Abstract

Alvarez lenses offer accurate and high-speed, dynamic tuning of optical power through a lateral shifting of two lens elements, making them an appealing solution to eliminate the inherent decoupling of accommodation and convergence seen in conventional stereoscopic displays. In this paper, we present a design of a compact eyepiece coupled with two lateral-shifting freeform Alvarez lenses to enable a compact, high-resolution, optical see-through head-mounted display (HMD). The proposed design is able to tune its focal depth from 0 to 3 diopters, rendering near-accurate focus cues with high image quality and a large undistorted see-through field of view (FOV). Our design utilizes an 1920x1080 color resolution organic light-emitting diode (OLED) microdisplay to achieve a >30 degree virtual diagonal FOV, with an angular resolution of <0.85 arcminutes and an average optical performance of > 0.4 contrast over the full field. We also experimentally demonstrate a fully functional benchtop prototype using mostly off-the-shelf optics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A high-resolution optical see-through head-mounted display with eyetracking capability

Hong Hua, Xinda Hu, and Chunyu Gao
Opt. Express 21(25) 30993-30998 (2013)

Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism

Dewen Cheng, Yongtian Wang, Hong Hua, and M. M. Talha
Appl. Opt. 48(14) 2655-2668 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Rolland and H. Hua, “Head-mounted display systems,” Encyclopedia of Optical Engineering, 1–13 (2005).
  2. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
    [Crossref]
  3. S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
    [Crossref] [PubMed]
  4. H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
    [Crossref]
  5. A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
    [Crossref]
  6. G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
    [Crossref]
  7. J. P. Rolland, M. W. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
    [Crossref] [PubMed]
  8. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
    [Crossref]
  9. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
    [Crossref] [PubMed]
  10. X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
    [Crossref]
  11. W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).
  12. A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
    [Crossref]
  13. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref] [PubMed]
  14. W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett. 12(6), 060010 (2014).
    [Crossref]
  15. H. Huang and H. Hua, “An integral-imaging-based head-mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Disp. 25(3), 200–207 (2017).
    [Crossref]
  16. H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
    [Crossref] [PubMed]
  17. H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
    [Crossref] [PubMed]
  18. T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” Journal of SID 13(8), 665–671 (2005).
    [Crossref]
  19. S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” Journal of the SID 4(4), 255–261 (1996).
    [Crossref]
  20. S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
    [PubMed]
  21. D. Dunn, P. Chakravarthula, Q. Dong, and H. Fuchs, “Mitigating vergence-accommodation conflict for near-eye displays via deformable beamsplitters,” Proc. SPIE 10676, 104 (2018).
    [Crossref]
  22. M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).
    [Crossref]
  23. M. Kang and R. Yue, “Variable-focus liquid lens based on EWOD,” J. Adhes. Sci. Technol. 26(12–17), 1941–1946 (2012).
  24. S. T. Choi, J. Y. Lee, J. O. Kwon, S. Lee, and W. Kim, “Liquid-filled varifocal lens on a chip,” In MOEMS and Miniaturized Systems VIII. 7208, ISOP (2009).
  25. S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(2A2R), 480–484 (2000).
    [Crossref]
  26. X. Wang, Y. Qin, H. Hua, Y. H. Lee, and S. T. Wu, “Digitally switchable multi-focal lens using freeform optics,” Opt. Express 26(8), 11007–11017 (2018).
    [Crossref] [PubMed]
  27. A. W. Lohmann, “A new class of varifocal lenses,” Appl. Opt. 9(7), 1669–1671 (1970).
    [Crossref] [PubMed]
  28. M. Bawart, A. Jesacher, P. Zelger, S. Bernet, and M. Ritsch-Marte, “Modified Alvarez lens for high-speed focusing,” Opt. Express 25(24), 29847–29855 (2017).
    [Crossref] [PubMed]
  29. Y. Zou, W. Zhang, F. S. Chau, and G. Zhou, “Miniature adjustable-focus endoscope with a solid electrically tunable lens,” Opt. Express 23(16), 20582–20592 (2015).
    [Crossref] [PubMed]
  30. A. Wilson and H. Hua, “High-resolution optical see-through vari-focal-plane head-mounted display using freeform Alvarez lenses,” Proc. SPIE 10676, 140 (2018).
    [Crossref]
  31. S. Liu, Methods for generating addressable focus cues in stereoscopic displays Ph.D. dissertation, (Univ. Arizona), (2010).
  32. A. Wilson and H. Hua, “Design and prototype of an augmented reality display with per-pixel mutual occlusion capability,” Opt. Express 25(24), 30539–30549 (2017).
    [Crossref] [PubMed]

2018 (4)

D. Dunn, P. Chakravarthula, Q. Dong, and H. Fuchs, “Mitigating vergence-accommodation conflict for near-eye displays via deformable beamsplitters,” Proc. SPIE 10676, 104 (2018).
[Crossref]

A. Wilson and H. Hua, “High-resolution optical see-through vari-focal-plane head-mounted display using freeform Alvarez lenses,” Proc. SPIE 10676, 140 (2018).
[Crossref]

X. Wang, Y. Qin, H. Hua, Y. H. Lee, and S. T. Wu, “Digitally switchable multi-focal lens using freeform optics,” Opt. Express 26(8), 11007–11017 (2018).
[Crossref] [PubMed]

H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
[Crossref] [PubMed]

2017 (6)

H. Huang and H. Hua, “An integral-imaging-based head-mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Disp. 25(3), 200–207 (2017).
[Crossref]

H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
[Crossref] [PubMed]

M. Bawart, A. Jesacher, P. Zelger, S. Bernet, and M. Ritsch-Marte, “Modified Alvarez lens for high-speed focusing,” Opt. Express 25(24), 29847–29855 (2017).
[Crossref] [PubMed]

A. Wilson and H. Hua, “Design and prototype of an augmented reality display with per-pixel mutual occlusion capability,” Opt. Express 25(24), 30539–30549 (2017).
[Crossref] [PubMed]

H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

2015 (1)

2014 (4)

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett. 12(6), 060010 (2014).
[Crossref]

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

2012 (2)

W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).

M. Kang and R. Yue, “Variable-focus liquid lens based on EWOD,” J. Adhes. Sci. Technol. 26(12–17), 1941–1946 (2012).

2011 (1)

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).
[Crossref]

2010 (2)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[PubMed]

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref] [PubMed]

2006 (1)

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

2005 (2)

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” Journal of SID 13(8), 665–671 (2005).
[Crossref]

2004 (1)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

2002 (1)

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

2000 (2)

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(2A2R), 480–484 (2000).
[Crossref]

J. P. Rolland, M. W. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
[Crossref] [PubMed]

1996 (1)

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” Journal of the SID 4(4), 255–261 (1996).
[Crossref]

1970 (1)

Akeley, K.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Banks, M. S.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Bawart, M.

Bernet, S.

Cakmakci, O.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Chakravarthula, P.

D. Dunn, P. Chakravarthula, Q. Dong, and H. Fuchs, “Mitigating vergence-accommodation conflict for near-eye displays via deformable beamsplitters,” Proc. SPIE 10676, 104 (2018).
[Crossref]

Chau, F. S.

Cheng, D.

W. Song, Y. Wang, D. Cheng, and Y. Liu, “Light field head-mounted display with correct focus cue using micro structure array,” Chin. Opt. Lett. 12(6), 060010 (2014).
[Crossref]

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[PubMed]

Chun, W. S.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Date, M.

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(2A2R), 480–484 (2000).
[Crossref]

Dickensheets, D. L.

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).
[Crossref]

Dong, Q.

D. Dunn, P. Chakravarthula, Q. Dong, and H. Fuchs, “Mitigating vergence-accommodation conflict for near-eye displays via deformable beamsplitters,” Proc. SPIE 10676, 104 (2018).
[Crossref]

Dorval, R. K.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Dunn, D.

D. Dunn, P. Chakravarthula, Q. Dong, and H. Fuchs, “Mitigating vergence-accommodation conflict for near-eye displays via deformable beamsplitters,” Proc. SPIE 10676, 104 (2018).
[Crossref]

Ernst, M. O.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

Favalora, G. E.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Fuchs, H.

D. Dunn, P. Chakravarthula, Q. Dong, and H. Fuchs, “Mitigating vergence-accommodation conflict for near-eye displays via deformable beamsplitters,” Proc. SPIE 10676, 104 (2018).
[Crossref]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

Georgiou, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Giovinco, M. G.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Girshick, A. R.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Goon, A.

Gordon, W.

W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).

Hall, D. M.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Hirsch, M.

W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).

Hu, X.

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

Hua, H.

A. Wilson and H. Hua, “High-resolution optical see-through vari-focal-plane head-mounted display using freeform Alvarez lenses,” Proc. SPIE 10676, 140 (2018).
[Crossref]

X. Wang, Y. Qin, H. Hua, Y. H. Lee, and S. T. Wu, “Digitally switchable multi-focal lens using freeform optics,” Opt. Express 26(8), 11007–11017 (2018).
[Crossref] [PubMed]

H. Huang and H. Hua, “High-performance integral-imaging-based light field augmented reality display using freeform optics,” Opt. Express 26(13), 17578–17590 (2018).
[Crossref] [PubMed]

A. Wilson and H. Hua, “Design and prototype of an augmented reality display with per-pixel mutual occlusion capability,” Opt. Express 25(24), 30539–30549 (2017).
[Crossref] [PubMed]

H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
[Crossref] [PubMed]

H. Huang and H. Hua, “An integral-imaging-based head-mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Disp. 25(3), 200–207 (2017).
[Crossref]

H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[PubMed]

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref] [PubMed]

Huang, H.

Iwasaki, T.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” Journal of SID 13(8), 665–671 (2005).
[Crossref]

Javidi, B.

Jesacher, A.

Kang, M.

M. Kang and R. Yue, “Variable-focus liquid lens based on EWOD,” J. Adhes. Sci. Technol. 26(12–17), 1941–1946 (2012).

Kawai, T.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” Journal of SID 13(8), 665–671 (2005).
[Crossref]

Kaylor, B. M.

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).
[Crossref]

Keller, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

Kishino, F.

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” Journal of the SID 4(4), 255–261 (1996).
[Crossref]

Kollin, J. S.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

Krueger, M. W.

Lanman, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).

Lee, Y. H.

Liu, S.

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[PubMed]

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref] [PubMed]

Liu, Y.

Lohmann, A. W.

Luebke, D.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

Lutzenberger, B. J.

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).
[Crossref]

Maimone, A.

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

Miyake, N.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” Journal of SID 13(8), 665–671 (2005).
[Crossref]

Moghimi, M. J.

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).
[Crossref]

Napoli, J.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Ohta, K.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” Journal of SID 13(8), 665–671 (2005).
[Crossref]

Omura, K.

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” Journal of the SID 4(4), 255–261 (1996).
[Crossref]

Otsuki, M.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” Journal of SID 13(8), 665–671 (2005).
[Crossref]

Qin, Y.

Raskar, R.

W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).

Rathinavel, K.

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

Richmond, M. J.

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

Ritsch-Marte, M.

Rolland, J.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

Rolland, J. P.

Shibata, T.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” Journal of SID 13(8), 665–671 (2005).
[Crossref]

Shiwa, S.

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” Journal of the SID 4(4), 255–261 (1996).
[Crossref]

Song, W.

Suyama, S.

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(2A2R), 480–484 (2000).
[Crossref]

Takada, H.

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(2A2R), 480–484 (2000).
[Crossref]

Wang, X.

Wang, Y.

Watt, S. J.

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Wilson, A.

A. Wilson and H. Hua, “High-resolution optical see-through vari-focal-plane head-mounted display using freeform Alvarez lenses,” Proc. SPIE 10676, 140 (2018).
[Crossref]

A. Wilson and H. Hua, “Design and prototype of an augmented reality display with per-pixel mutual occlusion capability,” Opt. Express 25(24), 30539–30549 (2017).
[Crossref] [PubMed]

Wu, S. T.

Yoshihara, Y.

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” Journal of SID 13(8), 665–671 (2005).
[Crossref]

Yue, R.

M. Kang and R. Yue, “Variable-focus liquid lens based on EWOD,” J. Adhes. Sci. Technol. 26(12–17), 1941–1946 (2012).

Zelger, P.

Zhang, W.

Zhou, G.

Zou, Y.

ACM Trans. Graph. (4)

A. Maimone, A. Georgiou, and J. S. Kollin, “Holographic near-eye displays for virtual and augmented reality,” ACM Trans. Graph. 36(4), 1–16 (2017).
[Crossref]

W. Gordon, D. Lanman, M. Hirsch, and R. Raskar, “Tensor displays: compressive light field synthesis using multilayer displays with directional backlighting,” ACM Trans. Graph. 31(4), 1–11 (2012).

A. Maimone, D. Lanman, K. Rathinavel, K. Keller, D. Luebke, and H. Fuchs, “Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources,” ACM Trans. Graph. 33(4), 1–11 (2014).
[Crossref]

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Appl. Opt. (2)

Chin. Opt. Lett. (1)

IEEE Trans. Vis. Comput. Graph. (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16(3), 381–393 (2010).
[PubMed]

J. Adhes. Sci. Technol. (1)

M. Kang and R. Yue, “Variable-focus liquid lens based on EWOD,” J. Adhes. Sci. Technol. 26(12–17), 1941–1946 (2012).

J. Disp. Technol. (2)

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2(3), 199–216 (2006).
[Crossref]

J. Micro. Nanolithogr. MEMS MOEMS (1)

M. J. Moghimi, B. J. Lutzenberger, B. M. Kaylor, and D. L. Dickensheets, “MOEMS deformable mirrors for focus control in vital microscopy,” J. Micro. Nanolithogr. MEMS MOEMS 10(2), 023005 (2011).
[Crossref]

J. Soc. Inf. Disp. (1)

H. Huang and H. Hua, “An integral-imaging-based head-mounted light field display using a tunable lens and aperture array,” J. Soc. Inf. Disp. 25(3), 200–207 (2017).
[Crossref]

J. Vis. (1)

S. J. Watt, K. Akeley, M. O. Ernst, and M. S. Banks, “Focus cues affect perceived depth,” J. Vis. 5(10), 834–862 (2005).
[Crossref] [PubMed]

Journal of SID (1)

T. Shibata, T. Kawai, K. Ohta, M. Otsuki, N. Miyake, Y. Yoshihara, and T. Iwasaki, “Stereoscopic 3-D display with optical correction for the reduction of the discrepancy between accommodation and convergence,” Journal of SID 13(8), 665–671 (2005).
[Crossref]

Journal of the SID (1)

S. Shiwa, K. Omura, and F. Kishino, “Proposal for a 3-D display with accommodative compensation: 3DDAC,” Journal of the SID 4(4), 255–261 (1996).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Suyama, M. Date, and H. Takada, “Three-dimensional display system with dual-frequency liquid-crystal varifocal lens,” Jpn. J. Appl. Phys. 39(2A2R), 480–484 (2000).
[Crossref]

Opt. Express (8)

Proc. IEEE (1)

H. Hua, “Enabling focus cues in head-mounted displays,” Proc. IEEE 105(5), 805–824 (2017).
[Crossref]

Proc. SPIE (3)

G. E. Favalora, J. Napoli, D. M. Hall, R. K. Dorval, M. G. Giovinco, M. J. Richmond, and W. S. Chun, “100 million-voxel volumetric display,” Proc. SPIE 4712, 300–312 (2002).
[Crossref]

D. Dunn, P. Chakravarthula, Q. Dong, and H. Fuchs, “Mitigating vergence-accommodation conflict for near-eye displays via deformable beamsplitters,” Proc. SPIE 10676, 104 (2018).
[Crossref]

A. Wilson and H. Hua, “High-resolution optical see-through vari-focal-plane head-mounted display using freeform Alvarez lenses,” Proc. SPIE 10676, 140 (2018).
[Crossref]

Other (3)

S. Liu, Methods for generating addressable focus cues in stereoscopic displays Ph.D. dissertation, (Univ. Arizona), (2010).

J. Rolland and H. Hua, “Head-mounted display systems,” Encyclopedia of Optical Engineering, 1–13 (2005).

S. T. Choi, J. Y. Lee, J. O. Kwon, S. Lee, and W. Kim, “Liquid-filled varifocal lens on a chip,” In MOEMS and Miniaturized Systems VIII. 7208, ISOP (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of the proposed vari-focal OST-HMD design utilizing symmetric freeform Alvarez lenses.
Fig. 2
Fig. 2 Optical system layout of varifocal-plane OST-HMD using freeform Alvarez lenses for (a) 0 diopter focal shift (b) 3 diopter focal shift.
Fig. 3
Fig. 3 Optical power of the Alvarez lens group as a function of distance of lateral translation. The orange curve (squares) shows the overall system power change, while the gray curve (triangles) demonstrates the spherical power of the Alvarez group.
Fig. 4
Fig. 4 Modulation transfer function of several transverse (Tan) and radial (Rad) fields evaluated with a 3mm pupil diameter and a cutoff spatial frequency of 63 cycles/mm for the display path with its virtual image at a depth of (a) 0.5, (b) 1.5 and (c) 3 diopters.
Fig. 5
Fig. 5 Distortion grid of display path for full field with its virtual image at a depth of (a) 0.5, (b) 1.5 and (c) 3 diopters.
Fig. 6
Fig. 6 (a) 3D model of a binocular vari-focal OST-HMD prototype with piezo linear actuators (b) enlarged view of the Alvarez lens module.
Fig. 7
Fig. 7 Experimental setup of a monocular benchtop prototype of a varifocal-plane OST-HMD using freeform Alvarez lenses.
Fig. 8
Fig. 8 Qualitative demonstration of focus cue rendering in our vari-focal OST-HMD benchtop prototype: (a) A virtual image (tumbling E) was rendered at 160mm (i.e. 6 diopters) with the Alvarez lens and camera focused at the same depth along with physical reference objects in the see-through paths; (b) A virtual image (tumbling E) was rendered at 3000mm (i.e. 0.33 diopters) with the Alvarez lens and camera focused at the same depth along with physical reference objects in the see-through paths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ= A x x 3 + A x y x 2 + A y y 3 + A y x y 2 +B x 2 +Cxy+D y 2 +Ex+Fy+G
Φ= A x x 3 +B x 2 +Ex+G

Metrics