Abstract

We investigate a single atom cavity-QED system directly driven by a broadband squeezed light. We demonstrate how the squeezed radiation can be used to sense the presence of a single atom in a cavity. This happens by transferring one of the photons from the field in a state with an even number of photons to the atom and thereby populating an odd number of Fock states. Specifically, the presence of the atom is sensed by remarkable changing in the presence of one photon and the loss of squeezing of the cavity field. A complete study of quantum fluctuations and the excitation of multiphoton transitions is given.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Test of squeezing and coherence of a single-mode cavity field

W. Vogel, D.-G. Welsch, and L. Leine
J. Opt. Soc. Am. B 4(10) 1633-1640 (1987)

Intensity auto- and cross correlations for a three-level Λ-type atom in a driven, damped two-mode cavity

Patrick Hemphill and James P. Clemens
J. Opt. Soc. Am. B 29(6) 1424-1429 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Dutra, Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box (John Wiley & Sons, 2005).
  2. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
    [Crossref] [PubMed]
  3. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
    [Crossref] [PubMed]
  4. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
    [Crossref]
  5. G. S. Agarwal, Quantum Optics (Cambridge University Press, 2012).
    [Crossref]
  6. A. Imamog, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity qed,” Phys. Rev. Lett. 83(20), 4204 (1999).
    [Crossref]
  7. H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
    [Crossref] [PubMed]
  8. E. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
    [Crossref] [PubMed]
  9. H. J. Metcalf and P. Straten, Laser Cooling and Trapping of Neutral Atoms (Wiley, 2007).
  10. Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, “Quantum engineering: An atom-sorting machine,” Nature 442(7099), 151 (2006).
    [Crossref] [PubMed]
  11. A. Neuzner, M. Köber, O. Morin, S. Ritter, and G. Rempe, “Interference and dynamics of light from a distance-controlled atom pair in an optical cavity,” Nat. Photonics 10(5), 303–306 (2016).
    [Crossref]
  12. S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Cavity carving of atomic bell states,” Phys. Rev. Lett. 118(21), 210503 (2017).
    [Crossref] [PubMed]
  13. S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8(1), 011018 (2018).
  14. A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1(1), 19–40 (2019).
    [Crossref]
  15. J. Chen, D. Konstantinov, and K. Mølmer, “Adiabatic preparation of squeezed states of oscillators and large spin systems coupled to a two-level system,” Phys. Rev. A 99(1), 013803 (2019).
    [Crossref]
  16. J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system,” Nature 454(7202), 315–318 (2008).
    [Crossref] [PubMed]
  17. J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, “Dressed collective qubit states and the tavis-cummings model in circuit qed,” Phys. Rev. Lett. 103(8), 083601 (2009).
    [Crossref] [PubMed]
  18. X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, “Microwave photonics with superconducting quantum circuits,” Phys. Reports 718, 1–102 (2017).
    [Crossref]
  19. R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Angulo, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9(30), 6325–6339 (2018).
    [Crossref] [PubMed]
  20. Q. H. Chen, Y. F. Xie, and L. Duan, “Generalized quantum rabi model with both one- and two-photon terms: A concise analytical study,” Phys. Rev. A 99(1), 013809 (2019).
    [Crossref]
  21. P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
    [Crossref]
  22. H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley, 2004).
    [Crossref]
  23. N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
    [Crossref] [PubMed]
  24. S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
    [Crossref] [PubMed]
  25. I. Teper, Y. J. Lin, and V. Vuletić, “Resonator-aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97(2), 023002 (2006).
    [Crossref] [PubMed]
  26. S. Nußmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe, “Vacuum-stimulated cooling of single atoms in three dimensions,” Nat. Phys. 1(2), 122–125 (2005).
    [Crossref]
  27. K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98(23), 233601 (2007).
    [Crossref] [PubMed]
  28. M. Terraciano, R. O. Knell, D. Norris, J. Jing, A. Fernández, and L. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5(7), 480–484 (2009).
    [Crossref]
  29. S. Barzanjeh, D. DiVincenzo, and B. Terhal, “Dispersive qubit measurement by interferometry with parametric amplifiers,” Phys. Rev. B 90(13), 134515 (2014).
    [Crossref]
  30. D. F. Walls and G. J. Milburn, Quantum Optics (Springer Science & Business Media, 2007).
  31. P. R. Rice and L. M. Pedrotti, “Fluorescent spectrum of a single atom in a cavity with injected squeezed vacuum,” J. Opt. Soc. Am. B 9(11), 2008–2014 (1992).
    [Crossref]
  32. C. Gardiner, “Inhibition of atomic phase decays by squeezed light: A direct effect of squeezing,” Phys. Rev. Lett. 56(18), 1917–1920 (1986).
    [Crossref] [PubMed]
  33. S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, “Nonclassical photon number distribution in a superconducting cavity under a squeezed drive,” Phys. Rev. Lett. 119(2), 023602 (2017).
    [Crossref] [PubMed]
  34. K. Murch, S. Weber, K. Beck, E. Ginossar, and I. Siddiqi, “Reduction of the radiative decay of atomic coherence in squeezed vacuum,” Nature 499(7456), 62–65 (2013).
    [Crossref] [PubMed]
  35. T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
    [Crossref]
  36. S. De Liberato, C. Ciuti, and I. Carusotto, “Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum rabi frequency,” Phys. Rev. Lett. 98(10), 103602 (2007).
    [Crossref] [PubMed]
  37. T. Jaako, Z. L. Xiang, J. J. Garcia-Ripoll, and P. Rabl, “Ultrastrong-coupling phenomena beyond the dicke model,” Phys. Rev. A 94(3), 033850 (2016).
    [Crossref]
  38. W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, “Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification,” Phys. Rev. Lett. 120(9), 093601 (2018).
    [Crossref] [PubMed]

2019 (3)

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1(1), 19–40 (2019).
[Crossref]

J. Chen, D. Konstantinov, and K. Mølmer, “Adiabatic preparation of squeezed states of oscillators and large spin systems coupled to a two-level system,” Phys. Rev. A 99(1), 013803 (2019).
[Crossref]

Q. H. Chen, Y. F. Xie, and L. Duan, “Generalized quantum rabi model with both one- and two-photon terms: A concise analytical study,” Phys. Rev. A 99(1), 013809 (2019).
[Crossref]

2018 (3)

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8(1), 011018 (2018).

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Angulo, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9(30), 6325–6339 (2018).
[Crossref] [PubMed]

W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, “Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification,” Phys. Rev. Lett. 120(9), 093601 (2018).
[Crossref] [PubMed]

2017 (3)

S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, “Nonclassical photon number distribution in a superconducting cavity under a squeezed drive,” Phys. Rev. Lett. 119(2), 023602 (2017).
[Crossref] [PubMed]

X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, “Microwave photonics with superconducting quantum circuits,” Phys. Reports 718, 1–102 (2017).
[Crossref]

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Cavity carving of atomic bell states,” Phys. Rev. Lett. 118(21), 210503 (2017).
[Crossref] [PubMed]

2016 (2)

A. Neuzner, M. Köber, O. Morin, S. Ritter, and G. Rempe, “Interference and dynamics of light from a distance-controlled atom pair in an optical cavity,” Nat. Photonics 10(5), 303–306 (2016).
[Crossref]

T. Jaako, Z. L. Xiang, J. J. Garcia-Ripoll, and P. Rabl, “Ultrastrong-coupling phenomena beyond the dicke model,” Phys. Rev. A 94(3), 033850 (2016).
[Crossref]

2014 (1)

S. Barzanjeh, D. DiVincenzo, and B. Terhal, “Dispersive qubit measurement by interferometry with parametric amplifiers,” Phys. Rev. B 90(13), 134515 (2014).
[Crossref]

2013 (1)

K. Murch, S. Weber, K. Beck, E. Ginossar, and I. Siddiqi, “Reduction of the radiative decay of atomic coherence in squeezed vacuum,” Nature 499(7456), 62–65 (2013).
[Crossref] [PubMed]

2010 (1)

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

2009 (2)

M. Terraciano, R. O. Knell, D. Norris, J. Jing, A. Fernández, and L. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5(7), 480–484 (2009).
[Crossref]

J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, “Dressed collective qubit states and the tavis-cummings model in circuit qed,” Phys. Rev. Lett. 103(8), 083601 (2009).
[Crossref] [PubMed]

2008 (2)

J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system,” Nature 454(7202), 315–318 (2008).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

2007 (2)

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98(23), 233601 (2007).
[Crossref] [PubMed]

S. De Liberato, C. Ciuti, and I. Carusotto, “Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum rabi frequency,” Phys. Rev. Lett. 98(10), 103602 (2007).
[Crossref] [PubMed]

2006 (2)

I. Teper, Y. J. Lin, and V. Vuletić, “Resonator-aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97(2), 023002 (2006).
[Crossref] [PubMed]

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, “Quantum engineering: An atom-sorting machine,” Nature 442(7099), 151 (2006).
[Crossref] [PubMed]

2005 (2)

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

S. Nußmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe, “Vacuum-stimulated cooling of single atoms in three dimensions,” Nat. Phys. 1(2), 122–125 (2005).
[Crossref]

2004 (1)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

2003 (1)

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[Crossref]

2001 (2)

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
[Crossref] [PubMed]

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

1999 (1)

A. Imamog, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity qed,” Phys. Rev. Lett. 83(20), 4204 (1999).
[Crossref]

1992 (1)

1987 (1)

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

1986 (1)

C. Gardiner, “Inhibition of atomic phase decays by squeezed light: A direct effect of squeezing,” Phys. Rev. Lett. 56(18), 1917–1920 (1986).
[Crossref] [PubMed]

Agarwal, G. S.

G. S. Agarwal, Quantum Optics (Cambridge University Press, 2012).
[Crossref]

Ahmadi, P.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98(23), 233601 (2007).
[Crossref] [PubMed]

Alt, W.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, “Quantum engineering: An atom-sorting machine,” Nature 442(7099), 151 (2006).
[Crossref] [PubMed]

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

Awschalom, D. D.

A. Imamog, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity qed,” Phys. Rev. Lett. 83(20), 4204 (1999).
[Crossref]

Bachor, H. A.

H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley, 2004).
[Crossref]

Barzanjeh, S.

S. Barzanjeh, D. DiVincenzo, and B. Terhal, “Dispersive qubit measurement by interferometry with parametric amplifiers,” Phys. Rev. B 90(13), 134515 (2014).
[Crossref]

Baur, M.

J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, “Dressed collective qubit states and the tavis-cummings model in circuit qed,” Phys. Rev. Lett. 103(8), 083601 (2009).
[Crossref] [PubMed]

J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system,” Nature 454(7202), 315–318 (2008).
[Crossref] [PubMed]

Beck, K.

K. Murch, S. Weber, K. Beck, E. Ginossar, and I. Siddiqi, “Reduction of the radiative decay of atomic coherence in squeezed vacuum,” Nature 499(7456), 62–65 (2013).
[Crossref] [PubMed]

Bianchetti, R.

J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, “Dressed collective qubit states and the tavis-cummings model in circuit qed,” Phys. Rev. Lett. 103(8), 083601 (2009).
[Crossref] [PubMed]

J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system,” Nature 454(7202), 315–318 (2008).
[Crossref] [PubMed]

Birnbaum, K. M.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

Blais, A.

J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, “Dressed collective qubit states and the tavis-cummings model in circuit qed,” Phys. Rev. Lett. 103(8), 083601 (2009).
[Crossref] [PubMed]

J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system,” Nature 454(7202), 315–318 (2008).
[Crossref] [PubMed]

Boca, A.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

Boozer, A. D.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

Burkard, G.

A. Imamog, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity qed,” Phys. Rev. Lett. 83(20), 4204 (1999).
[Crossref]

Cable, A.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

Campos-Gonzalez-Angulo, J.

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Angulo, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9(30), 6325–6339 (2018).
[Crossref] [PubMed]

Carusotto, I.

S. De Liberato, C. Ciuti, and I. Carusotto, “Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum rabi frequency,” Phys. Rev. Lett. 98(10), 103602 (2007).
[Crossref] [PubMed]

Chapman, M. S.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98(23), 233601 (2007).
[Crossref] [PubMed]

Chen, J.

J. Chen, D. Konstantinov, and K. Mølmer, “Adiabatic preparation of squeezed states of oscillators and large spin systems coupled to a two-level system,” Phys. Rev. A 99(1), 013803 (2019).
[Crossref]

Chen, Q. H.

Q. H. Chen, Y. F. Xie, and L. Duan, “Generalized quantum rabi model with both one- and two-photon terms: A concise analytical study,” Phys. Rev. A 99(1), 013809 (2019).
[Crossref]

Chu, S.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

Ciuti, C.

S. De Liberato, C. Ciuti, and I. Carusotto, “Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum rabi frequency,” Phys. Rev. Lett. 98(10), 103602 (2007).
[Crossref] [PubMed]

Daiss, S.

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8(1), 011018 (2018).

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Cavity carving of atomic bell states,” Phys. Rev. Lett. 118(21), 210503 (2017).
[Crossref] [PubMed]

De Liberato, S.

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1(1), 19–40 (2019).
[Crossref]

S. De Liberato, C. Ciuti, and I. Carusotto, “Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum rabi frequency,” Phys. Rev. Lett. 98(10), 103602 (2007).
[Crossref] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Deppe, F.

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

DiVincenzo, D.

S. Barzanjeh, D. DiVincenzo, and B. Terhal, “Dispersive qubit measurement by interferometry with parametric amplifiers,” Phys. Rev. B 90(13), 134515 (2014).
[Crossref]

DiVincenzo, D. P.

A. Imamog, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity qed,” Phys. Rev. Lett. 83(20), 4204 (1999).
[Crossref]

Domokos, P.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[Crossref]

Dotsenko, I.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, “Quantum engineering: An atom-sorting machine,” Nature 442(7099), 151 (2006).
[Crossref] [PubMed]

Du, M.

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Angulo, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9(30), 6325–6339 (2018).
[Crossref] [PubMed]

Duan, L.

Q. H. Chen, Y. F. Xie, and L. Duan, “Generalized quantum rabi model with both one- and two-photon terms: A concise analytical study,” Phys. Rev. A 99(1), 013809 (2019).
[Crossref]

Dutra, S. M.

S. M. Dutra, Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box (John Wiley & Sons, 2005).

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Fernández, A.

M. Terraciano, R. O. Knell, D. Norris, J. Jing, A. Fernández, and L. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5(7), 480–484 (2009).
[Crossref]

Filipp, S.

J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, “Dressed collective qubit states and the tavis-cummings model in circuit qed,” Phys. Rev. Lett. 103(8), 083601 (2009).
[Crossref] [PubMed]

Fink, J. M.

J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, “Dressed collective qubit states and the tavis-cummings model in circuit qed,” Phys. Rev. Lett. 103(8), 083601 (2009).
[Crossref] [PubMed]

J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system,” Nature 454(7202), 315–318 (2008).
[Crossref] [PubMed]

Folman, R.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[Crossref]

Förster, L.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, “Quantum engineering: An atom-sorting machine,” Nature 442(7099), 151 (2006).
[Crossref] [PubMed]

Fortier, K. M.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98(23), 233601 (2007).
[Crossref] [PubMed]

Garcia-Ripoll, J. J.

T. Jaako, Z. L. Xiang, J. J. Garcia-Ripoll, and P. Rabl, “Ultrastrong-coupling phenomena beyond the dicke model,” Phys. Rev. A 94(3), 033850 (2016).
[Crossref]

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

Gardiner, C.

C. Gardiner, “Inhibition of atomic phase decays by squeezed light: A direct effect of squeezing,” Phys. Rev. Lett. 56(18), 1917–1920 (1986).
[Crossref] [PubMed]

Gibbons, M. J.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98(23), 233601 (2007).
[Crossref] [PubMed]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Ginossar, E.

K. Murch, S. Weber, K. Beck, E. Ginossar, and I. Siddiqi, “Reduction of the radiative decay of atomic coherence in squeezed vacuum,” Nature 499(7456), 62–65 (2013).
[Crossref] [PubMed]

Gomer, V.

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

Göppl, M.

J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, “Dressed collective qubit states and the tavis-cummings model in circuit qed,” Phys. Rev. Lett. 103(8), 083601 (2009).
[Crossref] [PubMed]

J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system,” Nature 454(7202), 315–318 (2008).
[Crossref] [PubMed]

Grangier, P.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
[Crossref] [PubMed]

Gross, R.

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

Gu, X.

X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, “Microwave photonics with superconducting quantum circuits,” Phys. Reports 718, 1–102 (2017).
[Crossref]

Haase, A.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[Crossref]

Hacker, B.

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8(1), 011018 (2018).

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Cavity carving of atomic bell states,” Phys. Rev. Lett. 118(21), 210503 (2017).
[Crossref] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Hijlkema, M.

S. Nußmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe, “Vacuum-stimulated cooling of single atoms in three dimensions,” Nat. Phys. 1(2), 122–125 (2005).
[Crossref]

Hinds, E. A.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[Crossref]

Hocke, F.

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

Horak, P.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[Crossref]

Huebl, H.

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

Hümmer, T.

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

Imamog, A.

A. Imamog, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity qed,” Phys. Rev. Lett. 83(20), 4204 (1999).
[Crossref]

Ishikawa, T.

S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, “Nonclassical photon number distribution in a superconducting cavity under a squeezed drive,” Phys. Rev. Lett. 119(2), 023602 (2017).
[Crossref] [PubMed]

Jaako, T.

T. Jaako, Z. L. Xiang, J. J. Garcia-Ripoll, and P. Rabl, “Ultrastrong-coupling phenomena beyond the dicke model,” Phys. Rev. A 94(3), 033850 (2016).
[Crossref]

Jing, J.

M. Terraciano, R. O. Knell, D. Norris, J. Jing, A. Fernández, and L. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5(7), 480–484 (2009).
[Crossref]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Khudaverdyan, M.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, “Quantum engineering: An atom-sorting machine,” Nature 442(7099), 151 (2006).
[Crossref] [PubMed]

Kim, S. Y.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98(23), 233601 (2007).
[Crossref] [PubMed]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

Klappauf, B. G.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[Crossref]

Knell, R. O.

M. Terraciano, R. O. Knell, D. Norris, J. Jing, A. Fernández, and L. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5(7), 480–484 (2009).
[Crossref]

Köber, M.

A. Neuzner, M. Köber, O. Morin, S. Ritter, and G. Rempe, “Interference and dynamics of light from a distance-controlled atom pair in an optical cavity,” Nat. Photonics 10(5), 303–306 (2016).
[Crossref]

Kockum, A. F.

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1(1), 19–40 (2019).
[Crossref]

X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, “Microwave photonics with superconducting quantum circuits,” Phys. Reports 718, 1–102 (2017).
[Crossref]

Kono, S.

S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, “Nonclassical photon number distribution in a superconducting cavity under a squeezed drive,” Phys. Rev. Lett. 119(2), 023602 (2017).
[Crossref] [PubMed]

Konstantinov, D.

J. Chen, D. Konstantinov, and K. Mølmer, “Adiabatic preparation of squeezed states of oscillators and large spin systems coupled to a two-level system,” Phys. Rev. A 99(1), 013803 (2019).
[Crossref]

Koshino, K.

S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, “Nonclassical photon number distribution in a superconducting cavity under a squeezed drive,” Phys. Rev. Lett. 119(2), 023602 (2017).
[Crossref] [PubMed]

Kuhn, A.

S. Nußmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe, “Vacuum-stimulated cooling of single atoms in three dimensions,” Nat. Phys. 1(2), 122–125 (2005).
[Crossref]

Kuhr, S.

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

Leek, P. J.

J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, “Dressed collective qubit states and the tavis-cummings model in circuit qed,” Phys. Rev. Lett. 103(8), 083601 (2009).
[Crossref] [PubMed]

J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system,” Nature 454(7202), 315–318 (2008).
[Crossref] [PubMed]

Li, P. B.

W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, “Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification,” Phys. Rev. Lett. 120(9), 093601 (2018).
[Crossref] [PubMed]

Lin, Y. J.

I. Teper, Y. J. Lin, and V. Vuletić, “Resonator-aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97(2), 023002 (2006).
[Crossref] [PubMed]

Liu, Y.

X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, “Microwave photonics with superconducting quantum circuits,” Phys. Reports 718, 1–102 (2017).
[Crossref]

Loss, D.

A. Imamog, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity qed,” Phys. Rev. Lett. 83(20), 4204 (1999).
[Crossref]

Lü, X. Y.

W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, “Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification,” Phys. Rev. Lett. 120(9), 093601 (2018).
[Crossref] [PubMed]

Martínez-Martínez, L. A.

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Angulo, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9(30), 6325–6339 (2018).
[Crossref] [PubMed]

Marx, A.

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

Masuyama, Y.

S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, “Nonclassical photon number distribution in a superconducting cavity under a squeezed drive,” Phys. Rev. Lett. 119(2), 023602 (2017).
[Crossref] [PubMed]

Menzel, E. P.

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

Meschede, D.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, “Quantum engineering: An atom-sorting machine,” Nature 442(7099), 151 (2006).
[Crossref] [PubMed]

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

Metcalf, H. J.

H. J. Metcalf and P. Straten, Laser Cooling and Trapping of Neutral Atoms (Wiley, 2007).

Milburn, G. J.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer Science & Business Media, 2007).

Miller, R.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

Miranowicz, A.

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1(1), 19–40 (2019).
[Crossref]

W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, “Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification,” Phys. Rev. Lett. 120(9), 093601 (2018).
[Crossref] [PubMed]

X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, “Microwave photonics with superconducting quantum circuits,” Phys. Reports 718, 1–102 (2017).
[Crossref]

Miroshnychenko, Y.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, “Quantum engineering: An atom-sorting machine,” Nature 442(7099), 151 (2006).
[Crossref] [PubMed]

Mølmer, K.

J. Chen, D. Konstantinov, and K. Mølmer, “Adiabatic preparation of squeezed states of oscillators and large spin systems coupled to a two-level system,” Phys. Rev. A 99(1), 013803 (2019).
[Crossref]

Morin, O.

A. Neuzner, M. Köber, O. Morin, S. Ritter, and G. Rempe, “Interference and dynamics of light from a distance-controlled atom pair in an optical cavity,” Nat. Photonics 10(5), 303–306 (2016).
[Crossref]

Müller, M.

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

Murch, K.

K. Murch, S. Weber, K. Beck, E. Ginossar, and I. Siddiqi, “Reduction of the radiative decay of atomic coherence in squeezed vacuum,” Nature 499(7456), 62–65 (2013).
[Crossref] [PubMed]

Murr, K.

S. Nußmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe, “Vacuum-stimulated cooling of single atoms in three dimensions,” Nat. Phys. 1(2), 122–125 (2005).
[Crossref]

Nakamura, Y.

S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, “Nonclassical photon number distribution in a superconducting cavity under a squeezed drive,” Phys. Rev. Lett. 119(2), 023602 (2017).
[Crossref] [PubMed]

Neuzner, A.

A. Neuzner, M. Köber, O. Morin, S. Ritter, and G. Rempe, “Interference and dynamics of light from a distance-controlled atom pair in an optical cavity,” Nat. Photonics 10(5), 303–306 (2016).
[Crossref]

Niemczyk, T.

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

Nori, F.

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1(1), 19–40 (2019).
[Crossref]

W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, “Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification,” Phys. Rev. Lett. 120(9), 093601 (2018).
[Crossref] [PubMed]

X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, “Microwave photonics with superconducting quantum circuits,” Phys. Reports 718, 1–102 (2017).
[Crossref]

Norris, D.

M. Terraciano, R. O. Knell, D. Norris, J. Jing, A. Fernández, and L. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5(7), 480–484 (2009).
[Crossref]

Northup, T. E.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

Nußmann, S.

S. Nußmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe, “Vacuum-stimulated cooling of single atoms in three dimensions,” Nat. Phys. 1(2), 122–125 (2005).
[Crossref]

Orozco, L.

M. Terraciano, R. O. Knell, D. Norris, J. Jing, A. Fernández, and L. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5(7), 480–484 (2009).
[Crossref]

Pedrotti, L. M.

Prentiss, M.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

Pritchard, D. E.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

Protsenko, I.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
[Crossref] [PubMed]

Qin, W.

W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, “Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification,” Phys. Rev. Lett. 120(9), 093601 (2018).
[Crossref] [PubMed]

Raab, E.

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

Rabl, P.

T. Jaako, Z. L. Xiang, J. J. Garcia-Ripoll, and P. Rabl, “Ultrastrong-coupling phenomena beyond the dicke model,” Phys. Rev. A 94(3), 033850 (2016).
[Crossref]

Ralph, T. C.

H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley, 2004).
[Crossref]

Rauschenbeutel, A.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, “Quantum engineering: An atom-sorting machine,” Nature 442(7099), 151 (2006).
[Crossref] [PubMed]

Rempe, G.

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8(1), 011018 (2018).

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Cavity carving of atomic bell states,” Phys. Rev. Lett. 118(21), 210503 (2017).
[Crossref] [PubMed]

A. Neuzner, M. Köber, O. Morin, S. Ritter, and G. Rempe, “Interference and dynamics of light from a distance-controlled atom pair in an optical cavity,” Nat. Photonics 10(5), 303–306 (2016).
[Crossref]

S. Nußmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe, “Vacuum-stimulated cooling of single atoms in three dimensions,” Nat. Phys. 1(2), 122–125 (2005).
[Crossref]

Reymond, G.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
[Crossref] [PubMed]

Ribeiro, R. F.

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Angulo, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9(30), 6325–6339 (2018).
[Crossref] [PubMed]

Rice, P. R.

Ritter, S.

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8(1), 011018 (2018).

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Cavity carving of atomic bell states,” Phys. Rev. Lett. 118(21), 210503 (2017).
[Crossref] [PubMed]

A. Neuzner, M. Köber, O. Morin, S. Ritter, and G. Rempe, “Interference and dynamics of light from a distance-controlled atom pair in an optical cavity,” Nat. Photonics 10(5), 303–306 (2016).
[Crossref]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Savasta, S.

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1(1), 19–40 (2019).
[Crossref]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Schlosser, N.

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
[Crossref] [PubMed]

Schmiedmayer, J.

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[Crossref]

Schrader, D.

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, “Quantum engineering: An atom-sorting machine,” Nature 442(7099), 151 (2006).
[Crossref] [PubMed]

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

Schwarz, M. J.

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
[Crossref]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Sherwin, M.

A. Imamog, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity qed,” Phys. Rev. Lett. 83(20), 4204 (1999).
[Crossref]

Siddiqi, I.

K. Murch, S. Weber, K. Beck, E. Ginossar, and I. Siddiqi, “Reduction of the radiative decay of atomic coherence in squeezed vacuum,” Nature 499(7456), 62–65 (2013).
[Crossref] [PubMed]

Small, A.

A. Imamog, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity qed,” Phys. Rev. Lett. 83(20), 4204 (1999).
[Crossref]

Solano, E.

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

Steffen, L.

J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, “Dressed collective qubit states and the tavis-cummings model in circuit qed,” Phys. Rev. Lett. 103(8), 083601 (2009).
[Crossref] [PubMed]

Straten, P.

H. J. Metcalf and P. Straten, Laser Cooling and Trapping of Neutral Atoms (Wiley, 2007).

Tabuchi, Y.

S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, “Nonclassical photon number distribution in a superconducting cavity under a squeezed drive,” Phys. Rev. Lett. 119(2), 023602 (2017).
[Crossref] [PubMed]

Teper, I.

I. Teper, Y. J. Lin, and V. Vuletić, “Resonator-aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97(2), 023002 (2006).
[Crossref] [PubMed]

Terhal, B.

S. Barzanjeh, D. DiVincenzo, and B. Terhal, “Dispersive qubit measurement by interferometry with parametric amplifiers,” Phys. Rev. B 90(13), 134515 (2014).
[Crossref]

Terraciano, M.

M. Terraciano, R. O. Knell, D. Norris, J. Jing, A. Fernández, and L. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5(7), 480–484 (2009).
[Crossref]

Usami, K.

S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, “Nonclassical photon number distribution in a superconducting cavity under a squeezed drive,” Phys. Rev. Lett. 119(2), 023602 (2017).
[Crossref] [PubMed]

Vuletic, V.

I. Teper, Y. J. Lin, and V. Vuletić, “Resonator-aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97(2), 023002 (2006).
[Crossref] [PubMed]

Wallraff, A.

J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, “Dressed collective qubit states and the tavis-cummings model in circuit qed,” Phys. Rev. Lett. 103(8), 083601 (2009).
[Crossref] [PubMed]

J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system,” Nature 454(7202), 315–318 (2008).
[Crossref] [PubMed]

Walls, D. F.

D. F. Walls and G. J. Milburn, Quantum Optics (Springer Science & Business Media, 2007).

Weber, B.

S. Nußmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe, “Vacuum-stimulated cooling of single atoms in three dimensions,” Nat. Phys. 1(2), 122–125 (2005).
[Crossref]

Weber, S.

K. Murch, S. Weber, K. Beck, E. Ginossar, and I. Siddiqi, “Reduction of the radiative decay of atomic coherence in squeezed vacuum,” Nature 499(7456), 62–65 (2013).
[Crossref] [PubMed]

Welte, S.

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8(1), 011018 (2018).

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Cavity carving of atomic bell states,” Phys. Rev. Lett. 118(21), 210503 (2017).
[Crossref] [PubMed]

Xiang, Z. L.

T. Jaako, Z. L. Xiang, J. J. Garcia-Ripoll, and P. Rabl, “Ultrastrong-coupling phenomena beyond the dicke model,” Phys. Rev. A 94(3), 033850 (2016).
[Crossref]

Xie, Y. F.

Q. H. Chen, Y. F. Xie, and L. Duan, “Generalized quantum rabi model with both one- and two-photon terms: A concise analytical study,” Phys. Rev. A 99(1), 013809 (2019).
[Crossref]

Yamazaki, R.

S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, “Nonclassical photon number distribution in a superconducting cavity under a squeezed drive,” Phys. Rev. Lett. 119(2), 023602 (2017).
[Crossref] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

You, J. Q.

W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, “Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification,” Phys. Rev. Lett. 120(9), 093601 (2018).
[Crossref] [PubMed]

Yuen-Zhou, J.

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Angulo, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9(30), 6325–6339 (2018).
[Crossref] [PubMed]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
[Crossref]

Zueco, D.

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

Chem. Sci. (1)

R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J. Campos-Gonzalez-Angulo, and J. Yuen-Zhou, “Polariton chemistry: controlling molecular dynamics with optical cavities,” Chem. Sci. 9(30), 6325–6339 (2018).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

A. Neuzner, M. Köber, O. Morin, S. Ritter, and G. Rempe, “Interference and dynamics of light from a distance-controlled atom pair in an optical cavity,” Nat. Photonics 10(5), 303–306 (2016).
[Crossref]

Nat. Phys. (3)

S. Nußmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe, “Vacuum-stimulated cooling of single atoms in three dimensions,” Nat. Phys. 1(2), 122–125 (2005).
[Crossref]

M. Terraciano, R. O. Knell, D. Norris, J. Jing, A. Fernández, and L. Orozco, “Photon burst detection of single atoms in an optical cavity,” Nat. Phys. 5(7), 480–484 (2009).
[Crossref]

T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, “Circuit quantum electrodynamics in the ultrastrong-coupling regime,” Nat. Phys. 6(10), 772–776 (2010).
[Crossref]

Nat. Rev. Phys. (1)

A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, “Ultrastrong coupling between light and matter,” Nat. Rev. Phys. 1(1), 19–40 (2019).
[Crossref]

Nature (7)

J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff, “Climbing the jaynes-cummings ladder and observing its nonlinearity in a cavity qed system,” Nature 454(7202), 315–318 (2008).
[Crossref] [PubMed]

Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M. Khudaverdyan, D. Meschede, D. Schrader, and A. Rauschenbeutel, “Quantum engineering: An atom-sorting machine,” Nature 442(7099), 151 (2006).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature 436(7047), 87–90 (2005).
[Crossref] [PubMed]

H. J. Kimble, “The quantum internet,” Nature 453(7198), 1023–1030 (2008).
[Crossref] [PubMed]

K. Murch, S. Weber, K. Beck, E. Ginossar, and I. Siddiqi, “Reduction of the radiative decay of atomic coherence in squeezed vacuum,” Nature 499(7456), 62–65 (2013).
[Crossref] [PubMed]

N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier, “Sub-poissonian loading of single atoms in a microscopic dipole trap,” Nature 411(6841), 1024–1027 (2001).
[Crossref] [PubMed]

Phys. Reports (1)

X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori, “Microwave photonics with superconducting quantum circuits,” Phys. Reports 718, 1–102 (2017).
[Crossref]

Phys. Rev. A (4)

J. Chen, D. Konstantinov, and K. Mølmer, “Adiabatic preparation of squeezed states of oscillators and large spin systems coupled to a two-level system,” Phys. Rev. A 99(1), 013803 (2019).
[Crossref]

Q. H. Chen, Y. F. Xie, and L. Duan, “Generalized quantum rabi model with both one- and two-photon terms: A concise analytical study,” Phys. Rev. A 99(1), 013809 (2019).
[Crossref]

P. Horak, B. G. Klappauf, A. Haase, R. Folman, J. Schmiedmayer, P. Domokos, and E. A. Hinds, “Possibility of single-atom detection on a chip,” Phys. Rev. A 67(4), 043806 (2003).
[Crossref]

T. Jaako, Z. L. Xiang, J. J. Garcia-Ripoll, and P. Rabl, “Ultrastrong-coupling phenomena beyond the dicke model,” Phys. Rev. A 94(3), 033850 (2016).
[Crossref]

Phys. Rev. B (1)

S. Barzanjeh, D. DiVincenzo, and B. Terhal, “Dispersive qubit measurement by interferometry with parametric amplifiers,” Phys. Rev. B 90(13), 134515 (2014).
[Crossref]

Phys. Rev. Lett. (10)

C. Gardiner, “Inhibition of atomic phase decays by squeezed light: A direct effect of squeezing,” Phys. Rev. Lett. 56(18), 1917–1920 (1986).
[Crossref] [PubMed]

S. Kono, Y. Masuyama, T. Ishikawa, Y. Tabuchi, R. Yamazaki, K. Usami, K. Koshino, and Y. Nakamura, “Nonclassical photon number distribution in a superconducting cavity under a squeezed drive,” Phys. Rev. Lett. 119(2), 023602 (2017).
[Crossref] [PubMed]

I. Teper, Y. J. Lin, and V. Vuletić, “Resonator-aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97(2), 023002 (2006).
[Crossref] [PubMed]

S. De Liberato, C. Ciuti, and I. Carusotto, “Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum rabi frequency,” Phys. Rev. Lett. 98(10), 103602 (2007).
[Crossref] [PubMed]

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98(23), 233601 (2007).
[Crossref] [PubMed]

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Cavity carving of atomic bell states,” Phys. Rev. Lett. 118(21), 210503 (2017).
[Crossref] [PubMed]

J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen, S. Filipp, P. J. Leek, A. Blais, and A. Wallraff, “Dressed collective qubit states and the tavis-cummings model in circuit qed,” Phys. Rev. Lett. 103(8), 083601 (2009).
[Crossref] [PubMed]

E. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59(23), 2631–2634 (1987).
[Crossref] [PubMed]

A. Imamog, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity qed,” Phys. Rev. Lett. 83(20), 4204 (1999).
[Crossref]

W. Qin, A. Miranowicz, P. B. Li, X. Y. Lü, J. Q. You, and F. Nori, “Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification,” Phys. Rev. Lett. 120(9), 093601 (2018).
[Crossref] [PubMed]

Phys. Rev. X (1)

S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, “Photon-mediated quantum gate between two neutral atoms in an optical cavity,” Phys. Rev. X 8(1), 011018 (2018).

Science (1)

S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293(5528), 278–280 (2001).
[Crossref] [PubMed]

Other (6)

H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics (Wiley, 2004).
[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer Science & Business Media, 2007).

S. M. Dutra, Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box (John Wiley & Sons, 2005).

H. J. Metcalf and P. Straten, Laser Cooling and Trapping of Neutral Atoms (Wiley, 2007).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).
[Crossref]

G. S. Agarwal, Quantum Optics (Cambridge University Press, 2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Sketch of the single atom cavity-QED system driven by a broadband squeezed vacuum with central frequency ωsq. The resonance frequency of this two-level atom is ωA = ωeωg with ħωα (α = e, g) being the energy of state |α〉. Here, γ and κ are the decay rates of the atom and cavity, respectively.
Fig. 2
Fig. 2 The mean photon number 〈aa〉 [Panel (a)] and P1 [Panel (b)] versus the squeezing parameter r. Here, the system parameters are chosen as ΔA = ΔC = 0, g0/κ = 15 and γ/κ = 1.
Fig. 3
Fig. 3 The photon distribution for arbitrary values of n with different values of r. Panels (a) and (b) represent the empty cavity and atom-cavity system, respectively. Here, the system parameters are the same as those used in Fig. 2.
Fig. 4
Fig. 4 The phase dependent mean value |〈aa〉| versus the degree of the squeezed light r. The blue dashed curves represent the case in the absence of the atom, while other two curves represent the case in the presence of the atom. Here, we choose g0/κ = 5 for the dash-dotted curve and g0/κ = 15 for the black solid curve. Other system parameters are the same as those used in Fig. 2.
Fig. 5
Fig. 5 The Wigner functions of the cavity field. Panel (a) represents the case in the absence of the atom. Panels (b) and (c) represent the cases in the presence of the atom with coupling strengths g0/κ = 5 and g0/κ = 15, respectively.
Fig. 6
Fig. 6 The population of the atomic excited state ρee is plotted as a function of the degree of the squeezed field. Here, we set ΔC = ΔA = 0. The blue dashed curve corresponds to the case of g0/κ = 5, but the red solid curve corresponds to the case of g0/κ = 15. Other system parameters are the same as those used in Fig. 2.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H = Δ A σ e e + Δ C a a + g 0 ( σ eg a + σ ge a ) ,
d d t ρ = i [ H , ρ ] + A ( ρ ) + cav ( ρ ) ,
cav ρ = κ ( 1 + N ) ( a a ρ 2 a ρ a + ρ a a ) κ N ( a a ρ 2 a ρ a + ρ a a ) + κ M ( a a ρ 2 a ρ a + ρ a a ) + κ M * ( a a ρ 2 a ρ a + ρ a a ) ,
a a = sinh 2 ( r ) , P 2 n = tanh 2 n ( r ) cosh ( r ) ( 2 n ) ! ( n ! ) 2 2 2 n , P 2 n + 1 = 0 .
d ρ d t = κ ( b b ρ 2 b ρ b + ρ b b ) i [ H I , ρ ] , H I = g 0 σ e g [ cosh ( r ) b sinh ( r ) b ] + H . c .