Abstract

Laser trapping (LT) of metallic nanoparticles (NPs) is an approach that has the potential to enhance Raman spectroscopy in aqueous media. In this paper, we report the LT of multiple 60-nm Ag NPs using a tightly focused 1064-nm Gaussian laser beam. The dynamic process (trapping and escaping) of the individual Ag NPs were recorded using a charge coupled device (CCD) camera in backscattering illumination mode. We found that up to four Ag NPs could be simultaneously trapped; however, they were unstable in the laser trap due to Brownian motion and NP-NP interactions. However, after mixing Ag NPs with Bacillus subtilis, more of the Ag NPs could be trapped together with the bacteria. Furthermore, a 532-nm solid-state laser beam was used to activate Raman scattering of the Ag NPs + Bacillus subtilis sample. Based on repetitive measurements, the Raman spectra of the Ag NPs + Bacillus subtilis sample were enhanced and the results were consistent. Our work suggests that LT of metallic NPs can be used to enhance Raman spectroscopy in aqueous media. We believe that the enhanced Raman spectroscopy will be useful for real-time biological assays.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Emission enhancement of laser-induced breakdown spectroscopy for aqueous sample analysis based on Au nanoparticles and solid-phase substrate

Xu Wen, Qingyu Lin, Guanghui Niu, Qi Shi, and Yixiang Duan
Appl. Opt. 55(24) 6706-6712 (2016)

Near-infrared Raman spectroscopy of single optically trapped biological cells

Changan Xie, Mumtaz A. Dinno, and Yong-qing Li
Opt. Lett. 27(4) 249-251 (2002)

Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates

Wu Yuan, Ho Pui Ho, Rebecca K. Y. Lee, and Siu Kai Kong
Appl. Opt. 48(22) 4329-4337 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  3. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
    [Crossref] [PubMed]
  4. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [Crossref] [PubMed]
  5. M. Dienerowitz, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
    [Crossref]
  6. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref] [PubMed]
  7. J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
    [Crossref]
  8. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
    [Crossref] [PubMed]
  9. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
    [Crossref] [PubMed]
  10. R. Saija, P. Denti, F. Borghese, O. M. Maragò, and M. A. Iatì, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres,” Opt. Express 17(12), 10231–10241 (2009).
    [Crossref] [PubMed]
  11. Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
    [Crossref]
  12. M. Blattmann and A. Rohrbach, “Plasmonic coupling dynamics of silver nanoparticles in an optical trap,” Nano Lett. 15(12), 7816–7821 (2015).
    [Crossref] [PubMed]
  13. M. Li, J. Xu, M. Romero-Gonzalez, S. A. Banwart, and W. E. Huang, “Single cell Raman spectroscopy for cell sorting and imaging,” Curr. Opin. Biotechnol. 23(1), 56–63 (2012).
    [Crossref] [PubMed]
  14. A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, “Raman spectroscopy of proteins: a review,” J. Raman Spectrosc. 44(8), 1061–1076 (2013).
    [Crossref]
  15. C. Krafft and J. Popp, “The many facets of Raman spectroscopy for biomedical analysis,” Anal. Bioanal. Chem. 407(3), 699–717 (2015).
    [Crossref] [PubMed]
  16. C. Wang and C. Yu, “Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling,” Nanotechnology 26(9), 092001 (2015).
    [Crossref] [PubMed]
  17. J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76(3), 599–603 (2004).
    [Crossref] [PubMed]
  18. J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
    [Crossref]
  19. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
    [Crossref] [PubMed]
  20. M. A. De Oliveira, Z. J. Smith, F. Knorr, R. E. De Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
    [Crossref]
  21. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  22. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  23. J. Morla-Folch, R. A. Alvarez-Puebla, and L. Guerrini, “Direct quantification of DNA base composition by surface-enhanced raman scattering spectroscopy,” J. Phys. Chem. Lett. 7(15), 3037–3041 (2016).
    [Crossref] [PubMed]
  24. A. Torres-Nuñez, K. Faulds, D. Graham, R. A. Alvarez-Puebla, and L. Guerrini, “Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA,” Analyst (Lond.) 141(17), 5170–5180 (2016).
    [Crossref] [PubMed]
  25. A. M. Paul, Z. Fan, S. S. Sinha, Y. Shi, L. Le, F. Bai, and P. C. Ray, “Bio-conjugated gold nanoparticle based sers probe for ultrasensitive identification of mosquito-borne viruses using raman fingerprinting,” J Phys Chem C Nanomater Interfaces 119(41), 23669–23775 (2015).
    [Crossref] [PubMed]
  26. A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
    [Crossref] [PubMed]
  27. J. Li, Z. Zhu, B. Zhu, Y. Ma, B. Lin, R. Liu, Y. Song, H. Lin, S. Tu, and C. Yang, “Surface-enhanced raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging,” Anal. Chem. 88(15), 7828–7836 (2016).
    [Crossref] [PubMed]
  28. C. Liu, Y. Qi, R. Qiao, Y. Hou, K. Chan, Z. Li, J. Huang, L. Jing, J. Du, and M. Gao, “Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes,” Nanoscale 8(25), 12579–12587 (2016).
    [Crossref] [PubMed]
  29. K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
    [Crossref] [PubMed]
  30. “Sigma official website.”, retrieved https://www.sigmaaldrich.com/china-mainland/zh/technical-documents/articles/materials-science/silver-nanomaterials.html .
  31. P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  32. T. Uwada, T. Sugiyama, and H. Masuhara, “Wide-field Rayleigh scattering imaging and spectroscopy of gold nanoparticles in heavy water under laser trapping,” J. Photochem. Photobiol. Chem. 221(2-3), 187–193 (2011).
    [Crossref]
  33. S. Sato, M. Ohyumi, H. Shibata, H. Inaba, and Y. Ogawa, “Optical trapping of small particles using a 1.3-microm compact InGaAsP diode laser,” Opt. Lett. 16(5), 282–284 (1991).
    [Crossref] [PubMed]
  34. A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
    [Crossref] [PubMed]
  35. H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, S. Schubert, R. Niessner, A. Wieser, and C. Haisch, “Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering,” Anal. Chem. 87(13), 6553–6561 (2015).
    [Crossref] [PubMed]
  36. Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review,” Biosens. Bioelectron. 94, 131–140 (2017).
    [Crossref] [PubMed]
  37. R. M. Jarvis, A. Brooker, and R. Goodacre, “Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface,” Anal. Chem. 76(17), 5198–5202 (2004).
    [Crossref] [PubMed]
  38. K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56(2), 150–154 (2002).
    [Crossref]
  39. K.-Y. Yoon, J. Hoon Byeon, J.-H. Park, and J. Hwang, “Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles,” Sci. Total Environ. 373(2-3), 572–575 (2007).
    [Crossref] [PubMed]

2017 (1)

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref] [PubMed]

2016 (5)

J. Morla-Folch, R. A. Alvarez-Puebla, and L. Guerrini, “Direct quantification of DNA base composition by surface-enhanced raman scattering spectroscopy,” J. Phys. Chem. Lett. 7(15), 3037–3041 (2016).
[Crossref] [PubMed]

A. Torres-Nuñez, K. Faulds, D. Graham, R. A. Alvarez-Puebla, and L. Guerrini, “Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA,” Analyst (Lond.) 141(17), 5170–5180 (2016).
[Crossref] [PubMed]

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

J. Li, Z. Zhu, B. Zhu, Y. Ma, B. Lin, R. Liu, Y. Song, H. Lin, S. Tu, and C. Yang, “Surface-enhanced raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging,” Anal. Chem. 88(15), 7828–7836 (2016).
[Crossref] [PubMed]

C. Liu, Y. Qi, R. Qiao, Y. Hou, K. Chan, Z. Li, J. Huang, L. Jing, J. Du, and M. Gao, “Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes,” Nanoscale 8(25), 12579–12587 (2016).
[Crossref] [PubMed]

2015 (5)

A. M. Paul, Z. Fan, S. S. Sinha, Y. Shi, L. Le, F. Bai, and P. C. Ray, “Bio-conjugated gold nanoparticle based sers probe for ultrasensitive identification of mosquito-borne viruses using raman fingerprinting,” J Phys Chem C Nanomater Interfaces 119(41), 23669–23775 (2015).
[Crossref] [PubMed]

M. Blattmann and A. Rohrbach, “Plasmonic coupling dynamics of silver nanoparticles in an optical trap,” Nano Lett. 15(12), 7816–7821 (2015).
[Crossref] [PubMed]

C. Krafft and J. Popp, “The many facets of Raman spectroscopy for biomedical analysis,” Anal. Bioanal. Chem. 407(3), 699–717 (2015).
[Crossref] [PubMed]

C. Wang and C. Yu, “Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling,” Nanotechnology 26(9), 092001 (2015).
[Crossref] [PubMed]

H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, S. Schubert, R. Niessner, A. Wieser, and C. Haisch, “Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering,” Anal. Chem. 87(13), 6553–6561 (2015).
[Crossref] [PubMed]

2014 (1)

M. A. De Oliveira, Z. J. Smith, F. Knorr, R. E. De Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

2013 (1)

A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, “Raman spectroscopy of proteins: a review,” J. Raman Spectrosc. 44(8), 1061–1076 (2013).
[Crossref]

2012 (1)

M. Li, J. Xu, M. Romero-Gonzalez, S. A. Banwart, and W. E. Huang, “Single cell Raman spectroscopy for cell sorting and imaging,” Curr. Opin. Biotechnol. 23(1), 56–63 (2012).
[Crossref] [PubMed]

2011 (2)

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[Crossref] [PubMed]

T. Uwada, T. Sugiyama, and H. Masuhara, “Wide-field Rayleigh scattering imaging and spectroscopy of gold nanoparticles in heavy water under laser trapping,” J. Photochem. Photobiol. Chem. 221(2-3), 187–193 (2011).
[Crossref]

2009 (2)

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[Crossref]

R. Saija, P. Denti, F. Borghese, O. M. Maragò, and M. A. Iatì, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres,” Opt. Express 17(12), 10231–10241 (2009).
[Crossref] [PubMed]

2008 (3)

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

M. Dienerowitz, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[Crossref]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

2007 (2)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

K.-Y. Yoon, J. Hoon Byeon, J.-H. Park, and J. Hwang, “Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles,” Sci. Total Environ. 373(2-3), 572–575 (2007).
[Crossref] [PubMed]

2005 (2)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

2004 (3)

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76(3), 599–603 (2004).
[Crossref] [PubMed]

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[Crossref]

R. M. Jarvis, A. Brooker, and R. Goodacre, “Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface,” Anal. Chem. 76(17), 5198–5202 (2004).
[Crossref] [PubMed]

2002 (1)

1999 (1)

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1994 (2)

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

1991 (1)

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

1986 (1)

1972 (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Aabo, T.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Ackermann, K.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Alvarez-Puebla, R. A.

J. Morla-Folch, R. A. Alvarez-Puebla, and L. Guerrini, “Direct quantification of DNA base composition by surface-enhanced raman scattering spectroscopy,” J. Phys. Chem. Lett. 7(15), 3037–3041 (2016).
[Crossref] [PubMed]

A. Torres-Nuñez, K. Faulds, D. Graham, R. A. Alvarez-Puebla, and L. Guerrini, “Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA,” Analyst (Lond.) 141(17), 5170–5180 (2016).
[Crossref] [PubMed]

Andres, S.

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Badizadegan, K.

Bai, F.

A. M. Paul, Z. Fan, S. S. Sinha, Y. Shi, L. Le, F. Bai, and P. C. Ray, “Bio-conjugated gold nanoparticle based sers probe for ultrasensitive identification of mosquito-borne viruses using raman fingerprinting,” J Phys Chem C Nanomater Interfaces 119(41), 23669–23775 (2015).
[Crossref] [PubMed]

Banwart, S. A.

M. Li, J. Xu, M. Romero-Gonzalez, S. A. Banwart, and W. E. Huang, “Single cell Raman spectroscopy for cell sorting and imaging,” Curr. Opin. Biotechnol. 23(1), 56–63 (2012).
[Crossref] [PubMed]

Baranska, M.

A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, “Raman spectroscopy of proteins: a review,” J. Raman Spectrosc. 44(8), 1061–1076 (2013).
[Crossref]

Bendix, P. M.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Bergman, K.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Bjorkholm, J. E.

Blattmann, M.

M. Blattmann and A. Rohrbach, “Plasmonic coupling dynamics of silver nanoparticles in an optical trap,” Nano Lett. 15(12), 7816–7821 (2015).
[Crossref] [PubMed]

Block, S. M.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[Crossref] [PubMed]

Bocklitz, T.

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

Boone, C.

Borghese, F.

Bosanac, L.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Brooker, A.

R. M. Jarvis, A. Brooker, and R. Goodacre, “Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface,” Anal. Chem. 76(17), 5198–5202 (2004).
[Crossref] [PubMed]

Chadd, E. H.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

Chan, J. W.

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76(3), 599–603 (2004).
[Crossref] [PubMed]

Chan, K.

C. Liu, Y. Qi, R. Qiao, Y. Hou, K. Chan, Z. Li, J. Huang, L. Jing, J. Du, and M. Gao, “Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes,” Nanoscale 8(25), 12579–12587 (2016).
[Crossref] [PubMed]

Christy, R.-W.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, S.

Cialla, D.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Cialla-May, D.

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

Dasari, R. R.

De Araujo, R. E.

M. A. De Oliveira, Z. J. Smith, F. Knorr, R. E. De Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

De Oliveira, M. A.

M. A. De Oliveira, Z. J. Smith, F. Knorr, R. E. De Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

Dees, S.

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

Deng, J. L.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Denti, P.

Dienerowitz, M.

M. Dienerowitz, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[Crossref]

Dörfer, T.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Du, J.

C. Liu, Y. Qi, R. Qiao, Y. Hou, K. Chan, Z. Li, J. Huang, L. Jing, J. Du, and M. Gao, “Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes,” Nanoscale 8(25), 12579–12587 (2016).
[Crossref] [PubMed]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Enger, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[Crossref]

Esposito, A. P.

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76(3), 599–603 (2004).
[Crossref] [PubMed]

Fan, Z.

A. M. Paul, Z. Fan, S. S. Sinha, Y. Shi, L. Le, F. Bai, and P. C. Ray, “Bio-conjugated gold nanoparticle based sers probe for ultrasensitive identification of mosquito-borne viruses using raman fingerprinting,” J Phys Chem C Nanomater Interfaces 119(41), 23669–23775 (2015).
[Crossref] [PubMed]

Faulds, K.

A. Torres-Nuñez, K. Faulds, D. Graham, R. A. Alvarez-Puebla, and L. Guerrini, “Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA,” Analyst (Lond.) 141(17), 5170–5180 (2016).
[Crossref] [PubMed]

Feld, M. S.

Fritzsche, W.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Gao, M.

C. Liu, Y. Qi, R. Qiao, Y. Hou, K. Chan, Z. Li, J. Huang, L. Jing, J. Du, and M. Gao, “Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes,” Nanoscale 8(25), 12579–12587 (2016).
[Crossref] [PubMed]

Goksör, M.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[Crossref]

Goodacre, R.

R. M. Jarvis, A. Brooker, and R. Goodacre, “Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface,” Anal. Chem. 76(17), 5198–5202 (2004).
[Crossref] [PubMed]

Graham, D.

A. Torres-Nuñez, K. Faulds, D. Graham, R. A. Alvarez-Puebla, and L. Guerrini, “Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA,” Analyst (Lond.) 141(17), 5170–5180 (2016).
[Crossref] [PubMed]

Guerrini, L.

A. Torres-Nuñez, K. Faulds, D. Graham, R. A. Alvarez-Puebla, and L. Guerrini, “Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA,” Analyst (Lond.) 141(17), 5170–5180 (2016).
[Crossref] [PubMed]

J. Morla-Folch, R. A. Alvarez-Puebla, and L. Guerrini, “Direct quantification of DNA base composition by surface-enhanced raman scattering spectroscopy,” J. Phys. Chem. Lett. 7(15), 3037–3041 (2016).
[Crossref] [PubMed]

Haisch, C.

H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, S. Schubert, R. Niessner, A. Wieser, and C. Haisch, “Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering,” Anal. Chem. 87(13), 6553–6561 (2015).
[Crossref] [PubMed]

Haka, A. S.

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Hanstorp, D.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[Crossref]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Henk, S.

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

Hering, K.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Hollars, C. W.

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76(3), 599–603 (2004).
[Crossref] [PubMed]

Hoon Byeon, J.

K.-Y. Yoon, J. Hoon Byeon, J.-H. Park, and J. Hwang, “Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles,” Sci. Total Environ. 373(2-3), 572–575 (2007).
[Crossref] [PubMed]

Hou, Y.

C. Liu, Y. Qi, R. Qiao, Y. Hou, K. Chan, Z. Li, J. Huang, L. Jing, J. Du, and M. Gao, “Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes,” Nanoscale 8(25), 12579–12587 (2016).
[Crossref] [PubMed]

Hu, Z.

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref] [PubMed]

Huang, J.

C. Liu, Y. Qi, R. Qiao, Y. Hou, K. Chan, Z. Li, J. Huang, L. Jing, J. Du, and M. Gao, “Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes,” Nanoscale 8(25), 12579–12587 (2016).
[Crossref] [PubMed]

Huang, W. E.

M. Li, J. Xu, M. Romero-Gonzalez, S. A. Banwart, and W. E. Huang, “Single cell Raman spectroscopy for cell sorting and imaging,” Curr. Opin. Biotechnol. 23(1), 56–63 (2012).
[Crossref] [PubMed]

Huser, T.

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76(3), 599–603 (2004).
[Crossref] [PubMed]

Hwang, J.

K.-Y. Yoon, J. Hoon Byeon, J.-H. Park, and J. Hwang, “Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles,” Sci. Total Environ. 373(2-3), 572–575 (2007).
[Crossref] [PubMed]

Iatì, M. A.

Inaba, H.

Ishikawa, M.

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[Crossref]

Itoh, T.

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[Crossref]

Ivleva, N. P.

H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, S. Schubert, R. Niessner, A. Wieser, and C. Haisch, “Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering,” Anal. Chem. 87(13), 6553–6561 (2015).
[Crossref] [PubMed]

Jarvis, R. M.

R. M. Jarvis, A. Brooker, and R. Goodacre, “Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface,” Anal. Chem. 76(17), 5198–5202 (2004).
[Crossref] [PubMed]

Jing, L.

C. Liu, Y. Qi, R. Qiao, Y. Hou, K. Chan, Z. Li, J. Huang, L. Jing, J. Du, and M. Gao, “Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes,” Nanoscale 8(25), 12579–12587 (2016).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kaczor, A.

A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, “Raman spectroscopy of proteins: a review,” J. Raman Spectrosc. 44(8), 1061–1076 (2013).
[Crossref]

Käll, M.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[Crossref]

Kneipp, H.

Kneipp, K.

Knorr, F.

M. A. De Oliveira, Z. J. Smith, F. Knorr, R. E. De Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

Krafft, C.

C. Krafft and J. Popp, “The many facets of Raman spectroscopy for biomedical analysis,” Anal. Bioanal. Chem. 407(3), 699–717 (2015).
[Crossref] [PubMed]

Labugger, I.

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

Lane, S. M.

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76(3), 599–603 (2004).
[Crossref] [PubMed]

Le, L.

A. M. Paul, Z. Fan, S. S. Sinha, Y. Shi, L. Le, F. Bai, and P. C. Ray, “Bio-conjugated gold nanoparticle based sers probe for ultrasensitive identification of mosquito-borne viruses using raman fingerprinting,” J Phys Chem C Nanomater Interfaces 119(41), 23669–23775 (2015).
[Crossref] [PubMed]

Li, J.

J. Li, Z. Zhu, B. Zhu, Y. Ma, B. Lin, R. Liu, Y. Song, H. Lin, S. Tu, and C. Yang, “Surface-enhanced raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging,” Anal. Chem. 88(15), 7828–7836 (2016).
[Crossref] [PubMed]

Li, M.

M. Li, J. Xu, M. Romero-Gonzalez, S. A. Banwart, and W. E. Huang, “Single cell Raman spectroscopy for cell sorting and imaging,” Curr. Opin. Biotechnol. 23(1), 56–63 (2012).
[Crossref] [PubMed]

Li, Y. Q.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Li, Z.

C. Liu, Y. Qi, R. Qiao, Y. Hou, K. Chan, Z. Li, J. Huang, L. Jing, J. Du, and M. Gao, “Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes,” Nanoscale 8(25), 12579–12587 (2016).
[Crossref] [PubMed]

Lin, B.

J. Li, Z. Zhu, B. Zhu, Y. Ma, B. Lin, R. Liu, Y. Song, H. Lin, S. Tu, and C. Yang, “Surface-enhanced raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging,” Anal. Chem. 88(15), 7828–7836 (2016).
[Crossref] [PubMed]

Lin, H.

J. Li, Z. Zhu, B. Zhu, Y. Ma, B. Lin, R. Liu, Y. Song, H. Lin, S. Tu, and C. Yang, “Surface-enhanced raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging,” Anal. Chem. 88(15), 7828–7836 (2016).
[Crossref] [PubMed]

Liou, G. F.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

Liu, C.

C. Liu, Y. Qi, R. Qiao, Y. Hou, K. Chan, Z. Li, J. Huang, L. Jing, J. Du, and M. Gao, “Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes,” Nanoscale 8(25), 12579–12587 (2016).
[Crossref] [PubMed]

Liu, R.

J. Li, Z. Zhu, B. Zhu, Y. Ma, B. Lin, R. Liu, Y. Song, H. Lin, S. Tu, and C. Yang, “Surface-enhanced raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging,” Anal. Chem. 88(15), 7828–7836 (2016).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref] [PubMed]

Ma, Y.

J. Li, Z. Zhu, B. Zhu, Y. Ma, B. Lin, R. Liu, Y. Song, H. Lin, S. Tu, and C. Yang, “Surface-enhanced raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging,” Anal. Chem. 88(15), 7828–7836 (2016).
[Crossref] [PubMed]

Majzner, K.

A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, “Raman spectroscopy of proteins: a review,” J. Raman Spectrosc. 44(8), 1061–1076 (2013).
[Crossref]

Maragò, O. M.

März, A.

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[Crossref] [PubMed]

Marzec, K. M.

A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, “Raman spectroscopy of proteins: a review,” J. Raman Spectrosc. 44(8), 1061–1076 (2013).
[Crossref]

Masuhara, H.

T. Uwada, T. Sugiyama, and H. Masuhara, “Wide-field Rayleigh scattering imaging and spectroscopy of gold nanoparticles in heavy water under laser trapping,” J. Photochem. Photobiol. Chem. 221(2-3), 187–193 (2011).
[Crossref]

Mattheis, R.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Merker, M.

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

Mircescu, N. E.

H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, S. Schubert, R. Niessner, A. Wieser, and C. Haisch, “Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering,” Anal. Chem. 87(13), 6553–6561 (2015).
[Crossref] [PubMed]

Möller, R.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Morla-Folch, J.

J. Morla-Folch, R. A. Alvarez-Puebla, and L. Guerrini, “Direct quantification of DNA base composition by surface-enhanced raman scattering spectroscopy,” J. Phys. Chem. Lett. 7(15), 3037–3041 (2016).
[Crossref] [PubMed]

Motz, J. T.

Mühlig, A.

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Niessner, R.

H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, S. Schubert, R. Niessner, A. Wieser, and C. Haisch, “Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering,” Anal. Chem. 87(13), 6553–6561 (2015).
[Crossref] [PubMed]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Oddershede, L. B.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Ogawa, Y.

Ohyumi, M.

Park, J.-H.

K.-Y. Yoon, J. Hoon Byeon, J.-H. Park, and J. Hwang, “Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles,” Sci. Total Environ. 373(2-3), 572–575 (2007).
[Crossref] [PubMed]

Paul, A. M.

A. M. Paul, Z. Fan, S. S. Sinha, Y. Shi, L. Le, F. Bai, and P. C. Ray, “Bio-conjugated gold nanoparticle based sers probe for ultrasensitive identification of mosquito-borne viruses using raman fingerprinting,” J Phys Chem C Nanomater Interfaces 119(41), 23669–23775 (2015).
[Crossref] [PubMed]

Pilarczyk, M.

A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, “Raman spectroscopy of proteins: a review,” J. Raman Spectrosc. 44(8), 1061–1076 (2013).
[Crossref]

Popp, J.

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

C. Krafft and J. Popp, “The many facets of Raman spectroscopy for biomedical analysis,” Anal. Bioanal. Chem. 407(3), 699–717 (2015).
[Crossref] [PubMed]

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[Crossref] [PubMed]

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Prikulis, J.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[Crossref]

Qi, Y.

C. Liu, Y. Qi, R. Qiao, Y. Hou, K. Chan, Z. Li, J. Huang, L. Jing, J. Du, and M. Gao, “Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes,” Nanoscale 8(25), 12579–12587 (2016).
[Crossref] [PubMed]

Qiao, R.

C. Liu, Y. Qi, R. Qiao, Y. Hou, K. Chan, Z. Li, J. Huang, L. Jing, J. Du, and M. Gao, “Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes,” Nanoscale 8(25), 12579–12587 (2016).
[Crossref] [PubMed]

Ramser, K.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[Crossref]

Ray, P. C.

A. M. Paul, Z. Fan, S. S. Sinha, Y. Shi, L. Le, F. Bai, and P. C. Ray, “Bio-conjugated gold nanoparticle based sers probe for ultrasensitive identification of mosquito-borne viruses using raman fingerprinting,” J Phys Chem C Nanomater Interfaces 119(41), 23669–23775 (2015).
[Crossref] [PubMed]

Richter, E.

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

Rohrbach, A.

M. Blattmann and A. Rohrbach, “Plasmonic coupling dynamics of silver nanoparticles in an optical trap,” Nano Lett. 15(12), 7816–7821 (2015).
[Crossref] [PubMed]

Romero-Gonzalez, M.

M. Li, J. Xu, M. Romero-Gonzalez, S. A. Banwart, and W. E. Huang, “Single cell Raman spectroscopy for cell sorting and imaging,” Curr. Opin. Biotechnol. 23(1), 56–63 (2012).
[Crossref] [PubMed]

Rösch, P.

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[Crossref] [PubMed]

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Rygula, A.

A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, “Raman spectroscopy of proteins: a review,” J. Raman Spectrosc. 44(8), 1061–1076 (2013).
[Crossref]

Saija, R.

Sato, S.

Schneidewind, H.

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Schubert, S.

H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, S. Schubert, R. Niessner, A. Wieser, and C. Haisch, “Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering,” Anal. Chem. 87(13), 6553–6561 (2015).
[Crossref] [PubMed]

Schumacher, W.

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[Crossref] [PubMed]

Shafer-Peltier, K. E.

Shi, Y.

A. M. Paul, Z. Fan, S. S. Sinha, Y. Shi, L. Le, F. Bai, and P. C. Ray, “Bio-conjugated gold nanoparticle based sers probe for ultrasensitive identification of mosquito-borne viruses using raman fingerprinting,” J Phys Chem C Nanomater Interfaces 119(41), 23669–23775 (2015).
[Crossref] [PubMed]

Shibata, H.

Sinha, S. S.

A. M. Paul, Z. Fan, S. S. Sinha, Y. Shi, L. Le, F. Bai, and P. C. Ray, “Bio-conjugated gold nanoparticle based sers probe for ultrasensitive identification of mosquito-borne viruses using raman fingerprinting,” J Phys Chem C Nanomater Interfaces 119(41), 23669–23775 (2015).
[Crossref] [PubMed]

Smith, Z. J.

M. A. De Oliveira, Z. J. Smith, F. Knorr, R. E. De Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

Song, Y.

J. Li, Z. Zhu, B. Zhu, Y. Ma, B. Lin, R. Liu, Y. Song, H. Lin, S. Tu, and C. Yang, “Surface-enhanced raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging,” Anal. Chem. 88(15), 7828–7836 (2016).
[Crossref] [PubMed]

Stöckel, S.

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

Sugiyama, T.

T. Uwada, T. Sugiyama, and H. Masuhara, “Wide-field Rayleigh scattering imaging and spectroscopy of gold nanoparticles in heavy water under laser trapping,” J. Photochem. Photobiol. Chem. 221(2-3), 187–193 (2011).
[Crossref]

Svedberg, F.

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[Crossref]

Svoboda, K.

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Talley, C. E.

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76(3), 599–603 (2004).
[Crossref] [PubMed]

Tanaka, Y.

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[Crossref]

Torres-Nuñez, A.

A. Torres-Nuñez, K. Faulds, D. Graham, R. A. Alvarez-Puebla, and L. Guerrini, “Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA,” Analyst (Lond.) 141(17), 5170–5180 (2016).
[Crossref] [PubMed]

Tu, S.

J. Li, Z. Zhu, B. Zhu, Y. Ma, B. Lin, R. Liu, Y. Song, H. Lin, S. Tu, and C. Yang, “Surface-enhanced raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging,” Anal. Chem. 88(15), 7828–7836 (2016).
[Crossref] [PubMed]

Uwada, T.

T. Uwada, T. Sugiyama, and H. Masuhara, “Wide-field Rayleigh scattering imaging and spectroscopy of gold nanoparticles in heavy water under laser trapping,” J. Photochem. Photobiol. Chem. 221(2-3), 187–193 (2011).
[Crossref]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wachsmann-Hogiu, S.

M. A. De Oliveira, Z. J. Smith, F. Knorr, R. E. De Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

Walter, A.

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[Crossref] [PubMed]

Wang, C.

C. Wang and C. Yu, “Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling,” Nanotechnology 26(9), 092001 (2015).
[Crossref] [PubMed]

Wang, Y. Z.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Weber, K.

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

Wei, Q.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Wieser, A.

H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, S. Schubert, R. Niessner, A. Wieser, and C. Haisch, “Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering,” Anal. Chem. 87(13), 6553–6561 (2015).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Xu, J.

M. Li, J. Xu, M. Romero-Gonzalez, S. A. Banwart, and W. E. Huang, “Single cell Raman spectroscopy for cell sorting and imaging,” Curr. Opin. Biotechnol. 23(1), 56–63 (2012).
[Crossref] [PubMed]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Yang, C.

J. Li, Z. Zhu, B. Zhu, Y. Ma, B. Lin, R. Liu, Y. Song, H. Lin, S. Tu, and C. Yang, “Surface-enhanced raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging,” Anal. Chem. 88(15), 7828–7836 (2016).
[Crossref] [PubMed]

Yang, D.

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref] [PubMed]

H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, S. Schubert, R. Niessner, A. Wieser, and C. Haisch, “Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering,” Anal. Chem. 87(13), 6553–6561 (2015).
[Crossref] [PubMed]

Yoon, K.-Y.

K.-Y. Yoon, J. Hoon Byeon, J.-H. Park, and J. Hwang, “Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles,” Sci. Total Environ. 373(2-3), 572–575 (2007).
[Crossref] [PubMed]

Yoshikawa, H.

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[Crossref]

Yoshizawa, N.

Yu, C.

C. Wang and C. Yu, “Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling,” Nanotechnology 26(9), 092001 (2015).
[Crossref] [PubMed]

Yu, G.

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref] [PubMed]

Zhang, M. H.

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Zhao, J.

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref] [PubMed]

Zhou, H.

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref] [PubMed]

H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, S. Schubert, R. Niessner, A. Wieser, and C. Haisch, “Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering,” Anal. Chem. 87(13), 6553–6561 (2015).
[Crossref] [PubMed]

Zhu, B.

J. Li, Z. Zhu, B. Zhu, Y. Ma, B. Lin, R. Liu, Y. Song, H. Lin, S. Tu, and C. Yang, “Surface-enhanced raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging,” Anal. Chem. 88(15), 7828–7836 (2016).
[Crossref] [PubMed]

Zhu, Z.

J. Li, Z. Zhu, B. Zhu, Y. Ma, B. Lin, R. Liu, Y. Song, H. Lin, S. Tu, and C. Yang, “Surface-enhanced raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging,” Anal. Chem. 88(15), 7828–7836 (2016).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (2)

C. Krafft and J. Popp, “The many facets of Raman spectroscopy for biomedical analysis,” Anal. Bioanal. Chem. 407(3), 699–717 (2015).
[Crossref] [PubMed]

K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390(1), 113–124 (2008).
[Crossref] [PubMed]

Anal. Chem. (5)

A. Mühlig, T. Bocklitz, I. Labugger, S. Dees, S. Henk, E. Richter, S. Andres, M. Merker, S. Stöckel, K. Weber, D. Cialla-May, and J. Popp, “LOC-SERS: A promising closed system for the identification of mycobacteria,” Anal. Chem. 88(16), 7998–8004 (2016).
[Crossref] [PubMed]

J. Li, Z. Zhu, B. Zhu, Y. Ma, B. Lin, R. Liu, Y. Song, H. Lin, S. Tu, and C. Yang, “Surface-enhanced raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging,” Anal. Chem. 88(15), 7828–7836 (2016).
[Crossref] [PubMed]

J. W. Chan, A. P. Esposito, C. E. Talley, C. W. Hollars, S. M. Lane, and T. Huser, “Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy,” Anal. Chem. 76(3), 599–603 (2004).
[Crossref] [PubMed]

H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, S. Schubert, R. Niessner, A. Wieser, and C. Haisch, “Label-free in situ discrimination of live and dead bacteria by surface-enhanced Raman scattering,” Anal. Chem. 87(13), 6553–6561 (2015).
[Crossref] [PubMed]

R. M. Jarvis, A. Brooker, and R. Goodacre, “Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface,” Anal. Chem. 76(17), 5198–5202 (2004).
[Crossref] [PubMed]

Analyst (Lond.) (1)

A. Torres-Nuñez, K. Faulds, D. Graham, R. A. Alvarez-Puebla, and L. Guerrini, “Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA,” Analyst (Lond.) 141(17), 5170–5180 (2016).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. A. De Oliveira, Z. J. Smith, F. Knorr, R. E. De Araujo, and S. Wachsmann-Hogiu, “Long term Raman spectral study of power-dependent photodamage in red blood cells,” Appl. Phys. Lett. 104(10), 103702 (2014).
[Crossref]

Appl. Spectrosc. (1)

Biophys. J. (1)

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to Escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[Crossref] [PubMed]

Biosens. Bioelectron. (1)

Y. Liu, H. Zhou, Z. Hu, G. Yu, D. Yang, and J. Zhao, “Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review,” Biosens. Bioelectron. 94, 131–140 (2017).
[Crossref] [PubMed]

Curr. Opin. Biotechnol. (1)

M. Li, J. Xu, M. Romero-Gonzalez, S. A. Banwart, and W. E. Huang, “Single cell Raman spectroscopy for cell sorting and imaging,” Curr. Opin. Biotechnol. 23(1), 56–63 (2012).
[Crossref] [PubMed]

J Phys Chem C Nanomater Interfaces (1)

A. M. Paul, Z. Fan, S. S. Sinha, Y. Shi, L. Le, F. Bai, and P. C. Ray, “Bio-conjugated gold nanoparticle based sers probe for ultrasensitive identification of mosquito-borne viruses using raman fingerprinting,” J Phys Chem C Nanomater Interfaces 119(41), 23669–23775 (2015).
[Crossref] [PubMed]

J. Nanophotonics (1)

M. Dienerowitz, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics 2(1), 021875 (2008).
[Crossref]

J. Photochem. Photobiol. Chem. (1)

T. Uwada, T. Sugiyama, and H. Masuhara, “Wide-field Rayleigh scattering imaging and spectroscopy of gold nanoparticles in heavy water under laser trapping,” J. Photochem. Photobiol. Chem. 221(2-3), 187–193 (2011).
[Crossref]

J. Phys. Chem. C (1)

Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C 113(27), 11856–11860 (2009).
[Crossref]

J. Phys. Chem. Lett. (1)

J. Morla-Folch, R. A. Alvarez-Puebla, and L. Guerrini, “Direct quantification of DNA base composition by surface-enhanced raman scattering spectroscopy,” J. Phys. Chem. Lett. 7(15), 3037–3041 (2016).
[Crossref] [PubMed]

J. Raman Spectrosc. (2)

A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, and M. Baranska, “Raman spectroscopy of proteins: a review,” J. Raman Spectrosc. 44(8), 1061–1076 (2013).
[Crossref]

J. L. Deng, Q. Wei, M. H. Zhang, Y. Z. Wang, and Y. Q. Li, “Study of the effect of alcohol on single human red blood cells using near-infrared laser tweezers Raman spectroscopy,” J. Raman Spectrosc. 36(3), 257–261 (2005).
[Crossref]

Lab Chip (1)

A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, “Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device,” Lab Chip 11(6), 1013–1021 (2011).
[Crossref] [PubMed]

Nano Lett. (4)

M. Blattmann and A. Rohrbach, “Plasmonic coupling dynamics of silver nanoparticles in an optical trap,” Nano Lett. 15(12), 7816–7821 (2015).
[Crossref] [PubMed]

J. Prikulis, F. Svedberg, M. Käll, J. Enger, K. Ramser, M. Goksör, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004).
[Crossref]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Nanoscale (1)

C. Liu, Y. Qi, R. Qiao, Y. Hou, K. Chan, Z. Li, J. Huang, L. Jing, J. Du, and M. Gao, “Detection of early primary colorectal cancer with upconversion luminescent NP-based molecular probes,” Nanoscale 8(25), 12579–12587 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

C. Wang and C. Yu, “Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling,” Nanotechnology 26(9), 092001 (2015).
[Crossref] [PubMed]

Nature (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature 330(6150), 769–771 (1987).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (1)

P. B. Johnson and R.-W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Sci. Total Environ. (1)

K.-Y. Yoon, J. Hoon Byeon, J.-H. Park, and J. Hwang, “Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles,” Sci. Total Environ. 373(2-3), 572–575 (2007).
[Crossref] [PubMed]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Other (1)

“Sigma official website.”, retrieved https://www.sigmaaldrich.com/china-mainland/zh/technical-documents/articles/materials-science/silver-nanomaterials.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the optical system. The 1064-nm linearly polarized continuous wave Nd:YAG laser beam and the 532-nm solid-state laser beam were coupled into the inverted microscope as the sources of LT and RS, respectively. Raman spectra were recorded by the spectrometer and liquid nitrogen-cooled spectroscopic CCD (CCD2). Here, L1–L2 and L3–L4 represent two pairs of beam expanders, R1, R2, and R3 represent reflecting mirrors, and D1, D2, and D3 represent dichroic mirrors.
Fig. 2
Fig. 2 SEM image of the Ag NPs with a particle size of 60 nm.
Fig. 3
Fig. 3 Image of the Ag NPs (particle size: 60 nm) in aqueous medium in backscattering illumination mode. The individual Ag NPs can be clearly identified from the bright spots in the image.
Fig. 4
Fig. 4 Dynamic process of trapping Ag NPs in the aqueous medium: (a) Variation of the scattered light intensity with respect to the trapping time within a 2 μm × 2 μm ROI in the LT focus spot; (b, c) images and surface plots of the dynamic process corresponding to the labeled times in (a).
Fig. 5
Fig. 5 (a1, a2) Images of the trapped Ag NPs and Bacillus subtilis in backscattering illumination mode recorded at 1.6 s and 9.5 s, respectively; (b1, b2) Surface plots within a 4 μm × 4 μm ROI of images a1 and a2, respectively; (a3, b3) Trapped Bacillus subtilis without Ag NPs and its surface plot, respectively; (a4) Trapped Ag NPs and Bacillus subtilis under transmitted white light illumination mode.
Fig. 6
Fig. 6 Raman spectra of Bacillus subtilis (black), Ag NPs + Bacillus subtilis sample (red), and Ag NP sample (blue). It is evident that the Ag NPs + Bacillus subtilis sample shows enhanced Raman scattering compared with the Bacillus subtilis in aqueous medium. The Ag NPs in aqueous medium are used as the control group for comparison.
Fig. 7
Fig. 7 Ten randomly chosen Raman spectra of Ag NPs + Bacillus subtilis samples used to confirm the stability and repeatability of the RS enhancement.

Tables (1)

Tables Icon

Table 1 Bands assignment in the Raman spectra for the Ag NPs + Bacillus subtilis sample and comparison with those in previous studies [26,34–36] a

Metrics