Abstract

The principle and experimental demonstration of a spectral resolution enhanced static Fourier transform spectrometer (SESFTS) is presented. The device, which is based on a birefringent retarder array and a Wollaston prism, offers significant advantages over previous static Fourier transform (FT) implementations. Specifically, its use of an ultra-compact common-path interference structure creates a simple and robust spectral resolution enhanced spectrometer while preserving their high throughput and wide free spectral range. The operation principle of the device is explained in detail with a design example with a spectral resolution of 7 cm−1, which is nearly two orders of magnitude higher than that of a conventional static FT spectrometer with a similar CCD detector. An experimental demonstration is performed by the measurement of a gas charge lamp and three diode laser sources with a SESFTS prototype working in 400−1000 nm with an approximate 25 cm−1 spectral resolution.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-performance nonscanning Fourier-transform spectrometer that uses a Wollaston prism array

Dan Komisarek, Karl Reichard, Dan Merdes, Dan Lysak, Philip Lam, Shudong Wu, and Shizhuo Yin
Appl. Opt. 43(20) 3983-3988 (2004)

Compact static imaging spectrometer combining spectral zooming capability with a birefringent interferometer

Jie Li, Jingping Zhu, Chun Qi, Chuanlin Zheng, Bo Gao, Yunyao Zhang, and Xun Hou
Opt. Express 21(8) 10182-10187 (2013)

Broadband static Fourier transform mid-infrared spectrometer

Michael H. Köhler, Stefan S. Naßl, Patrick Kienle, Xingchen Dong, and Alexander W. Koch
Appl. Opt. 58(13) 3393-3400 (2019)

References

  • View by:
  • |
  • |
  • |

  1. M. J. Persky, “A review of spaceborne infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66(10), 4763–4797 (1995).
    [Crossref]
  2. J. L. Harley, B. A. Rankin, D. L. Blunck, J. P. Gore, and K. C. Gross, “Imaging Fourier-transform spectrometer measurements of a turbulent nonpremixed jet flame,” Opt. Lett. 39(8), 2350–2353 (2014).
    [Crossref] [PubMed]
  3. P. Griffiths and J. D. Haseth, Fourier Transform Infrared Spectrometry (John Wiley & Sons, Inc., 1986).
  4. J. W. Brault, “New approach to high-precision Fourier transform spectrometer design,” Appl. Opt. 35(16), 2891–2896 (1996).
    [Crossref] [PubMed]
  5. O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. De Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29(13), 1437–1439 (2004).
    [Crossref] [PubMed]
  6. K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130-131, 523–530 (2006).
    [Crossref]
  7. H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron. 48(2), 244–251 (2012).
    [Crossref]
  8. D. Wang, H. Liu, J. Zhang, Q. Chen, W. Wang, X. Zhang, and H. Xie, “Fourier transform infrared spectrometer based on an electrothermal MEMS mirror,” Appl. Opt. 57(21), 5956–5961 (2018).
    [Crossref] [PubMed]
  9. A. Kenda, S. Lüttjohann, T. Sandner, M. Kraft, A. Tortschanoff, and A. Simon, “A compact and portable IR analyzer: progress of a MOEMS FT-IR system for mid-IR sensing,” Proc. SPIE 8032, 80320O (2011).
    [Crossref]
  10. W. Wang, J. Chen, A. S. Zivkovic, and H. Xie, “A Fourier transform spectrometer based on an electrothermal MEMS mirror with improved linear scan range,” Sensors (Basel) 16(10), 1611 (2016).
    [Crossref] [PubMed]
  11. T. Sandner, E. Gaumont, T. Grasshoff, G. Auböck, A. Kenda, T. Gisler, S. Langa, A. Herrmann, and J. Grahmann, “Translatory MEMS actuator with wafer level vacuum package for miniaturized NIR Fourier transform spectrometers,” Proc. SPIE 10545, 105450W (2018).
    [Crossref]
  12. J. Genest, P. Tremblay, and A. Villemaire, “Throughput of tilted interferometers,” Appl. Opt. 37(21), 4819–4822 (1998).
    [Crossref] [PubMed]
  13. A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Theoretical aspects of Fourier transform spectrometry and common path triangular interferometers,” Opt. Express 18(11), 11622–11649 (2010).
    [Crossref] [PubMed]
  14. C. Y. Huang and W. C. Wang, “Birefringent prism based Fourier transform spectrometer,” Opt. Lett. 37(9), 1559–1561 (2012).
    [Crossref] [PubMed]
  15. J. Li, J. Zhu, C. Qi, C. Zheng, B. Gao, Y. Zhang, and X. Hou, “Compact static imaging spectrometer combining spectral zooming capability with a birefringent interferometer,” Opt. Express 21(8), 10182–10187 (2013).
    [Crossref] [PubMed]
  16. J. Li, J. Zhu, and X. Hou, “Field-compensated birefringent Fourier transform spectrometer,” Opt. Commun. 284(5), 1127–1131 (2011).
    [Crossref]
  17. J. Courtial, B. A. Patterson, A. R. Harvey, W. Sibbett, and M. J. Padgett, “Design of a static Fourier-transform spectrometer with increased field of view,” Appl. Opt. 35(34), 6698–6702 (1996).
    [Crossref] [PubMed]
  18. R. Glenn Sellar and B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33(9), 3087–3093 (1994).
    [Crossref]
  19. A. Lacan, F. M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express 18(8), 8311–8331 (2010).
    [Crossref] [PubMed]
  20. E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt. A, Pure Appl. Opt. 2(6), 519–528 (2000).
    [Crossref]
  21. M. W. Kudenov and E. L. Dereniak, “Compact real-time birefringent imaging spectrometer,” Opt. Express 20(16), 17973–17986 (2012).
    [Crossref] [PubMed]
  22. D. Komisarek, K. Reichard, D. Merdes, D. Lysak, P. Lam, S. Wu, and S. Yin, “High-performance nonscanning Fourier-transform spectrometer that uses a Wollaston prism array,” Appl. Opt. 43(20), 3983–3988 (2004).
    [Crossref] [PubMed]
  23. N. Ebizuka, M. Wakaki, Y. Kobayashi, and S. Sato, “Development of a multichannel Fourier transform spectrometer,” Appl. Opt. 34(34), 7899–7906 (1995).
    [Crossref] [PubMed]
  24. M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971), Chap. 2.
  25. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972), Chap. 3 and 5.
  26. R. G. Sellar and G. D. Boreman, “Comparison of relative signal-to-noise ratios of different classes of imaging spectrometer,” Appl. Opt. 44(9), 1614–1624 (2005).
    [Crossref] [PubMed]

2018 (2)

D. Wang, H. Liu, J. Zhang, Q. Chen, W. Wang, X. Zhang, and H. Xie, “Fourier transform infrared spectrometer based on an electrothermal MEMS mirror,” Appl. Opt. 57(21), 5956–5961 (2018).
[Crossref] [PubMed]

T. Sandner, E. Gaumont, T. Grasshoff, G. Auböck, A. Kenda, T. Gisler, S. Langa, A. Herrmann, and J. Grahmann, “Translatory MEMS actuator with wafer level vacuum package for miniaturized NIR Fourier transform spectrometers,” Proc. SPIE 10545, 105450W (2018).
[Crossref]

2016 (1)

W. Wang, J. Chen, A. S. Zivkovic, and H. Xie, “A Fourier transform spectrometer based on an electrothermal MEMS mirror with improved linear scan range,” Sensors (Basel) 16(10), 1611 (2016).
[Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (3)

2011 (2)

A. Kenda, S. Lüttjohann, T. Sandner, M. Kraft, A. Tortschanoff, and A. Simon, “A compact and portable IR analyzer: progress of a MOEMS FT-IR system for mid-IR sensing,” Proc. SPIE 8032, 80320O (2011).
[Crossref]

J. Li, J. Zhu, and X. Hou, “Field-compensated birefringent Fourier transform spectrometer,” Opt. Commun. 284(5), 1127–1131 (2011).
[Crossref]

2010 (2)

2006 (1)

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130-131, 523–530 (2006).
[Crossref]

2005 (1)

2004 (2)

2000 (1)

E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt. A, Pure Appl. Opt. 2(6), 519–528 (2000).
[Crossref]

1998 (1)

1996 (2)

1995 (2)

M. J. Persky, “A review of spaceborne infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66(10), 4763–4797 (1995).
[Crossref]

N. Ebizuka, M. Wakaki, Y. Kobayashi, and S. Sato, “Development of a multichannel Fourier transform spectrometer,” Appl. Opt. 34(34), 7899–7906 (1995).
[Crossref] [PubMed]

1994 (1)

R. Glenn Sellar and B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33(9), 3087–3093 (1994).
[Crossref]

Auböck, G.

T. Sandner, E. Gaumont, T. Grasshoff, G. Auböck, A. Kenda, T. Gisler, S. Langa, A. Herrmann, and J. Grahmann, “Translatory MEMS actuator with wafer level vacuum package for miniaturized NIR Fourier transform spectrometers,” Proc. SPIE 10545, 105450W (2018).
[Crossref]

Barducci, A.

Blunck, D. L.

Boreman, G. D.

Brachet, F.

Brault, J. W.

Bréon, F. M.

Casteras, C.

Chen, J.

W. Wang, J. Chen, A. S. Zivkovic, and H. Xie, “A Fourier transform spectrometer based on an electrothermal MEMS mirror with improved linear scan range,” Sensors (Basel) 16(10), 1611 (2016).
[Crossref] [PubMed]

Chen, Q.

Courtial, J.

De Rooij, N.

Dereniak, E. L.

Ebizuka, N.

Etcheto, P.

Gao, B.

Gaumont, E.

T. Sandner, E. Gaumont, T. Grasshoff, G. Auböck, A. Kenda, T. Gisler, S. Langa, A. Herrmann, and J. Grahmann, “Translatory MEMS actuator with wafer level vacuum package for miniaturized NIR Fourier transform spectrometers,” Proc. SPIE 10545, 105450W (2018).
[Crossref]

Genest, J.

Gisler, T.

T. Sandner, E. Gaumont, T. Grasshoff, G. Auböck, A. Kenda, T. Gisler, S. Langa, A. Herrmann, and J. Grahmann, “Translatory MEMS actuator with wafer level vacuum package for miniaturized NIR Fourier transform spectrometers,” Proc. SPIE 10545, 105450W (2018).
[Crossref]

Glenn Sellar, R.

R. Glenn Sellar and B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33(9), 3087–3093 (1994).
[Crossref]

Gore, J. P.

Grahmann, J.

T. Sandner, E. Gaumont, T. Grasshoff, G. Auböck, A. Kenda, T. Gisler, S. Langa, A. Herrmann, and J. Grahmann, “Translatory MEMS actuator with wafer level vacuum package for miniaturized NIR Fourier transform spectrometers,” Proc. SPIE 10545, 105450W (2018).
[Crossref]

Grasshoff, T.

T. Sandner, E. Gaumont, T. Grasshoff, G. Auböck, A. Kenda, T. Gisler, S. Langa, A. Herrmann, and J. Grahmann, “Translatory MEMS actuator with wafer level vacuum package for miniaturized NIR Fourier transform spectrometers,” Proc. SPIE 10545, 105450W (2018).
[Crossref]

Gross, K. C.

Guzzi, D.

Harley, J. L.

Harvey, A. R.

Herrmann, A.

T. Sandner, E. Gaumont, T. Grasshoff, G. Auböck, A. Kenda, T. Gisler, S. Langa, A. Herrmann, and J. Grahmann, “Translatory MEMS actuator with wafer level vacuum package for miniaturized NIR Fourier transform spectrometers,” Proc. SPIE 10545, 105450W (2018).
[Crossref]

Herzig, H. P.

Hou, X.

Huang, C. Y.

Ivanov, E. V.

E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt. A, Pure Appl. Opt. 2(6), 519–528 (2000).
[Crossref]

Kenda, A.

T. Sandner, E. Gaumont, T. Grasshoff, G. Auböck, A. Kenda, T. Gisler, S. Langa, A. Herrmann, and J. Grahmann, “Translatory MEMS actuator with wafer level vacuum package for miniaturized NIR Fourier transform spectrometers,” Proc. SPIE 10545, 105450W (2018).
[Crossref]

A. Kenda, S. Lüttjohann, T. Sandner, M. Kraft, A. Tortschanoff, and A. Simon, “A compact and portable IR analyzer: progress of a MOEMS FT-IR system for mid-IR sensing,” Proc. SPIE 8032, 80320O (2011).
[Crossref]

Khalil, D.

H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron. 48(2), 244–251 (2012).
[Crossref]

Kobayashi, Y.

Komisarek, D.

Kraft, M.

A. Kenda, S. Lüttjohann, T. Sandner, M. Kraft, A. Tortschanoff, and A. Simon, “A compact and portable IR analyzer: progress of a MOEMS FT-IR system for mid-IR sensing,” Proc. SPIE 8032, 80320O (2011).
[Crossref]

Krishnamoorthy, U.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130-131, 523–530 (2006).
[Crossref]

Kudenov, M. W.

Lacan, A.

Lam, P.

Langa, S.

T. Sandner, E. Gaumont, T. Grasshoff, G. Auböck, A. Kenda, T. Gisler, S. Langa, A. Herrmann, and J. Grahmann, “Translatory MEMS actuator with wafer level vacuum package for miniaturized NIR Fourier transform spectrometers,” Proc. SPIE 10545, 105450W (2018).
[Crossref]

Lastri, C.

Lee, D.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130-131, 523–530 (2006).
[Crossref]

Li, J.

Liu, H.

Lüttjohann, S.

A. Kenda, S. Lüttjohann, T. Sandner, M. Kraft, A. Tortschanoff, and A. Simon, “A compact and portable IR analyzer: progress of a MOEMS FT-IR system for mid-IR sensing,” Proc. SPIE 8032, 80320O (2011).
[Crossref]

Lysak, D.

Manzardo, O.

Marcoionni, P.

Medhat, M.

H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron. 48(2), 244–251 (2012).
[Crossref]

Merdes, D.

Michaely, R.

Mortada, B.

H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron. 48(2), 244–251 (2012).
[Crossref]

Nardino, V.

Noell, W.

Omran, H.

H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron. 48(2), 244–251 (2012).
[Crossref]

Overstolz, T.

Padgett, M. J.

Park, N.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130-131, 523–530 (2006).
[Crossref]

Patterson, B. A.

Persky, M. J.

M. J. Persky, “A review of spaceborne infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66(10), 4763–4797 (1995).
[Crossref]

Pippi, I.

Qi, C.

Rafert, B.

R. Glenn Sellar and B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33(9), 3087–3093 (1994).
[Crossref]

Rankin, B. A.

Reichard, K.

Rosak, A.

Roucayrol, L.

Saadany, B.

H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron. 48(2), 244–251 (2012).
[Crossref]

Salaün, Y.

Sandner, T.

T. Sandner, E. Gaumont, T. Grasshoff, G. Auböck, A. Kenda, T. Gisler, S. Langa, A. Herrmann, and J. Grahmann, “Translatory MEMS actuator with wafer level vacuum package for miniaturized NIR Fourier transform spectrometers,” Proc. SPIE 10545, 105450W (2018).
[Crossref]

A. Kenda, S. Lüttjohann, T. Sandner, M. Kraft, A. Tortschanoff, and A. Simon, “A compact and portable IR analyzer: progress of a MOEMS FT-IR system for mid-IR sensing,” Proc. SPIE 8032, 80320O (2011).
[Crossref]

Sato, S.

Schädelin, F.

Sellar, R. G.

Sibbett, W.

Simon, A.

A. Kenda, S. Lüttjohann, T. Sandner, M. Kraft, A. Tortschanoff, and A. Simon, “A compact and portable IR analyzer: progress of a MOEMS FT-IR system for mid-IR sensing,” Proc. SPIE 8032, 80320O (2011).
[Crossref]

Solgaard, O.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130-131, 523–530 (2006).
[Crossref]

Tortschanoff, A.

A. Kenda, S. Lüttjohann, T. Sandner, M. Kraft, A. Tortschanoff, and A. Simon, “A compact and portable IR analyzer: progress of a MOEMS FT-IR system for mid-IR sensing,” Proc. SPIE 8032, 80320O (2011).
[Crossref]

Tremblay, P.

Villemaire, A.

Wakaki, M.

Wang, D.

Wang, W.

D. Wang, H. Liu, J. Zhang, Q. Chen, W. Wang, X. Zhang, and H. Xie, “Fourier transform infrared spectrometer based on an electrothermal MEMS mirror,” Appl. Opt. 57(21), 5956–5961 (2018).
[Crossref] [PubMed]

W. Wang, J. Chen, A. S. Zivkovic, and H. Xie, “A Fourier transform spectrometer based on an electrothermal MEMS mirror with improved linear scan range,” Sensors (Basel) 16(10), 1611 (2016).
[Crossref] [PubMed]

Wang, W. C.

Wu, S.

Xie, H.

D. Wang, H. Liu, J. Zhang, Q. Chen, W. Wang, X. Zhang, and H. Xie, “Fourier transform infrared spectrometer based on an electrothermal MEMS mirror,” Appl. Opt. 57(21), 5956–5961 (2018).
[Crossref] [PubMed]

W. Wang, J. Chen, A. S. Zivkovic, and H. Xie, “A Fourier transform spectrometer based on an electrothermal MEMS mirror with improved linear scan range,” Sensors (Basel) 16(10), 1611 (2016).
[Crossref] [PubMed]

Yin, S.

Yu, K.

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130-131, 523–530 (2006).
[Crossref]

Zhang, J.

Zhang, X.

Zhang, Y.

Zheng, C.

Zhu, J.

Zivkovic, A. S.

W. Wang, J. Chen, A. S. Zivkovic, and H. Xie, “A Fourier transform spectrometer based on an electrothermal MEMS mirror with improved linear scan range,” Sensors (Basel) 16(10), 1611 (2016).
[Crossref] [PubMed]

Appl. Opt. (7)

IEEE J. Quantum Electron. (1)

H. Omran, M. Medhat, B. Mortada, B. Saadany, and D. Khalil, “Fully integrated Mach-Zhender MEMS interferometer with two complementary outputs,” IEEE J. Quantum Electron. 48(2), 244–251 (2012).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt. A, Pure Appl. Opt. 2(6), 519–528 (2000).
[Crossref]

Opt. Commun. (1)

J. Li, J. Zhu, and X. Hou, “Field-compensated birefringent Fourier transform spectrometer,” Opt. Commun. 284(5), 1127–1131 (2011).
[Crossref]

Opt. Eng. (1)

R. Glenn Sellar and B. Rafert, “Effects of aberrations on spatially modulated Fourier transform spectrometers,” Opt. Eng. 33(9), 3087–3093 (1994).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Proc. SPIE (2)

A. Kenda, S. Lüttjohann, T. Sandner, M. Kraft, A. Tortschanoff, and A. Simon, “A compact and portable IR analyzer: progress of a MOEMS FT-IR system for mid-IR sensing,” Proc. SPIE 8032, 80320O (2011).
[Crossref]

T. Sandner, E. Gaumont, T. Grasshoff, G. Auböck, A. Kenda, T. Gisler, S. Langa, A. Herrmann, and J. Grahmann, “Translatory MEMS actuator with wafer level vacuum package for miniaturized NIR Fourier transform spectrometers,” Proc. SPIE 10545, 105450W (2018).
[Crossref]

Rev. Sci. Instrum. (1)

M. J. Persky, “A review of spaceborne infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66(10), 4763–4797 (1995).
[Crossref]

Sens. Actuators A Phys. (1)

K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A Phys. 130-131, 523–530 (2006).
[Crossref]

Sensors (Basel) (1)

W. Wang, J. Chen, A. S. Zivkovic, and H. Xie, “A Fourier transform spectrometer based on an electrothermal MEMS mirror with improved linear scan range,” Sensors (Basel) 16(10), 1611 (2016).
[Crossref] [PubMed]

Other (3)

P. Griffiths and J. D. Haseth, Fourier Transform Infrared Spectrometry (John Wiley & Sons, Inc., 1986).

M. Françon and S. Mallick, Polarization Interferometers: Applications in Microscopy and Macroscopy (Wiley-Interscience, 1971), Chap. 2.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972), Chap. 3 and 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic setup of the developed SESFTS. The optical axes of the polarization elements and fast axis of the retarder array are indicated by arrows and circles. (b) Side view of the developed SESFTS.
Fig. 2
Fig. 2 OPD of each sub-interferogram as a function of camera sensor position in pixels.
Fig. 3
Fig. 3 Theoretical spectral resolution of a SESFTS example with different BRA step numbers: (a) M is from 0 to 4; (b) M is from 5 to 9.
Fig. 4
Fig. 4 Theoretical relative SNR of a SESFTS example with different BRA step numbers: (a) M is from 0 to 4; (b) M is from 5 to 9.
Fig. 5
Fig. 5 Photograph of the prototype of the SESFTS.
Fig. 6
Fig. 6 Inteferograms acquired by the SESFTS by viewing (a) an integrating sphere uniform light source and (b) a He-Ne laser with a beam expender. Both interferograms include four sub-interferograms.
Fig. 7
Fig. 7 Interferogram of the Hg-Ar light source acquired by the SESFTS. The interferogram is formed by connecting all four sub-interferograms.
Fig. 8
Fig. 8 Spectral data acquired from the SESFTS (bottom, blue line) and Ocean Optics Flame-S spectrometer (top, red line). The red numbers are the standards.
Fig. 9
Fig. 9 Interferogram of the three diode laser sources (450 nm, 532 nm, and 650 nm) acquired by the SESFTS. The interferogram is formed by connecting the four sub-interferograms.
Fig. 10
Fig. 10 Reconstructed spectra from the SESFTS with (a) 1 sub-interferogram; (b) 1 + 2 sub-interferograms; (c) 1 + 2 + 3 sub-interferograms; (d) 1 + 2 + 3 + 4 sub-interferograms.
Fig. 11
Fig. 11 Spectral resolution of the SESFTS prototype with 1, 1 + 2, 1 + 2 + 3 and 1 + 2 + 3 + 4 sub-interferograms. Experiment and theoretical data are indicated with triangle and solid lines, respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δ WP =2( n o n e )htanθ =2( n o n e ) x M L tanθ
Δ BRA =( n o n e )it
Δ SI = Δ WP + Δ BRA =( n o n e )(2 x M L tanθ+it)
t=4(1Q) d M L tanθ
Δ t =2( n o n e ) X M L tanθ
I(X)= 0 S(σ) cos[4πσ( n o n e ) X M L tanθ]dσ
FWHM= 1.79 2 Δ tmax = 1.79 M L 4( n o n e )d(1+2M(1Q))tanθ
Δ σ d = σ c 1.79 N
SNR(λ) S(λ) S ¯ 1 N λ = S(λ) S ¯ 1.79 2( σ max σ min ) Δ max
Δ SI (x)=( n o n e )(2 x x 0 M L tanθ+it)
I(x)= 1 2 (1+cos[2π σ HN ( n o n e )( x x 0 M L tanθ+it+δ t i )])
σ 1 = σ 0 n o ( σ HN ) n e ( σ HN ) n o ( σ 1 ) n e ( σ 1 )