Crossref]

Grann, E. B.

Grenci, G.

A. Pozzato, G. Grenci, G. Birarda, and M. Tormen, “Evaluation of a novolak based positive tone photoresist as NanoImprint Lithography resist,” Microelectron. Eng. 88(8), 2096–2099 (2011).
[Crossref]

Grillo, V.

Haensch, C.

C. Haensch, S. Hoeppener, and U. S. Schubert, “Chemical modification of self-assembled silane based monolayers by surface reactions,” Chem. Soc. Rev. 39(6), 2323–2334 (2010).
[Crossref] [PubMed]

Hasman, E.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements,” Opt. Lett. 29(3), 238–240 (2004).
[Crossref] [PubMed]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
[Crossref] [PubMed]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[Crossref]

Z. Bomzon, V. Kleiner, and E. Hasman, “Space-variant polarization state manipulation with computer-generated subwavelength metal stripe gratings,” Opt. Commun. 192(3-6), 169–181 (2001).
[Crossref]

Hernandez-Aranda, R. I.

B. Ndagano, I. Nape, B. Perez-Garcia, S. Scholes, R. I. Hernandez-Aranda, T. Konrad, M. P. J. Lavery, and A. Forbes, “A deterministic detector for vector vortex states,” Sci. Rep. 7(1), 13882 (2017).
[Crossref] [PubMed]

Hoeppener, S.

C. Haensch, S. Hoeppener, and U. S. Schubert, “Chemical modification of self-assembled silane based monolayers by surface reactions,” Chem. Soc. Rev. 39(6), 2323–2334 (2010).
[Crossref] [PubMed]

Hossack, W. J.

W. J. Hossack, A. M. Darling, and A. Dahdouh, “Coordinate transformations with multiple computer-generated optical elements,” J. Mod. Opt. 34(9), 1235–1250 (1987).
[Crossref]

Iwata, K.

Karimi, E.

Karlsson, M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Kawatsuki, N.

Keil, M.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61–62, 441–448 (2002).
[Crossref]

Khorasaninejad, M.

Kikuta, H.

Kildishev, A. V.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7(6), 959–987 (2018).
[Crossref]

Kim, H.-C.

Kimball, B. R.

Kleiner, V.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements,” Opt. Lett. 29(3), 238–240 (2004).
[Crossref] [PubMed]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002).
[Crossref] [PubMed]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[Crossref]

Z. Bomzon, V. Kleiner, and E. Hasman, “Space-variant polarization state manipulation with computer-generated subwavelength metal stripe gratings,” Opt. Commun. 192(3-6), 169–181 (2001).
[Crossref]

Komatsu, S.

Y. Saito, S. Komatsu, and H. Ohzu, “Scale and rotation invariant real time optical correlator using computer generated hologram,” Opt. Commun. 47(1), 8–11 (1983).
[Crossref]

Konrad, T.

B. Ndagano, I. Nape, B. Perez-Garcia, S. Scholes, R. I. Hernandez-Aranda, T. Konrad, M. P. J. Lavery, and A. Forbes, “A deterministic detector for vector vortex states,” Sci. Rep. 7(1), 13882 (2017).
[Crossref] [PubMed]

Kristensen, P.

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

Krummrich, P. M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Kschischang, F. R.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Kubo, H.

Lalanne, P.

Larocque, H.

Lavery, M. P. J.

B. Ndagano, I. Nape, B. Perez-Garcia, S. Scholes, R. I. Hernandez-Aranda, T. Konrad, M. P. J. Lavery, and A. Forbes, “A deterministic detector for vector vortex states,” Sci. Rep. 7(1), 13882 (2017).
[Crossref] [PubMed]

M. P. J. Lavery, D. J. Robertson, G. C. G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20(3), 2110–2115 (2012).
[Crossref] [PubMed]

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref] [PubMed]

Levy, U.

Li, Y.

Lin, Q.

Ling, T. G. I.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61–62, 441–448 (2002).
[Crossref]

Lord, A.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Love, G. D.

Mafakheri, E.

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

Malik, M.

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4(1), 2781 (2013).
[Crossref] [PubMed]

Manabe, S.

Massari, M.

Matsui, S.

Maximov, I.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61–62, 441–448 (2002).
[Crossref]

Mazurski, N.

Mezzadrelli, A.

P. Capaldo, A. Mezzadrelli, A. Pozzato, G. Ruffato, M. Massari, and F. Romanato, “Nano-fabrication and characterization of silicon meta-surfaces provided with Pancharatnam-Berry effect,” Opt. Mater. Express 9(3), 1015–1032 (2019).
[Crossref]

G. Ruffato, P. Capaldo, M. Massari, A. Mezzadrelli, and F. Romanato, “Pancharatnam–Berry optical elements for spin and orbital angular momentum division demultiplexing,” Photonics 5(4), 46 (2018).
[Crossref]

Mirhosseini, M.

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4(1), 2781 (2013).
[Crossref] [PubMed]

Moharam, M. G.

Montelius, L.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61–62, 441–448 (2002).
[Crossref]

Mortimer, D.

Nape, I.

B. Ndagano, I. Nape, B. Perez-Garcia, S. Scholes, R. I. Hernandez-Aranda, T. Konrad, M. P. J. Lavery, and A. Forbes, “A deterministic detector for vector vortex states,” Sci. Rep. 7(1), 13882 (2017).
[Crossref] [PubMed]

Ndagano, B.

B. Ndagano, I. Nape, B. Perez-Garcia, S. Scholes, R. I. Hernandez-Aranda, T. Konrad, M. P. J. Lavery, and A. Forbes, “A deterministic detector for vector vortex states,” Sci. Rep. 7(1), 13882 (2017).
[Crossref] [PubMed]

Neilson, D. T.

Nishi, M.

Niv, A.

A. Niv, G. Biener, V. Kleiner, and E. Hasman, “Propagation-invariant vectorial Bessel beams obtained by use of quantized Pancharatnam-Berry phase optical elements,” Opt. Lett. 29(3), 238–240 (2004).
[Crossref] [PubMed]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[Crossref]

Ohira, Y.

Ohzu, H.

Y. Saito, S. Komatsu, and H. Ohzu, “Scale and rotation invariant real time optical correlator using computer generated hologram,” Opt. Commun. 47(1), 8–11 (1983).
[Crossref]

Okada, M.

Ono, H.

Padgett, M. J.

Parisi, G.

Perez-Garcia, B.

B. Ndagano, I. Nape, B. Perez-Garcia, S. Scholes, R. I. Hernandez-Aranda, T. Konrad, M. P. J. Lavery, and A. Forbes, “A deterministic detector for vector vortex states,” Sci. Rep. 7(1), 13882 (2017).
[Crossref] [PubMed]

Pommet, D. A.

Pozzato, A.

P. Capaldo, A. Mezzadrelli, A. Pozzato, G. Ruffato, M. Massari, and F. Romanato, “Nano-fabrication and characterization of silicon meta-surfaces provided with Pancharatnam-Berry effect,” Opt. Mater. Express 9(3), 1015–1032 (2019).
[Crossref]

A. Pozzato, G. Grenci, G. Birarda, and M. Tormen, “Evaluation of a novolak based positive tone photoresist as NanoImprint Lithography resist,” Microelectron. Eng. 88(8), 2096–2099 (2011).
[Crossref]

Prat, J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Ramachandran, S.

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

Ricci, F.

Richardson, D. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Roberts, D. E.

Roberts, K.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Robertson, D. J.

Romanato, F.

Roux, F. S.

Ruffato, G.

Saito, Y.

Y. Saito, S. Komatsu, and H. Ohzu, “Scale and rotation invariant real time optical correlator using computer generated hologram,” Opt. Commun. 47(1), 8–11 (1983).
[Crossref]

Sarwe, E. L.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61–62, 441–448 (2002).
[Crossref]

Savory, S. J.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Scholes, S.

B. Ndagano, I. Nape, B. Perez-Garcia, S. Scholes, R. I. Hernandez-Aranda, T. Konrad, M. P. J. Lavery, and A. Forbes, “A deterministic detector for vector vortex states,” Sci. Rep. 7(1), 13882 (2017).
[Crossref] [PubMed]

Schubert, U. S.

C. Haensch, S. Hoeppener, and U. S. Schubert, “Chemical modification of self-assembled silane based monolayers by surface reactions,” Chem. Soc. Rev. 39(6), 2323–2334 (2010).
[Crossref] [PubMed]

Secondini, M.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Sephton, B.

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

Shalaev, V. M.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7(6), 959–987 (2018).
[Crossref]

Shi, Z.

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4(1), 2781 (2013).
[Crossref] [PubMed]

Sio, L.

Srinivasan, S.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Tabiryan, N.

Tillman, N.

V. DePalma and N. Tillman, “Friction and wear of self-assembled trichlorosilane monolayer films on silicon,” Langmuir 5(3), 868–872 (1989).
[Crossref]

Tomkos, I.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Tormen, M.

A. Pozzato, G. Grenci, G. Birarda, and M. Tormen, “Evaluation of a novolak based positive tone photoresist as NanoImprint Lithography resist,” Microelectron. Eng. 88(8), 2096–2099 (2011).
[Crossref]

Tsai, C.-H.

Upham, J.

Walsh, G. F.

Wan, C.

C. Wan, J. Chen, and Q. Zhan, “Compact and high-resolution optical orbital angular momentum sorter,” APL Photonics 2(3), 031302 (2017).
[Crossref]

Wang, D.

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7(6), 959–987 (2018).
[Crossref]

Wang, J.

J. Wang, “Twisted optical communications using orbital angular momentum,” China Phys. Mech. Astron. 62(3), 34201 (2019).
[Crossref]

Winzer, P.

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

Winzer, P. J.

Xu, S.

Yu, S.

Zeng, X.

Zhan, Q.

C. Wan, J. Chen, and Q. Zhan, “Compact and high-resolution optical orbital angular momentum sorter,” APL Photonics 2(3), 031302 (2017).
[Crossref]

Zhang, Y.

Zheng, G.

Zheng, S.

APL Photonics (1)

C. Wan, J. Chen, and Q. Zhan, “Compact and high-resolution optical orbital angular momentum sorter,” APL Photonics 2(3), 031302 (2017).
[Crossref]

Appl. Opt. (2)

Chem. Soc. Rev. (1)

C. Haensch, S. Hoeppener, and U. S. Schubert, “Chemical modification of self-assembled silane based monolayers by surface reactions,” Chem. Soc. Rev. 39(6), 2323–2334 (2010).
[Crossref] [PubMed]

China Phys. Mech. Astron. (1)

J. Wang, “Twisted optical communications using orbital angular momentum,” China Phys. Mech. Astron. 62(3), 34201 (2019).
[Crossref]

J. Mod. Opt. (1)

W. J. Hossack, A. M. Darling, and A. Dahdouh, “Coordinate transformations with multiple computer-generated optical elements,” J. Mod. Opt. 34(9), 1235–1250 (1987).
[Crossref]

J. Opt. (1)

E. Agrell, M. Karlsson, A. R. Chraplyvy, D. J. Richardson, P. M. Krummrich, P. Winzer, K. Roberts, J. K. Fischer, S. J. Savory, B. J. Eggleton, M. Secondini, F. R. Kschischang, A. Lord, J. Prat, I. Tomkos, J. E. Bowers, S. Srinivasan, M. Brandt-Pearce, and N. Gisin, “Roadmap of optical communications,” J. Opt. 18(6), 063002 (2016).
[Crossref]

J. Opt. Soc. Am. A (4)

Langmuir (1)

V. DePalma and N. Tillman, “Friction and wear of self-assembled trichlorosilane monolayer films on silicon,” Langmuir 5(3), 868–872 (1989).
[Crossref]

Microelectron. Eng. (2)

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61–62, 441–448 (2002).
[Crossref]

A. Pozzato, G. Grenci, G. Birarda, and M. Tormen, “Evaluation of a novolak based positive tone photoresist as NanoImprint Lithography resist,” Microelectron. Eng. 88(8), 2096–2099 (2011).
[Crossref]

Nanophotonics (2)

S. M. Choudhury, D. Wang, K. Chaudhuri, C. DeVault, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Material platforms for optical metasurfaces,” Nanophotonics 7(6), 959–987 (2018).
[Crossref]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5–6), 455–474 (2013).

Nat. Commun. (1)

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4(1), 2781 (2013).
[Crossref] [PubMed]

Opt. Commun. (3)

Z. Bomzon, V. Kleiner, and E. Hasman, “Space-variant polarization state manipulation with computer-generated subwavelength metal stripe gratings,” Opt. Commun. 192(3-6), 169–181 (2001).
[Crossref]

E. Hasman, Z. Bomzon, A. Niv, G. Biener, and V. Kleiner, “Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures,” Opt. Commun. 209(1-3), 45–54 (2002).
[Crossref]

Y. Saito, S. Komatsu, and H. Ohzu, “Scale and rotation invariant real time optical correlator using computer generated hologram,” Opt. Commun. 47(1), 8–11 (1983).
[Crossref]

Opt. Express (8)

G. F. Walsh, “Pancharatnam-Berry optical element sorter of full angular momentum eigenstate,” Opt. Express 24(6), 6689–6704 (2016).
[Crossref] [PubMed]

H. Larocque, J. Gagnon-Bischoff, D. Mortimer, Y. Zhang, F. Bouchard, J. Upham, V. Grillo, R. W. Boyd, and E. Karimi, “Generalized optical angular momentum sorter and its application to high-dimensional quantum cryptography,” Opt. Express 25(17), 19832–19843 (2017).
[Crossref] [PubMed]

B. Desiatov, N. Mazurski, Y. Fainman, and U. Levy, “Polarization selective beam shaping using nanoscale dielectric metasurfaces,” Opt. Express 23(17), 22611–22618 (2015).
[Crossref] [PubMed]

P. J. Winzer, D. T. Neilson, and A. R. Chraplyvy, “Fiber-optic transmission and networking: the previous 20 and the next 20 years,” Opt. Express 26(18), 24190–24239 (2018).
[Crossref] [PubMed]

M. P. J. Lavery, D. J. Robertson, G. C. G. Berkhout, G. D. Love, M. J. Padgett, and J. Courtial, “Refractive elements for the measurement of the orbital angular momentum of a single photon,” Opt. Express 20(3), 2110–2115 (2012).
[Crossref] [PubMed]

M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25(10), 11265–11274 (2017).
[Crossref] [PubMed]

S. Yu, “Potentials and challenges of using orbital angular momentum communications in optical interconnects,” Opt. Express 23(3), 3075–3087 (2015).
[Crossref] [PubMed]

G. Ruffato, M. Massari, G. Parisi, and F. Romanato, “Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics,” Opt. Express 25(7), 7859–7868 (2017).
[Crossref] [PubMed]

Opt. Lett. (5)

Opt. Mater. Express (1)

Optica (1)

Photon. Res. (1)

Photonics (1)

G. Ruffato, P. Capaldo, M. Massari, A. Mezzadrelli, and F. Romanato, “Pancharatnam–Berry optical elements for spin and orbital angular momentum division demultiplexing,” Photonics 5(4), 46 (2018).
[Crossref]

Phys. Rev. Lett. (1)

G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105(15), 153601 (2010).
[Crossref] [PubMed]

Sci. Rep. (2)

G. Ruffato, M. Girardi, M. Massari, E. Mafakheri, B. Sephton, P. Capaldo, A. Forbes, and F. Romanato, “A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams,” Sci. Rep. 8(1), 10248 (2018).
[Crossref] [PubMed]

B. Ndagano, I. Nape, B. Perez-Garcia, S. Scholes, R. I. Hernandez-Aranda, T. Konrad, M. P. J. Lavery, and A. Forbes, “A deterministic detector for vector vortex states,” Sci. Rep. 7(1), 13882 (2017).
[Crossref] [PubMed]

Science (1)

M. Khorasaninejad and F. Capasso, “Metalenses: versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
[Crossref] [PubMed]

Other (2)

Y. G. Soskind, Field guide to diffractive optics (SPIE Press, 2011).

C. Rosales-Guzmán and A. Forbes, How to Shape Light With Spatial Light Modulators (SPIE Press, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) Scheme of the fabricated sorter performing parallel demultiplexing of polarization and orbital angular momentum with a Pancharatnam-Berry transformation optics. The input circularly polarized OAM states illuminate the un-wrapper metasurface performing a log-pol optical transformation. A Fresnel lens is coupled with the first element in order to focus the unwrapping beam on the second element independently of its polarization state. The two polarizations illuminate two distinct zones of the second element and can be processed separately with a second multi-level diffractive optics performing phase correction. Finally, a lens is used in f-f configuration to complete the sorting process. (b) Microscope image of the hybrid focusing un-wrapper formed by coupling a multi-level Fresnel lens (on the top) with a metasurface un-wrapper (SEM inspection in Fig. 5). (c) Inspection of the multi-level phase-corrector.
Fig. 2
Fig. 2 (a) Un-wrapper phase map defined by Eq. (1) with parameters a = 400 μm, b = 150 μm, f1 = 2.54 cm, without lens term. (b) Implementation in the form of sub-wavelength grating Pancharatnam-Berry optical element with phase discretization over a pixel mesh with size 5 μm. (c) Implementation in the form of continuously variant subwavelength gratings over the same mesh. It is worth noting the higher resolution in the geometric phase definition, given by the local grating vector rotation, and its continuity at the pixel boundaries.
Fig. 3
Fig. 3 Conversion of a phase map (a) into a spatially variant subwavelength digital grating (d). (a) Phase map of a selected zone of the un-wrapper phase pattern. (b) Rotation angle of the grating fast axis with respect to the x-axis. The rotation angle is half the phase function in (a). (c) Period of the subwavelength grating over the selected zone. The zone is discretized into meta-pixels of lateral size 5 μm. Inside each meta-pixel, the grating period can vary between an upper limit, close to the structural cut-off, and a lower limit imposed by the fabrication process. (d) After imposing a period-dependent Lee-type digitalization (Eq. (10)), the subwavelength binary grating is finally obtained.
Fig. 4
Fig. 4 Configurations of duty-cycle and period for a silicon subwavelength grating, providing a π-delay retardation between TE and TM polarizations, for a wavelength of 1310 nm at normal incidence. Numerical data obtained with rigorous coupled-wave analysis (RCWA) for a grating thickness of 540 nm.
Fig. 5
Fig. 5 SEM inspections of the metasurface un-wrapper fabricated in the form of continuously variant sub-wavelength gratings on a silicon substrate. Tilted top view (a) and details at higher magnifications of the central zone (b-c). (d) Top view of a 25 μm x 25 μm zone: it is worth appreciating the continuity of the grating-vector rotation angle at the meta-pixel boundaries. Inside each pixel, the grating vector varies continuously and the duty-cycle changes according to the trend in Fig. (4). Design parameters for the un-wrapper phase function: a = 400 μm, b = 150 μm, f1 = 2.54 cm.
Fig. 6
Fig. 6 SEM inspection of the multi-level diffractive phase-corrector and details at higher magnifications. Design parameters: a = 400 μm, b = 150 μm, f1 = 2.54 cm, α = 0.1 μm−1. It is worth noting in (a) the two-fold piecewise definition of the phase pattern.
Fig. 7
Fig. 7 Scheme of the experimental setup used for the optical characterization of the fabricated sorter. The DFB laser output (λ = 1310 nm) is collimated at the end of the single mode fiber by means of an aspheric lens (LF) with a focal length fF = 7.5 mm, linearly polarized (P1) and expanded (f1 = 3.5 cm, f2 = 10.0 cm). The SLM first order is filtered (D1) and resized (f3 = 20.0 cm, f4 = 12.5 cm) before illuminating the sorter. A beam splitter (BS) is used both to check the input beam and collect the sorter output at the back focal plane of a fifth Fourier lens (f5 = 7.5 cm). The sorter is composed of a focusing un-wrapper, realized in the form of a silicon metasurface (metaUW) coupled with a multi-level Fresnel lens (lens), and a multi-level phase-corrector (dPC). The two elements are mounted on two distinct 6-axis kinematic mounts. A sequence of linear polarizers and quarter-wave plates is placed before (P2, Q1) and after (Q2, P3) the sorter, in reverse order, in order to generate and filter the desired circular-polarization states.
Fig. 8
Fig. 8 Far-field intensity patterns for different input Laguerre-Gaussian beams and their superpositions: right-handed circular polarization and = −7 (a), left-handed circular polarization and = −7 (b), left-handed circular polarization and = −5 & + 5 (c), right-handed circular polarization and = −2 & + 2 (d), left-handed circular polarization and = −3, −1 & + 4 (e). In the inset labels, background colors red/blue refer to the input right/left circular polarization state, while the order of OAM values reflects the appearance of the bright spots, from left to right.
Fig. 9
Fig. 9 Experimental positions in far-field and linear fit of the output spots as a function of the input orbital angular momentum for left-handed (blue) and right-handed (red) circular polarization states. The coordinate has been normalized by Δs = λf5/(2πa), corresponding to the shift due to a unitary OAM increase. In our case Δs = 39.1 μm. With this scaling, the theoretical slopes are equal + 1 and −1, for right-handed and left-handed circular polarizations respectively. Experimental slopes: + (1.02 ± 0.01), -(0.98 ± 0.02).
Fig. 10
Fig. 10 Efficiency maps for input OAM beams with input OAM value in in the range from = −10 to = + 10, and a step Δ = 2, for left-handed (a) and right-handed (b) circular polarizations.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Ω UW ( x,y )= 2πa λ f 1 [ yarctan( y x )xln( x 2 + y 2 b )+x ] 2π λ x 2 + y 2 2 f 1
Ω PC ( u,v )= 2πab λ f 1 exp( u a )cos( v a ) 2π λ u 2 + v 2 2 f 1
Δs= λ f 2 2πa l
Ω UW () ( x,y )= 2πa λ f 1 [ yarctan( y x )xln( x 2 + y 2 b )+x ]+ 2π λ x 2 + y 2 2 f 1
Ω PC ( u,v )= 2πab λf exp( | u | a )cos( v a )+αu
× G =0,
G ( x,y )=G( x,y )[ cosϑ( x,y ) sinϑ( x,y ) ],
{ G( x,y ) x =G( x,y ) ϑ( x,y ) y G( x,y ) y =G( x,y ) ϑ( x,y ) x .
γ= G .
T( x,y )=Θ{ cosγ( x,y )cos( πq( Λ( x,y ) ) ) },
ϑ UW ( x,y )= πa λ f 1 [ yarctan( y x )xln( x 2 + y 2 b )+x ],
G UW ( x,y )= G 0 exp{ πa λ f 1 [ xarctan( x y )yln( x 2 + y 2 b )+y π 2 x ] }.
d( x,y )= λ n R ( λ )1 2πΩ( x,y ) 2π .

Metrics