Abstract

We demonstrate a top-illuminated high-speed uni-traveling carrier photodiode (UTC-PD) with a novel design in the p-type absorber, which can effectively shorten the photon absorption depth at telecommunication wavelengths (1.31~1.55 μm) and further enhance the bandwidth-efficiency product of UTC-PD. In our proposed new UTC-PD structure, the p-type In0.53Ga0.47As absorption layer is replaced by the type-II GaAs0.5Sb0.5 (p)/In0.53Ga0.47As (i) hybrid absorber. Due to the narrowing of the bandgap and enhancement of the photo-absorption process at the type-II interface between the GaAs0.5Sb0.5 and In0.53Ga0.47As layers, our device shows an over 16.7% improvement in the responsivity compared with that of UTC-PD with the same thickness of pure In0.53Ga0.47As absorber (0.7 μm) and a zero optical coupling loss. Our demonstrated device with a simple top-illuminated structure offers a large active mesa (25 μm), a wide optical-to-electrical (O-E) bandwidth (33 GHz), a high responsivity (0.7 A/W), and a high saturation current (>5 mA) under 1.31 µm optical wavelength. These promising results suggest that our proposed PD structure can fundamentally overcome the trade-off among bandwidth, efficiency, and device active diameter of high-speed PDs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photomixing at 1.55 μm in ion-irradiated In0.53Ga0.47As on InP

N. Chimot, J. Mangeney, P. Crozat, J. M. Lourtioz, K. Blary, J. F. Lampin, G. Mouret, D. Bigourd, and E. Fertein
Opt. Express 14(5) 1856-1861 (2006)

Emission characteristics of ion-irradiated In0.53Ga0.47As based photoconductive antennas excited at 1.55 μm

J. Mangeney, N. Chimot, L. Meignien, N. Zerounian, P. Crozat, K. Blary, J.F. Lampin, and P. Mounaix
Opt. Express 15(14) 8943-8950 (2007)

Investigation of deep level defects on Beryllium compensation doping of In0.53Ga0.47As/GaAs0.49Sb0.51 type-II superlattice photodiodes

Jinlan Li, Zhicheng Xu, Ping Han, Jianxin Chen, and Xiaoli Ji
Opt. Express 26(12) 15308-15315 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Tech. 47(7), 1265–1281 (1999).
    [Crossref]
  2. J.-W. Shi, K.-L. Chi, C.-Y. Li, and J.-M. Wun, “Dynamic analysis of high-efficiency InP based photodiode for 40 Gbit/sec optical interconnect across a wide optical window (0.85 to 1.55 μm),” IEEE/OSA J. Lightwave Technol. 33(4), 921–927 (2015).
    [Crossref]
  3. J.-W. Shi, C.-Y. Li, K.-L. Chi, J.-M. Wun, Y.-M. Hsin, and S. D. Benjamin, “Large-area p-i-n photodiode with high-speed and high-efficiency across a wide optical operation window (0.85 to 1.55 μm),” IEEE J. Sel. Top. Quantum Electron. 20(6), 3800807 (2014).
  4. S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photonics Technol. Lett. 15(12), 1761–1763 (2003).
    [Crossref]
  5. J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55μm wavelength,” IEEE Photonics Technol. Lett. 17(9), 1929–1931 (2005).
    [Crossref]
  6. X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightwave Technol. 34(1), 73–78 (2016).
    [Crossref]
  7. Y. Muramoto, H. Fukano, and T. Furuta, “A polarization-independent refracting-facet uni-traveling-carrier photodiode with high efficiency and large bandwidth,” IEEE/OSA J. Lightwave Technol. 24(10), 3830–3834 (2006).
    [Crossref]
  8. A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).
  9. N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
    [Crossref]
  10. R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, D.-F. Hsu, and M. A. Itzler, “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett. 42(3), 181–182 (2006).
    [Crossref]
  11. J.-M. Wun, Y.-W. Wang, and J.-W. Shi, “Ultra-fast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24(2), 8500207 (2018).
    [Crossref]
  12. Albis Optoelectronics AG, “PD40C1: 56 Gbaud Photodiode with Enhanced Responsivity,” http://www.albisopto.com/albis_product/pd40c1-56-gbaud-photodiode-with-enhanced-responsivity/ .
  13. Intelligent Epitaxy Technology, Inc., “IntelliEPI,” http://intelliepi.com .
  14. M. S. Park and J. H. Jang, “GaAs0.5Sb0.5 lattice matched to InP for 1.55 μm photo-detection,” Electron. Lett. 44(8), 549–551 (2008).
    [Crossref]
  15. M. Nada, Y. Muramoto, H. Yokoyama, and H. Matsuzaki, “High-speed high-power-tolerant avalanche photodiode for 100-Gb/s applications,” in Proceedings of IEEE Photonic Society Meeting (IEEE, 2014) pp. 172–173.
    [Crossref]
  16. G. Wang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 51(4), 1227–1233 (2003).
    [Crossref]
  17. Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55μm wavelength,” IEEE Photonics Technol. Lett. 18(8), 938–940 (2006).
  18. J.-W. Shi, C.-W. Liu, and C.-W. Liu, “Design and analysis of separate-absorption-transport-charge-multiplication traveling-wave avalanche photodetectors,” IEEE/OSA J. Lightwave Technol. 22(6), 1583–1590 (2004).
    [Crossref]
  19. N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150GHz,” IEEE Photonics Technol. Lett. 10(3), 412–414 (1998).
    [Crossref]

2018 (1)

J.-M. Wun, Y.-W. Wang, and J.-W. Shi, “Ultra-fast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24(2), 8500207 (2018).
[Crossref]

2016 (1)

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightwave Technol. 34(1), 73–78 (2016).
[Crossref]

2015 (2)

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

J.-W. Shi, K.-L. Chi, C.-Y. Li, and J.-M. Wun, “Dynamic analysis of high-efficiency InP based photodiode for 40 Gbit/sec optical interconnect across a wide optical window (0.85 to 1.55 μm),” IEEE/OSA J. Lightwave Technol. 33(4), 921–927 (2015).
[Crossref]

2014 (1)

J.-W. Shi, C.-Y. Li, K.-L. Chi, J.-M. Wun, Y.-M. Hsin, and S. D. Benjamin, “Large-area p-i-n photodiode with high-speed and high-efficiency across a wide optical operation window (0.85 to 1.55 μm),” IEEE J. Sel. Top. Quantum Electron. 20(6), 3800807 (2014).

2012 (1)

A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).

2008 (1)

M. S. Park and J. H. Jang, “GaAs0.5Sb0.5 lattice matched to InP for 1.55 μm photo-detection,” Electron. Lett. 44(8), 549–551 (2008).
[Crossref]

2006 (3)

Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55μm wavelength,” IEEE Photonics Technol. Lett. 18(8), 938–940 (2006).

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, D.-F. Hsu, and M. A. Itzler, “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett. 42(3), 181–182 (2006).
[Crossref]

Y. Muramoto, H. Fukano, and T. Furuta, “A polarization-independent refracting-facet uni-traveling-carrier photodiode with high efficiency and large bandwidth,” IEEE/OSA J. Lightwave Technol. 24(10), 3830–3834 (2006).
[Crossref]

2005 (1)

J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55μm wavelength,” IEEE Photonics Technol. Lett. 17(9), 1929–1931 (2005).
[Crossref]

2004 (1)

J.-W. Shi, C.-W. Liu, and C.-W. Liu, “Design and analysis of separate-absorption-transport-charge-multiplication traveling-wave avalanche photodetectors,” IEEE/OSA J. Lightwave Technol. 22(6), 1583–1590 (2004).
[Crossref]

2003 (2)

G. Wang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photonics Technol. Lett. 15(12), 1761–1763 (2003).
[Crossref]

1999 (1)

K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Tech. 47(7), 1265–1281 (1999).
[Crossref]

1998 (1)

N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150GHz,” IEEE Photonics Technol. Lett. 10(3), 412–414 (1998).
[Crossref]

Anselm, A.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photonics Technol. Lett. 15(12), 1761–1763 (2003).
[Crossref]

Beling, A.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightwave Technol. 34(1), 73–78 (2016).
[Crossref]

Benjamin, S. D.

J.-W. Shi, C.-Y. Li, K.-L. Chi, J.-M. Wun, Y.-M. Hsin, and S. D. Benjamin, “Large-area p-i-n photodiode with high-speed and high-efficiency across a wide optical operation window (0.85 to 1.55 μm),” IEEE J. Sel. Top. Quantum Electron. 20(6), 3800807 (2014).

Campbell, J. C.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightwave Technol. 34(1), 73–78 (2016).
[Crossref]

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, D.-F. Hsu, and M. A. Itzler, “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett. 42(3), 181–182 (2006).
[Crossref]

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photonics Technol. Lett. 15(12), 1761–1763 (2003).
[Crossref]

Chen, Y.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightwave Technol. 34(1), 73–78 (2016).
[Crossref]

Chi, K.-L.

J.-W. Shi, K.-L. Chi, C.-Y. Li, and J.-M. Wun, “Dynamic analysis of high-efficiency InP based photodiode for 40 Gbit/sec optical interconnect across a wide optical window (0.85 to 1.55 μm),” IEEE/OSA J. Lightwave Technol. 33(4), 921–927 (2015).
[Crossref]

J.-W. Shi, C.-Y. Li, K.-L. Chi, J.-M. Wun, Y.-M. Hsin, and S. D. Benjamin, “Large-area p-i-n photodiode with high-speed and high-efficiency across a wide optical operation window (0.85 to 1.55 μm),” IEEE J. Sel. Top. Quantum Electron. 20(6), 3800807 (2014).

Chiu, P.-H.

Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55μm wavelength,” IEEE Photonics Technol. Lett. 18(8), 938–940 (2006).

J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55μm wavelength,” IEEE Photonics Technol. Lett. 17(9), 1929–1931 (2005).
[Crossref]

Collins, S.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Datta, S.

A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).

Demiguel, S.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photonics Technol. Lett. 15(12), 1761–1763 (2003).
[Crossref]

Duan, N.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, D.-F. Hsu, and M. A. Itzler, “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett. 42(3), 181–182 (2006).
[Crossref]

Fish, G.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightwave Technol. 34(1), 73–78 (2016).
[Crossref]

Fukano, H.

Y. Muramoto, H. Fukano, and T. Furuta, “A polarization-independent refracting-facet uni-traveling-carrier photodiode with high efficiency and large bandwidth,” IEEE/OSA J. Lightwave Technol. 24(10), 3830–3834 (2006).
[Crossref]

Furuta, T.

Y. Muramoto, H. Fukano, and T. Furuta, “A polarization-independent refracting-facet uni-traveling-carrier photodiode with high efficiency and large bandwidth,” IEEE/OSA J. Lightwave Technol. 24(10), 3830–3834 (2006).
[Crossref]

N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150GHz,” IEEE Photonics Technol. Lett. 10(3), 412–414 (1998).
[Crossref]

Gleeson, M.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Gocalinska, A.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Han, W.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Hanawa, I.

G. Wang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

Holmes, A. L.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, D.-F. Hsu, and M. A. Itzler, “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett. 42(3), 181–182 (2006).
[Crossref]

Hong, C.-C.

J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55μm wavelength,” IEEE Photonics Technol. Lett. 17(9), 1929–1931 (2005).
[Crossref]

Hsin, Y.-M.

J.-W. Shi, C.-Y. Li, K.-L. Chi, J.-M. Wun, Y.-M. Hsin, and S. D. Benjamin, “Large-area p-i-n photodiode with high-speed and high-efficiency across a wide optical operation window (0.85 to 1.55 μm),” IEEE J. Sel. Top. Quantum Electron. 20(6), 3800807 (2014).

Hsu, D.-F.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, D.-F. Hsu, and M. A. Itzler, “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett. 42(3), 181–182 (2006).
[Crossref]

Ishibashi, T.

N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150GHz,” IEEE Photonics Technol. Lett. 10(3), 412–414 (1998).
[Crossref]

Itzler, M. A.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, D.-F. Hsu, and M. A. Itzler, “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett. 42(3), 181–182 (2006).
[Crossref]

Jacob-Mitos, M.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightwave Technol. 34(1), 73–78 (2016).
[Crossref]

Jang, J. H.

M. S. Park and J. H. Jang, “GaAs0.5Sb0.5 lattice matched to InP for 1.55 μm photo-detection,” Electron. Lett. 44(8), 549–551 (2008).
[Crossref]

Joshi, A.

A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).

Kato, K.

K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Tech. 47(7), 1265–1281 (1999).
[Crossref]

Kim, J.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photonics Technol. Lett. 15(12), 1761–1763 (2003).
[Crossref]

Kobayashi, M.

G. Wang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

Li, C.-Y.

J.-W. Shi, K.-L. Chi, C.-Y. Li, and J.-M. Wun, “Dynamic analysis of high-efficiency InP based photodiode for 40 Gbit/sec optical interconnect across a wide optical window (0.85 to 1.55 μm),” IEEE/OSA J. Lightwave Technol. 33(4), 921–927 (2015).
[Crossref]

J.-W. Shi, C.-Y. Li, K.-L. Chi, J.-M. Wun, Y.-M. Hsin, and S. D. Benjamin, “Large-area p-i-n photodiode with high-speed and high-efficiency across a wide optical operation window (0.85 to 1.55 μm),” IEEE J. Sel. Top. Quantum Electron. 20(6), 3800807 (2014).

Li, N.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photonics Technol. Lett. 15(12), 1761–1763 (2003).
[Crossref]

Li, X.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photonics Technol. Lett. 15(12), 1761–1763 (2003).
[Crossref]

Liu, C.-W.

J.-W. Shi, C.-W. Liu, and C.-W. Liu, “Design and analysis of separate-absorption-transport-charge-multiplication traveling-wave avalanche photodetectors,” IEEE/OSA J. Lightwave Technol. 22(6), 1583–1590 (2004).
[Crossref]

J.-W. Shi, C.-W. Liu, and C.-W. Liu, “Design and analysis of separate-absorption-transport-charge-multiplication traveling-wave avalanche photodetectors,” IEEE/OSA J. Lightwave Technol. 22(6), 1583–1590 (2004).
[Crossref]

Lu, H.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photonics Technol. Lett. 15(12), 1761–1763 (2003).
[Crossref]

Matsuzaki, H.

M. Nada, Y. Muramoto, H. Yokoyama, and H. Matsuzaki, “High-speed high-power-tolerant avalanche photodiode for 100-Gb/s applications,” in Proceedings of IEEE Photonic Society Meeting (IEEE, 2014) pp. 172–173.
[Crossref]

Muramoto, Y.

Y. Muramoto, H. Fukano, and T. Furuta, “A polarization-independent refracting-facet uni-traveling-carrier photodiode with high efficiency and large bandwidth,” IEEE/OSA J. Lightwave Technol. 24(10), 3830–3834 (2006).
[Crossref]

M. Nada, Y. Muramoto, H. Yokoyama, and H. Matsuzaki, “High-speed high-power-tolerant avalanche photodiode for 100-Gb/s applications,” in Proceedings of IEEE Photonic Society Meeting (IEEE, 2014) pp. 172–173.
[Crossref]

Nada, M.

M. Nada, Y. Muramoto, H. Yokoyama, and H. Matsuzaki, “High-speed high-power-tolerant avalanche photodiode for 100-Gb/s applications,” in Proceedings of IEEE Photonic Society Meeting (IEEE, 2014) pp. 172–173.
[Crossref]

Norberg, E.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightwave Technol. 34(1), 73–78 (2016).
[Crossref]

Nudds, N.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

O’Callaghan, J.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Park, M. S.

M. S. Park and J. H. Jang, “GaAs0.5Sb0.5 lattice matched to InP for 1.55 μm photo-detection,” Electron. Lett. 44(8), 549–551 (2008).
[Crossref]

Pavarelli, N.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Pelucchi, E.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Ramaswamy, A.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightwave Technol. 34(1), 73–78 (2016).
[Crossref]

Sato, K.

G. Wang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

Shi, J.-W.

J.-M. Wun, Y.-W. Wang, and J.-W. Shi, “Ultra-fast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24(2), 8500207 (2018).
[Crossref]

J.-W. Shi, K.-L. Chi, C.-Y. Li, and J.-M. Wun, “Dynamic analysis of high-efficiency InP based photodiode for 40 Gbit/sec optical interconnect across a wide optical window (0.85 to 1.55 μm),” IEEE/OSA J. Lightwave Technol. 33(4), 921–927 (2015).
[Crossref]

J.-W. Shi, C.-Y. Li, K.-L. Chi, J.-M. Wun, Y.-M. Hsin, and S. D. Benjamin, “Large-area p-i-n photodiode with high-speed and high-efficiency across a wide optical operation window (0.85 to 1.55 μm),” IEEE J. Sel. Top. Quantum Electron. 20(6), 3800807 (2014).

Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55μm wavelength,” IEEE Photonics Technol. Lett. 18(8), 938–940 (2006).

J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55μm wavelength,” IEEE Photonics Technol. Lett. 17(9), 1929–1931 (2005).
[Crossref]

J.-W. Shi, C.-W. Liu, and C.-W. Liu, “Design and analysis of separate-absorption-transport-charge-multiplication traveling-wave avalanche photodetectors,” IEEE/OSA J. Lightwave Technol. 22(6), 1583–1590 (2004).
[Crossref]

Shimizu, N.

N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150GHz,” IEEE Photonics Technol. Lett. 10(3), 412–414 (1998).
[Crossref]

Sidhu, R.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, D.-F. Hsu, and M. A. Itzler, “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett. 42(3), 181–182 (2006).
[Crossref]

Tan, N.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, D.-F. Hsu, and M. A. Itzler, “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett. 42(3), 181–182 (2006).
[Crossref]

Tokumitsu, T.

G. Wang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

Wang, G.

G. Wang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

Wang, Y.-W.

J.-M. Wun, Y.-W. Wang, and J.-W. Shi, “Ultra-fast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24(2), 8500207 (2018).
[Crossref]

Watanabe, N.

N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150GHz,” IEEE Photonics Technol. Lett. 10(3), 412–414 (1998).
[Crossref]

Wu, C.-Y.

J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55μm wavelength,” IEEE Photonics Technol. Lett. 17(9), 1929–1931 (2005).
[Crossref]

Wu, Y.-S.

Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55μm wavelength,” IEEE Photonics Technol. Lett. 18(8), 938–940 (2006).

J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55μm wavelength,” IEEE Photonics Technol. Lett. 17(9), 1929–1931 (2005).
[Crossref]

Wun, J.-M.

J.-M. Wun, Y.-W. Wang, and J.-W. Shi, “Ultra-fast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24(2), 8500207 (2018).
[Crossref]

J.-W. Shi, K.-L. Chi, C.-Y. Li, and J.-M. Wun, “Dynamic analysis of high-efficiency InP based photodiode for 40 Gbit/sec optical interconnect across a wide optical window (0.85 to 1.55 μm),” IEEE/OSA J. Lightwave Technol. 33(4), 921–927 (2015).
[Crossref]

J.-W. Shi, C.-Y. Li, K.-L. Chi, J.-M. Wun, Y.-M. Hsin, and S. D. Benjamin, “Large-area p-i-n photodiode with high-speed and high-efficiency across a wide optical operation window (0.85 to 1.55 μm),” IEEE J. Sel. Top. Quantum Electron. 20(6), 3800807 (2014).

Xie, X.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightwave Technol. 34(1), 73–78 (2016).
[Crossref]

Yang, H.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Yang, Z.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightwave Technol. 34(1), 73–78 (2016).
[Crossref]

Ye, N.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Yokoyama, H.

M. Nada, Y. Muramoto, H. Yokoyama, and H. Matsuzaki, “High-speed high-power-tolerant avalanche photodiode for 100-Gb/s applications,” in Proceedings of IEEE Photonic Society Meeting (IEEE, 2014) pp. 172–173.
[Crossref]

Yoneda, Y.

G. Wang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

Zhang, H.

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Zhang, L.

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, D.-F. Hsu, and M. A. Itzler, “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett. 42(3), 181–182 (2006).
[Crossref]

Zheng, X.

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photonics Technol. Lett. 15(12), 1761–1763 (2003).
[Crossref]

Zhou, Q.

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightwave Technol. 34(1), 73–78 (2016).
[Crossref]

Electron. Lett. (2)

R. Sidhu, L. Zhang, N. Tan, N. Duan, J. C. Campbell, A. L. Holmes, D.-F. Hsu, and M. A. Itzler, “2.4 μm cutoff wavelength avalanche photodiode on InP substrate,” Electron. Lett. 42(3), 181–182 (2006).
[Crossref]

M. S. Park and J. H. Jang, “GaAs0.5Sb0.5 lattice matched to InP for 1.55 μm photo-detection,” Electron. Lett. 44(8), 549–551 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

J.-M. Wun, Y.-W. Wang, and J.-W. Shi, “Ultra-fast uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers for high-power operation at THz frequencies,” IEEE J. Sel. Top. Quantum Electron. 24(2), 8500207 (2018).
[Crossref]

J.-W. Shi, C.-Y. Li, K.-L. Chi, J.-M. Wun, Y.-M. Hsin, and S. D. Benjamin, “Large-area p-i-n photodiode with high-speed and high-efficiency across a wide optical operation window (0.85 to 1.55 μm),” IEEE J. Sel. Top. Quantum Electron. 20(6), 3800807 (2014).

IEEE Photonics Technol. Lett. (5)

S. Demiguel, N. Li, X. Li, X. Zheng, J. Kim, J. C. Campbell, H. Lu, and A. Anselm, “Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications,” IEEE Photonics Technol. Lett. 15(12), 1761–1763 (2003).
[Crossref]

J.-W. Shi, C.-Y. Wu, Y.-S. Wu, P.-H. Chiu, and C.-C. Hong, “High-speed, high-responsivity, and high-power performance of near-ballistic uni-traveling-carrier photodiode at 1.55μm wavelength,” IEEE Photonics Technol. Lett. 17(9), 1929–1931 (2005).
[Crossref]

N. Ye, H. Yang, M. Gleeson, N. Pavarelli, H. Zhang, J. O’Callaghan, W. Han, N. Nudds, S. Collins, A. Gocalinska, and E. Pelucchi, “InGaAs surface normal photodiode for 2 μm optical communication systems,” IEEE Photonics Technol. Lett. 27(14), 1469–1472 (2015).
[Crossref]

Y.-S. Wu, J.-W. Shi, and P.-H. Chiu, “Analytical modeling of a high-performance near-ballistic uni-traveling-carrier photodiode at a 1.55μm wavelength,” IEEE Photonics Technol. Lett. 18(8), 938–940 (2006).

N. Shimizu, N. Watanabe, T. Furuta, and T. Ishibashi, “InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150GHz,” IEEE Photonics Technol. Lett. 10(3), 412–414 (1998).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

G. Wang, T. Tokumitsu, I. Hanawa, Y. Yoneda, K. Sato, and M. Kobayashi, “A time-delay equivalent-circuit model of ultrafast p-i-n photodiodes,” IEEE Trans. Microw. Theory Tech. 51(4), 1227–1233 (2003).
[Crossref]

K. Kato, “Ultrawide-band/high-frequency photodetectors,” IEEE Trans. Microw. Theory Tech. 47(7), 1265–1281 (1999).
[Crossref]

IEEE/OSA J. Lightwave Technol. (4)

J.-W. Shi, K.-L. Chi, C.-Y. Li, and J.-M. Wun, “Dynamic analysis of high-efficiency InP based photodiode for 40 Gbit/sec optical interconnect across a wide optical window (0.85 to 1.55 μm),” IEEE/OSA J. Lightwave Technol. 33(4), 921–927 (2015).
[Crossref]

J.-W. Shi, C.-W. Liu, and C.-W. Liu, “Design and analysis of separate-absorption-transport-charge-multiplication traveling-wave avalanche photodetectors,” IEEE/OSA J. Lightwave Technol. 22(6), 1583–1590 (2004).
[Crossref]

X. Xie, Q. Zhou, E. Norberg, M. Jacob-Mitos, Y. Chen, Z. Yang, A. Ramaswamy, G. Fish, J. C. Campbell, and A. Beling, “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” IEEE/OSA J. Lightwave Technol. 34(1), 73–78 (2016).
[Crossref]

Y. Muramoto, H. Fukano, and T. Furuta, “A polarization-independent refracting-facet uni-traveling-carrier photodiode with high efficiency and large bandwidth,” IEEE/OSA J. Lightwave Technol. 24(10), 3830–3834 (2006).
[Crossref]

Proc. SPIE (1)

A. Joshi and S. Datta, “High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength,” Proc. SPIE 8353, 83533D (2012).

Other (3)

Albis Optoelectronics AG, “PD40C1: 56 Gbaud Photodiode with Enhanced Responsivity,” http://www.albisopto.com/albis_product/pd40c1-56-gbaud-photodiode-with-enhanced-responsivity/ .

Intelligent Epitaxy Technology, Inc., “IntelliEPI,” http://intelliepi.com .

M. Nada, Y. Muramoto, H. Yokoyama, and H. Matsuzaki, “High-speed high-power-tolerant avalanche photodiode for 100-Gb/s applications,” in Proceedings of IEEE Photonic Society Meeting (IEEE, 2014) pp. 172–173.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a). Simulated band diagram of the demonstrated hybrid-absorber UTC-PDs under −2 V bias voltage. The unit for doping density in each layer is cm−3. (b) Photo of top-view of the fabricated devices.
Fig. 2
Fig. 2 Bias dependent O-E frequency responses measured under different output photocurrents: (a) 0.1 mA and (b) 1 mA for Device A with a 25 µm active diameter.
Fig. 3
Fig. 3 Bias dependent O-E frequency responses measured under different output photocurrents: (a) 0.1 mA and (b) 1 mA for Device B with a 30 µm active diameter.
Fig. 4
Fig. 4 Equivalent-circuit-model. VCCS: voltage controlled current source.
Fig. 5
Fig. 5 Measured (blue line) and fitted (red line) S22 parameters from near dc to 40 GHz under a fixed dc bias (−2 V) for (a) Device-A and (b) Device-B.
Fig. 6
Fig. 6 The measured O-E, extracted RC-limited, transient time, and fitted O-E frequency responses of devices (a) A and (b) B. (c) The extracted ( 1 f RC ) 2 versus the measured ( 10 3 f 3dB 2 ) for devices A and B.
Fig. 7
Fig. 7 The measured photo-generated microwave power versus photocurrent for device (a) A and (b) B under sinusoidal signal excitation and with different reverse biases at operating frequencies of 30 GHz. The open symbol line shows the ideal trace for a 100% optical modulation depth and 50 Ω load.

Tables (2)

Tables Icon

Table 1 Epitaxy structures of demonstrated devices

Tables Icon

Table 2 Values of the circuit elements

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 f 3dB 2 = 1 f RC 2 + 1 f t 2 = ( 2πRC ) 2 + 1 f t 2