Abstract

Polar liquids are strong absorbers of electromagnetic waves in the terahertz range, therefore, historically such liquids have not been considered as good candidates for terahertz sources. However, flowing liquid medium has explicit advantages, such as a higher damage threshold compared to solid-state sources and more efficient ionization process compared to gases. Here we report systematic study of efficient generation of terahertz radiation in flat liquid jets under sub-picosecond single-color optical excitation. We demonstrate how medium parameters such as molecular density, ionization energy and linear absorption contribute to the terahertz emission from the flat liquid jets. Our simulation and experimental measurements reveal that the terahertz energy has quasi-quadratic dependence on the optical excitation pulse energy. Moreover, the optimal pump pulse duration, which depends on the thickness of the jet is theoretically predicted and experimentally confirmed. The obtained optical-to-terahertz energy conversion efficiency is more than 0.05%. It is comparable to the commonly used optical rectification in most of electro-optical crystals and two-color air filamentation. These results, significantly advancing prior research, can be successfully applied to create a new alternative source of terahertz radiation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optimal wavelength for two-color filamentation-induced terahertz sources

Vladimir Yu. Fedorov and Stelios Tzortzakis
Opt. Express 26(24) 31150-31159 (2018)

Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces

Gregor H. Welsh and Klaas Wynne
Opt. Express 17(4) 2470-2480 (2009)

Compact source of continuously and widely-tunable terahertz radiation.

T. J. Edwards, D. Walsh, M. B. Spurr, C. F. Rae, M. H. Dunn, and P. G. Browne
Opt. Express 14(4) 1582-1589 (2006)

References

  • View by:
  • |
  • |
  • |

  1. X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11, 16–18 (2017).
    [Crossref]
  2. T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
    [Crossref]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  4. T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
    [Crossref]
  5. S. Baierl, M. Hohenleutner, T. Kampfrath, A. Zvezdin, A. Kimel, R. Huber, and R. Mikhaylovskiy, “Nonlinear spin control by terahertz-driven anisotropy fields,” Nat. Photonics 10, 715–719 (2016).
    [Crossref]
  6. Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554–559 (2018).
    [Crossref]
  7. C. Vicario, A. Ovchinnikov, S. Ashitkov, M. Agranat, V. Fortov, and C. Hauri, “Generation of 0.9-mj thz pulses in dstms pumped by a cr: Mg 2 sio 4 laser,” Opt. Lett. 39, 6632–6635 (2014).
    [Crossref] [PubMed]
  8. X.-C. Zhang and J. Xu, Introduction to THz wave photonics(SpringerUS, 2010).
    [Crossref]
  9. M. Zhukova, E. Makarov, S. Putilin, A. Tsypkin, V. Chegnov, O. Chegnova, and V. Bespalov, “Two-photon absorption in thz electro-optical sampling crystals,” J. Phys. Conf. Ser. 1062, 012009 (2018).
    [Crossref]
  10. L. Wang, A. Fallahi, K. Ravi, and F. Kärtner, “High efficiency terahertz generation in a multi-stage system,” Opt. Express 26, 29744–29768 (2018).
    [Crossref] [PubMed]
  11. M. Esaulkov, P. Solyankin, A. Sidorov, L. Parshina, A. Makarevich, Q. Jin, Q. Luo, O. Novodvorsky, A. Kaul, E. Cherepetskaya, A. Shkurinov, V. Makarov, and X.-C. Za, “Emission of terahertz pulses from vanadium dioxide films undergoing metal–insulator phase transition,” Optica 2, 790–796 (2015).
    [Crossref]
  12. K.-Y. Kim, A. Taylor, J. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2, 605–609 (2008).
    [Crossref]
  13. D. Kuk, Y. Yoo, E. Rosenthal, N. Jhajj, H. Milchberg, and K.-Y. Kim, “Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air,” Appl. Phys. Lett. 108, 121106 (2016).
    [Crossref]
  14. F. Buccheri and X.-C. Zhang, “Terahertz emission from laser-induced microplasma in ambient air,” Optica 2, 366–369 (2015).
    [Crossref]
  15. K. Liu, A. D. Koulouklidis, D. G. Papazoglou, S. Tzortzakis, and X.-C. Zhang, “Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams,” Optica 3, 605–608 (2016).
    [Crossref]
  16. T. Oh, Y. Yoo, Y. You, and K. Kim, “Generation of strong terahertz fields exceeding 8 mv/cm at 1 khz and real-time beam profiling,” Appl. Phys. Lett. 105, 041103 (2014).
    [Crossref]
  17. V. Y. Fedorov and S. Tzortzakis, “Extreme thz fields from two-color filamentation of midinfrared laser pulses,” Phys. Rev. A 97, 063842 (2018).
    [Crossref]
  18. F. Williams, S. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
    [Crossref]
  19. D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser uv radiation,” Chem. Phys. 77, 131–143 (1983).
    [Crossref]
  20. R. A. Crowell and D. M. Bartels, “Multiphoton ionization of liquid water with 3.0-5.0 ev photons,” J. Chem. Phys. 100, 17940–17949 (1996).
    [Crossref]
  21. Q. Jin, Y. Ee, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
    [Crossref]
  22. I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
    [Crossref] [PubMed]
  23. T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband thz time-domain spectroscopy of a free-flowing water film,” IEEE. T. THz. Sci. Techn. 4, 425–431 (2014).
    [Crossref]
  24. E. Yiwen, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
    [Crossref]
  25. A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71, 301–304 (1989).
    [Crossref]
  26. S. Stumpf, A. Korolev, and S. Kozlov, “Few-cycle strong light field dynamics in dielectric media,” Proc. SPIE 6614, 661408 (2007).
    [Crossref]
  27. S. A. Kozlov and V. V. Samartsev, Fundamentals of femtosecond optics(Elsevier, 2013).
    [Crossref]
  28. Y. T. Mazurenko, S. Putilin, A. Spiro, A. Beliaev, V. Yashin, and S. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
    [Crossref] [PubMed]
  29. A. Andreev, V. Bespalov, A. Gorodetskii, S. Kozlov, V. Krylov, G. Lukomskii, E. Novoselov, N. Petrov, S. Putilin, and S. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
    [Crossref]
  30. M. J. Weber, Handbook of optical materials (CRC Press, 2002).
    [Crossref]
  31. M. N. Polyanskiy, “Refractive index database,” https://refractiveindex.info . Accessed: 2018-09-30.
  32. M. Faubel, B. Steiner, and J. P. Toennies, “Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets,” J. Chem. Phys. 106, 9013–9031 (1997).
    [Crossref]
  33. S. S.-S. Huang and G. R. Freeman, “Effect of density on the total ionization yields in x-irradiated argon, krypton, and xenon,” Can. J. Chem. 55, 1838–1846 (1977).
    [Crossref]
  34. D. George and A. Markelz, “Terahertz spectroscopy of liquids and biomolecules,” in “Terahertz spectroscopy and imaging,” (Springer, 2012), pp. 229–250.
    [Crossref]
  35. R. W. Boyd, “Nonlinear optics, 3rd edition,” (Elsevier2008).
  36. X.-F. Pang, Water: molecular structure and properties(World Scientific, 2014).
    [Crossref]
  37. J. Chong, I. Maeng, H. J. Shin, and J.-H. Son, “Terahertz characteristics of liquid d2o in h2o,” AIP Conf. Proc. 1119, 209 (2009).
    [Crossref]
  38. J. C. Traeger, R. G. McLoughlin, and A. Nicholson, “Heat of formation for acetyl cation in the gas phase,” J. Am. Chem. Soc. 104, 5318–5322 (1982).
    [Crossref]
  39. D. S. Venables, A. Chiu, and C. A. Schmuttenmaer, “Structure and dynamics of nonaqueous mixtures of dipolar liquids. i. infrared and far-infrared spectroscopy,” J. Chem. Phys. 113, 3243–3248 (2000).
    [Crossref]
  40. Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
    [Crossref]
  41. H. Roskos, M. Thomson, M. Kreb, and T. Loffler, “Broadband thz emission from gas pulses: From fundamentals to applications,” Laser Photonics Rev. 1, 349–368 (2007).
    [Crossref]

2018 (6)

M. Zhukova, E. Makarov, S. Putilin, A. Tsypkin, V. Chegnov, O. Chegnova, and V. Bespalov, “Two-photon absorption in thz electro-optical sampling crystals,” J. Phys. Conf. Ser. 1062, 012009 (2018).
[Crossref]

L. Wang, A. Fallahi, K. Ravi, and F. Kärtner, “High efficiency terahertz generation in a multi-stage system,” Opt. Express 26, 29744–29768 (2018).
[Crossref] [PubMed]

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554–559 (2018).
[Crossref]

V. Y. Fedorov and S. Tzortzakis, “Extreme thz fields from two-color filamentation of midinfrared laser pulses,” Phys. Rev. A 97, 063842 (2018).
[Crossref]

E. Yiwen, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
[Crossref]

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

2017 (3)

Q. Jin, Y. Ee, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref] [PubMed]

X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11, 16–18 (2017).
[Crossref]

2016 (3)

S. Baierl, M. Hohenleutner, T. Kampfrath, A. Zvezdin, A. Kimel, R. Huber, and R. Mikhaylovskiy, “Nonlinear spin control by terahertz-driven anisotropy fields,” Nat. Photonics 10, 715–719 (2016).
[Crossref]

K. Liu, A. D. Koulouklidis, D. G. Papazoglou, S. Tzortzakis, and X.-C. Zhang, “Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams,” Optica 3, 605–608 (2016).
[Crossref]

D. Kuk, Y. Yoo, E. Rosenthal, N. Jhajj, H. Milchberg, and K.-Y. Kim, “Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air,” Appl. Phys. Lett. 108, 121106 (2016).
[Crossref]

2015 (2)

2014 (3)

C. Vicario, A. Ovchinnikov, S. Ashitkov, M. Agranat, V. Fortov, and C. Hauri, “Generation of 0.9-mj thz pulses in dstms pumped by a cr: Mg 2 sio 4 laser,” Opt. Lett. 39, 6632–6635 (2014).
[Crossref] [PubMed]

T. Oh, Y. Yoo, Y. You, and K. Kim, “Generation of strong terahertz fields exceeding 8 mv/cm at 1 khz and real-time beam profiling,” Appl. Phys. Lett. 105, 041103 (2014).
[Crossref]

T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband thz time-domain spectroscopy of a free-flowing water film,” IEEE. T. THz. Sci. Techn. 4, 425–431 (2014).
[Crossref]

2013 (2)

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

2009 (2)

A. Andreev, V. Bespalov, A. Gorodetskii, S. Kozlov, V. Krylov, G. Lukomskii, E. Novoselov, N. Petrov, S. Putilin, and S. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

J. Chong, I. Maeng, H. J. Shin, and J.-H. Son, “Terahertz characteristics of liquid d2o in h2o,” AIP Conf. Proc. 1119, 209 (2009).
[Crossref]

2008 (1)

K.-Y. Kim, A. Taylor, J. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

H. Roskos, M. Thomson, M. Kreb, and T. Loffler, “Broadband thz emission from gas pulses: From fundamentals to applications,” Laser Photonics Rev. 1, 349–368 (2007).
[Crossref]

S. Stumpf, A. Korolev, and S. Kozlov, “Few-cycle strong light field dynamics in dielectric media,” Proc. SPIE 6614, 661408 (2007).
[Crossref]

2000 (1)

D. S. Venables, A. Chiu, and C. A. Schmuttenmaer, “Structure and dynamics of nonaqueous mixtures of dipolar liquids. i. infrared and far-infrared spectroscopy,” J. Chem. Phys. 113, 3243–3248 (2000).
[Crossref]

1997 (1)

M. Faubel, B. Steiner, and J. P. Toennies, “Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets,” J. Chem. Phys. 106, 9013–9031 (1997).
[Crossref]

1996 (2)

1989 (1)

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71, 301–304 (1989).
[Crossref]

1983 (1)

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser uv radiation,” Chem. Phys. 77, 131–143 (1983).
[Crossref]

1982 (1)

J. C. Traeger, R. G. McLoughlin, and A. Nicholson, “Heat of formation for acetyl cation in the gas phase,” J. Am. Chem. Soc. 104, 5318–5322 (1982).
[Crossref]

1977 (1)

S. S.-S. Huang and G. R. Freeman, “Effect of density on the total ionization yields in x-irradiated argon, krypton, and xenon,” Can. J. Chem. 55, 1838–1846 (1977).
[Crossref]

1976 (1)

F. Williams, S. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
[Crossref]

Agranat, M.

Andreev, A.

A. Andreev, V. Bespalov, A. Gorodetskii, S. Kozlov, V. Krylov, G. Lukomskii, E. Novoselov, N. Petrov, S. Putilin, and S. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Andreeva, V.

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

Ashitkov, S.

Babushkin, I.

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

Baierl, S.

S. Baierl, M. Hohenleutner, T. Kampfrath, A. Zvezdin, A. Kimel, R. Huber, and R. Mikhaylovskiy, “Nonlinear spin control by terahertz-driven anisotropy fields,” Nat. Photonics 10, 715–719 (2016).
[Crossref]

Bartels, D. M.

R. A. Crowell and D. M. Bartels, “Multiphoton ionization of liquid water with 3.0-5.0 ev photons,” J. Chem. Phys. 100, 17940–17949 (1996).
[Crossref]

Beliaev, A.

Bespalov, V.

M. Zhukova, E. Makarov, S. Putilin, A. Tsypkin, V. Chegnov, O. Chegnova, and V. Bespalov, “Two-photon absorption in thz electro-optical sampling crystals,” J. Phys. Conf. Ser. 1062, 012009 (2018).
[Crossref]

A. Andreev, V. Bespalov, A. Gorodetskii, S. Kozlov, V. Krylov, G. Lukomskii, E. Novoselov, N. Petrov, S. Putilin, and S. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Boyd, R. W.

R. W. Boyd, “Nonlinear optics, 3rd edition,” (Elsevier2008).

Buccheri, F.

Burgess, J. A.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Chegnov, V.

M. Zhukova, E. Makarov, S. Putilin, A. Tsypkin, V. Chegnov, O. Chegnova, and V. Bespalov, “Two-photon absorption in thz electro-optical sampling crystals,” J. Phys. Conf. Ser. 1062, 012009 (2018).
[Crossref]

Chegnova, O.

M. Zhukova, E. Makarov, S. Putilin, A. Tsypkin, V. Chegnov, O. Chegnova, and V. Bespalov, “Two-photon absorption in thz electro-optical sampling crystals,” J. Phys. Conf. Ser. 1062, 012009 (2018).
[Crossref]

Chen, L.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554–559 (2018).
[Crossref]

Chen, M.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554–559 (2018).
[Crossref]

Chen, U.

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

Chen, Y.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554–559 (2018).
[Crossref]

Cherepetskaya, E.

Chiu, A.

D. S. Venables, A. Chiu, and C. A. Schmuttenmaer, “Structure and dynamics of nonaqueous mixtures of dipolar liquids. i. infrared and far-infrared spectroscopy,” J. Chem. Phys. 113, 3243–3248 (2000).
[Crossref]

Chizhov, S.

Chong, J.

J. Chong, I. Maeng, H. J. Shin, and J.-H. Son, “Terahertz characteristics of liquid d2o in h2o,” AIP Conf. Proc. 1119, 209 (2009).
[Crossref]

Cocker, T. L.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Couairon, A.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref] [PubMed]

Crowell, R. A.

R. A. Crowell and D. M. Bartels, “Multiphoton ionization of liquid water with 3.0-5.0 ev photons,” J. Chem. Phys. 100, 17940–17949 (1996).
[Crossref]

Cui, S.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554–559 (2018).
[Crossref]

Dai, J.

Q. Jin, Y. Ee, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Demircan, A.

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

Dey, I.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref] [PubMed]

Ee, Y.

Q. Jin, Y. Ee, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Esaulkov, M.

Fallahi, A.

Faubel, M.

M. Faubel, B. Steiner, and J. P. Toennies, “Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets,” J. Chem. Phys. 106, 9013–9031 (1997).
[Crossref]

Fedorov, V. Y.

V. Y. Fedorov and S. Tzortzakis, “Extreme thz fields from two-color filamentation of midinfrared laser pulses,” Phys. Rev. A 97, 063842 (2018).
[Crossref]

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref] [PubMed]

Fortov, V.

Freeman, G. R.

S. S.-S. Huang and G. R. Freeman, “Effect of density on the total ionization yields in x-irradiated argon, krypton, and xenon,” Can. J. Chem. 55, 1838–1846 (1977).
[Crossref]

Freeman, M. R.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

George, D.

D. George and A. Markelz, “Terahertz spectroscopy of liquids and biomolecules,” in “Terahertz spectroscopy and imaging,” (Springer, 2012), pp. 229–250.
[Crossref]

Glownia, J.

K.-Y. Kim, A. Taylor, J. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

Gorodetskii, A.

A. Andreev, V. Bespalov, A. Gorodetskii, S. Kozlov, V. Krylov, G. Lukomskii, E. Novoselov, N. Petrov, S. Putilin, and S. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Gupta, M.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Hauri, C.

He, F.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554–559 (2018).
[Crossref]

Hegmann, F. A.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Hillenius, S.

F. Williams, S. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
[Crossref]

Hohenleutner, M.

S. Baierl, M. Hohenleutner, T. Kampfrath, A. Zvezdin, A. Kimel, R. Huber, and R. Mikhaylovskiy, “Nonlinear spin control by terahertz-driven anisotropy fields,” Nat. Photonics 10, 715–719 (2016).
[Crossref]

Huang, S. S.-S.

S. S.-S. Huang and G. R. Freeman, “Effect of density on the total ionization yields in x-irradiated argon, krypton, and xenon,” Can. J. Chem. 55, 1838–1846 (1977).
[Crossref]

Huber, R.

S. Baierl, M. Hohenleutner, T. Kampfrath, A. Zvezdin, A. Kimel, R. Huber, and R. Mikhaylovskiy, “Nonlinear spin control by terahertz-driven anisotropy fields,” Nat. Photonics 10, 715–719 (2016).
[Crossref]

Ishida, Y.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71, 301–304 (1989).
[Crossref]

Jana, K.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref] [PubMed]

Jelic, V.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Jepsen, P. U.

T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband thz time-domain spectroscopy of a free-flowing water film,” IEEE. T. THz. Sci. Techn. 4, 425–431 (2014).
[Crossref]

Jhajj, N.

D. Kuk, Y. Yoo, E. Rosenthal, N. Jhajj, H. Milchberg, and K.-Y. Kim, “Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air,” Appl. Phys. Lett. 108, 121106 (2016).
[Crossref]

Jin, Q.

E. Yiwen, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
[Crossref]

Q. Jin, Y. Ee, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

M. Esaulkov, P. Solyankin, A. Sidorov, L. Parshina, A. Makarevich, Q. Jin, Q. Luo, O. Novodvorsky, A. Kaul, E. Cherepetskaya, A. Shkurinov, V. Makarov, and X.-C. Za, “Emission of terahertz pulses from vanadium dioxide films undergoing metal–insulator phase transition,” Optica 2, 790–796 (2015).
[Crossref]

Kampfrath, T.

S. Baierl, M. Hohenleutner, T. Kampfrath, A. Zvezdin, A. Kimel, R. Huber, and R. Mikhaylovskiy, “Nonlinear spin control by terahertz-driven anisotropy fields,” Nat. Photonics 10, 715–719 (2016).
[Crossref]

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

Kärtner, F.

Kaul, A.

Kim, K.

T. Oh, Y. Yoo, Y. You, and K. Kim, “Generation of strong terahertz fields exceeding 8 mv/cm at 1 khz and real-time beam profiling,” Appl. Phys. Lett. 105, 041103 (2014).
[Crossref]

Kim, K.-Y.

D. Kuk, Y. Yoo, E. Rosenthal, N. Jhajj, H. Milchberg, and K.-Y. Kim, “Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air,” Appl. Phys. Lett. 108, 121106 (2016).
[Crossref]

K.-Y. Kim, A. Taylor, J. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

Kimel, A.

S. Baierl, M. Hohenleutner, T. Kampfrath, A. Zvezdin, A. Kimel, R. Huber, and R. Mikhaylovskiy, “Nonlinear spin control by terahertz-driven anisotropy fields,” Nat. Photonics 10, 715–719 (2016).
[Crossref]

Klarskov, P.

T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband thz time-domain spectroscopy of a free-flowing water film,” IEEE. T. THz. Sci. Techn. 4, 425–431 (2014).
[Crossref]

Korolev, A.

S. Stumpf, A. Korolev, and S. Kozlov, “Few-cycle strong light field dynamics in dielectric media,” Proc. SPIE 6614, 661408 (2007).
[Crossref]

Kosareva, O.

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

Koulouklidis, A. D.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref] [PubMed]

K. Liu, A. D. Koulouklidis, D. G. Papazoglou, S. Tzortzakis, and X.-C. Zhang, “Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams,” Optica 3, 605–608 (2016).
[Crossref]

Kozlov, S.

A. Andreev, V. Bespalov, A. Gorodetskii, S. Kozlov, V. Krylov, G. Lukomskii, E. Novoselov, N. Petrov, S. Putilin, and S. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

S. Stumpf, A. Korolev, and S. Kozlov, “Few-cycle strong light field dynamics in dielectric media,” Proc. SPIE 6614, 661408 (2007).
[Crossref]

Kozlov, S. A.

S. A. Kozlov and V. V. Samartsev, Fundamentals of femtosecond optics(Elsevier, 2013).
[Crossref]

Kreb, M.

H. Roskos, M. Thomson, M. Kreb, and T. Loffler, “Broadband thz emission from gas pulses: From fundamentals to applications,” Laser Photonics Rev. 1, 349–368 (2007).
[Crossref]

Krylov, V.

A. Andreev, V. Bespalov, A. Gorodetskii, S. Kozlov, V. Krylov, G. Lukomskii, E. Novoselov, N. Petrov, S. Putilin, and S. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Kuk, D.

D. Kuk, Y. Yoo, E. Rosenthal, N. Jhajj, H. Milchberg, and K.-Y. Kim, “Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air,” Appl. Phys. Lett. 108, 121106 (2016).
[Crossref]

Kumar, R.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref] [PubMed]

Lad, A. D.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref] [PubMed]

Liu, K.

Loffler, T.

H. Roskos, M. Thomson, M. Kreb, and T. Loffler, “Broadband thz emission from gas pulses: From fundamentals to applications,” Laser Photonics Rev. 1, 349–368 (2007).
[Crossref]

Los Reyes, G. De

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Lukomskii, G.

A. Andreev, V. Bespalov, A. Gorodetskii, S. Kozlov, V. Krylov, G. Lukomskii, E. Novoselov, N. Petrov, S. Putilin, and S. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Luo, Q.

Maeng, I.

J. Chong, I. Maeng, H. J. Shin, and J.-H. Son, “Terahertz characteristics of liquid d2o in h2o,” AIP Conf. Proc. 1119, 209 (2009).
[Crossref]

Makarevich, A.

Makarov, E.

M. Zhukova, E. Makarov, S. Putilin, A. Tsypkin, V. Chegnov, O. Chegnova, and V. Bespalov, “Two-photon absorption in thz electro-optical sampling crystals,” J. Phys. Conf. Ser. 1062, 012009 (2018).
[Crossref]

Makarov, V.

Markelz, A.

D. George and A. Markelz, “Terahertz spectroscopy of liquids and biomolecules,” in “Terahertz spectroscopy and imaging,” (Springer, 2012), pp. 229–250.
[Crossref]

Mazurenko, Y. T.

McLoughlin, R. G.

J. C. Traeger, R. G. McLoughlin, and A. Nicholson, “Heat of formation for acetyl cation in the gas phase,” J. Am. Chem. Soc. 104, 5318–5322 (1982).
[Crossref]

Mikhaylovskiy, R.

S. Baierl, M. Hohenleutner, T. Kampfrath, A. Zvezdin, A. Kimel, R. Huber, and R. Mikhaylovskiy, “Nonlinear spin control by terahertz-driven anisotropy fields,” Nat. Photonics 10, 715–719 (2016).
[Crossref]

Milchberg, H.

D. Kuk, Y. Yoo, E. Rosenthal, N. Jhajj, H. Milchberg, and K.-Y. Kim, “Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air,” Appl. Phys. Lett. 108, 121106 (2016).
[Crossref]

Molesky, S. J.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Mondal, A.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref] [PubMed]

Morgner, Y.

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

Nakamoto, M.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71, 301–304 (1989).
[Crossref]

Nelson, K. A.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

Nicholson, A.

J. C. Traeger, R. G. McLoughlin, and A. Nicholson, “Heat of formation for acetyl cation in the gas phase,” J. Am. Chem. Soc. 104, 5318–5322 (1982).
[Crossref]

Nikogosyan, D. N.

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser uv radiation,” Chem. Phys. 77, 131–143 (1983).
[Crossref]

Novodvorsky, O.

Novoselov, E.

A. Andreev, V. Bespalov, A. Gorodetskii, S. Kozlov, V. Krylov, G. Lukomskii, E. Novoselov, N. Petrov, S. Putilin, and S. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Oh, T.

T. Oh, Y. Yoo, Y. You, and K. Kim, “Generation of strong terahertz fields exceeding 8 mv/cm at 1 khz and real-time beam profiling,” Appl. Phys. Lett. 105, 041103 (2014).
[Crossref]

Oraevsky, A. A.

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser uv radiation,” Chem. Phys. 77, 131–143 (1983).
[Crossref]

Ovchinnikov, A.

Pang, X.-F.

X.-F. Pang, Water: molecular structure and properties(World Scientific, 2014).
[Crossref]

Panov, N.

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

Papazoglou, D. G.

Parshina, L.

Petrov, N.

A. Andreev, V. Bespalov, A. Gorodetskii, S. Kozlov, V. Krylov, G. Lukomskii, E. Novoselov, N. Petrov, S. Putilin, and S. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Putilin, S.

M. Zhukova, E. Makarov, S. Putilin, A. Tsypkin, V. Chegnov, O. Chegnova, and V. Bespalov, “Two-photon absorption in thz electro-optical sampling crystals,” J. Phys. Conf. Ser. 1062, 012009 (2018).
[Crossref]

A. Andreev, V. Bespalov, A. Gorodetskii, S. Kozlov, V. Krylov, G. Lukomskii, E. Novoselov, N. Petrov, S. Putilin, and S. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Y. T. Mazurenko, S. Putilin, A. Spiro, A. Beliaev, V. Yashin, and S. Chizhov, “Ultrafast time-to-space conversion of phase by the method of spectral nonlinear optics,” Opt. Lett. 21, 1753–1755 (1996).
[Crossref] [PubMed]

Ravi, K.

Rodriguez, G.

K.-Y. Kim, A. Taylor, J. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

Rosenthal, E.

D. Kuk, Y. Yoo, E. Rosenthal, N. Jhajj, H. Milchberg, and K.-Y. Kim, “Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air,” Appl. Phys. Lett. 108, 121106 (2016).
[Crossref]

Roskos, H.

H. Roskos, M. Thomson, M. Kreb, and T. Loffler, “Broadband thz emission from gas pulses: From fundamentals to applications,” Laser Photonics Rev. 1, 349–368 (2007).
[Crossref]

Rupasov, V. I.

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser uv radiation,” Chem. Phys. 77, 131–143 (1983).
[Crossref]

Saito, H.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71, 301–304 (1989).
[Crossref]

Samartsev, V. V.

S. A. Kozlov and V. V. Samartsev, Fundamentals of femtosecond optics(Elsevier, 2013).
[Crossref]

Sarkar, D.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref] [PubMed]

Savel’ev, A.

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

Schmuttenmaer, C. A.

D. S. Venables, A. Chiu, and C. A. Schmuttenmaer, “Structure and dynamics of nonaqueous mixtures of dipolar liquids. i. infrared and far-infrared spectroscopy,” J. Chem. Phys. 113, 3243–3248 (2000).
[Crossref]

Shaikh, M.

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref] [PubMed]

Sheng, Z.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554–559 (2018).
[Crossref]

Shin, H. J.

J. Chong, I. Maeng, H. J. Shin, and J.-H. Son, “Terahertz characteristics of liquid d2o in h2o,” AIP Conf. Proc. 1119, 209 (2009).
[Crossref]

Shipilo, D.

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

Shkurinov, A.

Sidorov, A.

Slepkov, A.

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

Solyankin, P.

Son, J.-H.

J. Chong, I. Maeng, H. J. Shin, and J.-H. Son, “Terahertz characteristics of liquid d2o in h2o,” AIP Conf. Proc. 1119, 209 (2009).
[Crossref]

Spiro, A.

Steiner, B.

M. Faubel, B. Steiner, and J. P. Toennies, “Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets,” J. Chem. Phys. 106, 9013–9031 (1997).
[Crossref]

Stumpf, S.

A. Andreev, V. Bespalov, A. Gorodetskii, S. Kozlov, V. Krylov, G. Lukomskii, E. Novoselov, N. Petrov, S. Putilin, and S. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

S. Stumpf, A. Korolev, and S. Kozlov, “Few-cycle strong light field dynamics in dielectric media,” Proc. SPIE 6614, 661408 (2007).
[Crossref]

Tanaka, K.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

Taylor, A.

K.-Y. Kim, A. Taylor, J. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

Tcypkin, A.

E. Yiwen, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
[Crossref]

Thomson, M.

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

H. Roskos, M. Thomson, M. Kreb, and T. Loffler, “Broadband thz emission from gas pulses: From fundamentals to applications,” Laser Photonics Rev. 1, 349–368 (2007).
[Crossref]

Titova, L. V.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Toennies, J. P.

M. Faubel, B. Steiner, and J. P. Toennies, “Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets,” J. Chem. Phys. 106, 9013–9031 (1997).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Traeger, J. C.

J. C. Traeger, R. G. McLoughlin, and A. Nicholson, “Heat of formation for acetyl cation in the gas phase,” J. Am. Chem. Soc. 104, 5318–5322 (1982).
[Crossref]

Tsui, Y. Y.

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

Tsypkin, A.

M. Zhukova, E. Makarov, S. Putilin, A. Tsypkin, V. Chegnov, O. Chegnova, and V. Bespalov, “Two-photon absorption in thz electro-optical sampling crystals,” J. Phys. Conf. Ser. 1062, 012009 (2018).
[Crossref]

Tzortzakis, S.

V. Y. Fedorov and S. Tzortzakis, “Extreme thz fields from two-color filamentation of midinfrared laser pulses,” Phys. Rev. A 97, 063842 (2018).
[Crossref]

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref] [PubMed]

K. Liu, A. D. Koulouklidis, D. G. Papazoglou, S. Tzortzakis, and X.-C. Zhang, “Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams,” Optica 3, 605–608 (2016).
[Crossref]

Varma, S.

F. Williams, S. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
[Crossref]

Venables, D. S.

D. S. Venables, A. Chiu, and C. A. Schmuttenmaer, “Structure and dynamics of nonaqueous mixtures of dipolar liquids. i. infrared and far-infrared spectroscopy,” J. Chem. Phys. 113, 3243–3248 (2000).
[Crossref]

Vicario, C.

Wang, L.

Wang, T.

T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband thz time-domain spectroscopy of a free-flowing water film,” IEEE. T. THz. Sci. Techn. 4, 425–431 (2014).
[Crossref]

Wang, T.-J.

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

Watanabe, A.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71, 301–304 (1989).
[Crossref]

Weber, M. J.

M. J. Weber, Handbook of optical materials (CRC Press, 2002).
[Crossref]

Williams, F.

F. Williams, S. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
[Crossref]

Williams, K.

Q. Jin, Y. Ee, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Xu, J.

X.-C. Zhang and J. Xu, Introduction to THz wave photonics(SpringerUS, 2010).
[Crossref]

Yajima, T.

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71, 301–304 (1989).
[Crossref]

Yashin, V.

Yiwen, E.

E. Yiwen, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
[Crossref]

Yoo, Y.

D. Kuk, Y. Yoo, E. Rosenthal, N. Jhajj, H. Milchberg, and K.-Y. Kim, “Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air,” Appl. Phys. Lett. 108, 121106 (2016).
[Crossref]

T. Oh, Y. Yoo, Y. You, and K. Kim, “Generation of strong terahertz fields exceeding 8 mv/cm at 1 khz and real-time beam profiling,” Appl. Phys. Lett. 105, 041103 (2014).
[Crossref]

You, Y.

T. Oh, Y. Yoo, Y. You, and K. Kim, “Generation of strong terahertz fields exceeding 8 mv/cm at 1 khz and real-time beam profiling,” Appl. Phys. Lett. 105, 041103 (2014).
[Crossref]

Yu, J.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554–559 (2018).
[Crossref]

Za, X.-C.

Zhang, J.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554–559 (2018).
[Crossref]

Zhang, X.-C.

E. Yiwen, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
[Crossref]

Q. Jin, Y. Ee, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11, 16–18 (2017).
[Crossref]

K. Liu, A. D. Koulouklidis, D. G. Papazoglou, S. Tzortzakis, and X.-C. Zhang, “Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams,” Optica 3, 605–608 (2016).
[Crossref]

F. Buccheri and X.-C. Zhang, “Terahertz emission from laser-induced microplasma in ambient air,” Optica 2, 366–369 (2015).
[Crossref]

X.-C. Zhang and J. Xu, Introduction to THz wave photonics(SpringerUS, 2010).
[Crossref]

Zhang, Y.

X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11, 16–18 (2017).
[Crossref]

Zhang, Z.

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554–559 (2018).
[Crossref]

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554–559 (2018).
[Crossref]

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

Zhukova, M.

M. Zhukova, E. Makarov, S. Putilin, A. Tsypkin, V. Chegnov, O. Chegnova, and V. Bespalov, “Two-photon absorption in thz electro-optical sampling crystals,” J. Phys. Conf. Ser. 1062, 012009 (2018).
[Crossref]

Zvezdin, A.

S. Baierl, M. Hohenleutner, T. Kampfrath, A. Zvezdin, A. Kimel, R. Huber, and R. Mikhaylovskiy, “Nonlinear spin control by terahertz-driven anisotropy fields,” Nat. Photonics 10, 715–719 (2016).
[Crossref]

AIP Conf. Proc. (1)

J. Chong, I. Maeng, H. J. Shin, and J.-H. Son, “Terahertz characteristics of liquid d2o in h2o,” AIP Conf. Proc. 1119, 209 (2009).
[Crossref]

Appl. Phys. Lett. (5)

Z. Zhang, N. Panov, V. Andreeva, Z. Zhang, A. Slepkov, D. Shipilo, M. Thomson, T.-J. Wang, I. Babushkin, A. Demircan, Y. Morgner, U. Chen, O. Kosareva, and A. Savel’ev, “Optimum chirp for efficient terahertz generation from two-color femtosecond pulses in air,” Appl. Phys. Lett. 113, 241103 (2018).
[Crossref]

D. Kuk, Y. Yoo, E. Rosenthal, N. Jhajj, H. Milchberg, and K.-Y. Kim, “Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air,” Appl. Phys. Lett. 108, 121106 (2016).
[Crossref]

T. Oh, Y. Yoo, Y. You, and K. Kim, “Generation of strong terahertz fields exceeding 8 mv/cm at 1 khz and real-time beam profiling,” Appl. Phys. Lett. 105, 041103 (2014).
[Crossref]

Q. Jin, Y. Ee, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

E. Yiwen, Q. Jin, A. Tcypkin, and X.-C. Zhang, “Terahertz wave generation from liquid water films via laser-induced breakdown,” Appl. Phys. Lett. 113, 181103 (2018).
[Crossref]

Can. J. Chem. (1)

S. S.-S. Huang and G. R. Freeman, “Effect of density on the total ionization yields in x-irradiated argon, krypton, and xenon,” Can. J. Chem. 55, 1838–1846 (1977).
[Crossref]

Chem. Phys. (1)

D. N. Nikogosyan, A. A. Oraevsky, and V. I. Rupasov, “Two-photon ionization and dissociation of liquid water by powerful laser uv radiation,” Chem. Phys. 77, 131–143 (1983).
[Crossref]

IEEE. T. THz. Sci. Techn. (1)

T. Wang, P. Klarskov, and P. U. Jepsen, “Ultrabroadband thz time-domain spectroscopy of a free-flowing water film,” IEEE. T. THz. Sci. Techn. 4, 425–431 (2014).
[Crossref]

J. Am. Chem. Soc. (1)

J. C. Traeger, R. G. McLoughlin, and A. Nicholson, “Heat of formation for acetyl cation in the gas phase,” J. Am. Chem. Soc. 104, 5318–5322 (1982).
[Crossref]

J. Chem. Phys. (4)

D. S. Venables, A. Chiu, and C. A. Schmuttenmaer, “Structure and dynamics of nonaqueous mixtures of dipolar liquids. i. infrared and far-infrared spectroscopy,” J. Chem. Phys. 113, 3243–3248 (2000).
[Crossref]

M. Faubel, B. Steiner, and J. P. Toennies, “Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets,” J. Chem. Phys. 106, 9013–9031 (1997).
[Crossref]

R. A. Crowell and D. M. Bartels, “Multiphoton ionization of liquid water with 3.0-5.0 ev photons,” J. Chem. Phys. 100, 17940–17949 (1996).
[Crossref]

F. Williams, S. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64, 1549–1554 (1976).
[Crossref]

J. Phys. Conf. Ser. (1)

M. Zhukova, E. Makarov, S. Putilin, A. Tsypkin, V. Chegnov, O. Chegnova, and V. Bespalov, “Two-photon absorption in thz electro-optical sampling crystals,” J. Phys. Conf. Ser. 1062, 012009 (2018).
[Crossref]

Laser Photonics Rev. (1)

H. Roskos, M. Thomson, M. Kreb, and T. Loffler, “Broadband thz emission from gas pulses: From fundamentals to applications,” Laser Photonics Rev. 1, 349–368 (2007).
[Crossref]

Nat. Commun. (1)

I. Dey, K. Jana, V. Y. Fedorov, A. D. Koulouklidis, A. Mondal, M. Shaikh, D. Sarkar, A. D. Lad, S. Tzortzakis, A. Couairon, and R. Kumar, “Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids,” Nat. Commun. 8, 1184 (2017).
[Crossref] [PubMed]

Nat. Photonics (7)

K.-Y. Kim, A. Taylor, J. Glownia, and G. Rodriguez, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” Nat. Photonics 2, 605–609 (2008).
[Crossref]

X.-C. Zhang, A. Shkurinov, and Y. Zhang, “Extreme terahertz science,” Nat. Photonics 11, 16–18 (2017).
[Crossref]

T. L. Cocker, V. Jelic, M. Gupta, S. J. Molesky, J. A. Burgess, G. De Los Reyes, L. V. Titova, Y. Y. Tsui, M. R. Freeman, and F. A. Hegmann, “An ultrafast terahertz scanning tunnelling microscope,” Nat. Photonics 7, 620–625 (2013).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7, 680–690 (2013).
[Crossref]

S. Baierl, M. Hohenleutner, T. Kampfrath, A. Zvezdin, A. Kimel, R. Huber, and R. Mikhaylovskiy, “Nonlinear spin control by terahertz-driven anisotropy fields,” Nat. Photonics 10, 715–719 (2016).
[Crossref]

Z. Zhang, Y. Chen, S. Cui, F. He, M. Chen, Z. Zhang, J. Yu, L. Chen, Z. Sheng, and J. Zhang, “Manipulation of polarizations for broadband terahertz waves emitted from laser plasma filaments,” Nat. Photonics 12, 554–559 (2018).
[Crossref]

Opt. Commun. (1)

A. Watanabe, H. Saito, Y. Ishida, M. Nakamoto, and T. Yajima, “A new nozzle producing ultrathin liquid sheets for femtosecond pulse dye lasers,” Opt. Commun. 71, 301–304 (1989).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Opt. Spectrosc. (1)

A. Andreev, V. Bespalov, A. Gorodetskii, S. Kozlov, V. Krylov, G. Lukomskii, E. Novoselov, N. Petrov, S. Putilin, and S. Stumpf, “Generation of ultrabroadband terahertz radiation under optical breakdown of air by two femtosecond pulses of different frequencies,” Opt. Spectrosc. 107, 538–544 (2009).
[Crossref]

Optica (3)

Phys. Rev. A (1)

V. Y. Fedorov and S. Tzortzakis, “Extreme thz fields from two-color filamentation of midinfrared laser pulses,” Phys. Rev. A 97, 063842 (2018).
[Crossref]

Proc. SPIE (1)

S. Stumpf, A. Korolev, and S. Kozlov, “Few-cycle strong light field dynamics in dielectric media,” Proc. SPIE 6614, 661408 (2007).
[Crossref]

Other (7)

S. A. Kozlov and V. V. Samartsev, Fundamentals of femtosecond optics(Elsevier, 2013).
[Crossref]

M. J. Weber, Handbook of optical materials (CRC Press, 2002).
[Crossref]

M. N. Polyanskiy, “Refractive index database,” https://refractiveindex.info . Accessed: 2018-09-30.

D. George and A. Markelz, “Terahertz spectroscopy of liquids and biomolecules,” in “Terahertz spectroscopy and imaging,” (Springer, 2012), pp. 229–250.
[Crossref]

R. W. Boyd, “Nonlinear optics, 3rd edition,” (Elsevier2008).

X.-F. Pang, Water: molecular structure and properties(World Scientific, 2014).
[Crossref]

X.-C. Zhang and J. Xu, Introduction to THz wave photonics(SpringerUS, 2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup of terahertz generation in flat liquid jets. (a) Experimental layout for energy and spectral terahertz measurements (the inset shows an illustration of optical incident angle ϕ). Laser radiation is splat on pump and probe beams with beam-splitter (BS) with ratio of energy in the channels 1:49, for probe and pump, respectively. Parabolic mirror (PM1 with focal length equal 5 cm) focus the pump radiation on a liquid jet which leads to the generation of terahertz radiation asa result of filamentation inside ionizing liquid jet. The terahertz radiation is collected and collimated by TPX lens (TL) filtered by a teflon filter (F). For spectrum measurements we use conventional electro-optical system (EOS). Parabolic mirror (PM2 with focal length equal 12 cm) focus the terahertz radiation on the ZnTe crystal (EOC) with 1 mm thickness. (b) Photo of laser excitation of the liquid jet. Water moisture plum scatter the laser beam. Temporal terahertz signals (c) and spectrum (d) emitted from the jets of water and ethanol with a thickness of 150 μm at laser pulse duration of 400 fs and optical excitation energy of 600 μJ.
Fig. 2
Fig. 2 Experimental dependencies of the generated terahertz radiation energy characteristics on the energy and duration of the pump pulse for water. Measured terahertz energies generating from single-color filamentation in flat water jet. (a) The dependence of the terahertz energy in flat water jet of different thickness (100 μm (black), 150 μm(red) and 270 μm (blue)) on the laser pulse duration at the pump energy of 600 μJ. (b) Measured terahertz energies generating from flat water jetas a function of pulse energy with an optimal pulse duration for jet thickness 100 μm, 150 μm and 270 μm. Incidence angle of the flat liquid jet is 65°.
Fig. 3
Fig. 3 Simulation of terahertz generation in water and its comparison with the experimental data. (a) Visualization of the model description. Here laser pump produces filament with further ionization of the medium and charge separation leading to the terahertz generation. (b) The numerical simulation of the terahertz energy dependence on propagation distance in flat water jet for various pump durations. (c) The comparison of experiment results (dots) and simulation dependencies (lines) of the terahertz energy in flat water jet of different thickness (100 μm (black), 150 μm (red) and 270 μm (blue)) on the laser pulse duration for the pump energy of 600 μJ.
Fig. 4
Fig. 4 Comparison of experiment and simulation results for the jets of various liquids. Comparison of the numerical simulation result (solid line) of the output terahertz energy dependence on the pump energy with experimental data (scatter) in acetone (black), ethanol (red), heavy water (blue) and water (green) with thickness of 150 μm.

Tables (1)

Tables Icon

Table 1 Numerical values of the parameters used for simulating the propagation of ultrashort pulse in liquid

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ E z + Γ 0 E a 3 E τ 3 + g E 2 E t + 2 π c n 0 j = 0 j τ + j τ c = β ρ E 3 ρ τ + ρ τ p = α E 2
E ( τ ) = E 0 exp ( τ 2 τ p 2 ) s i n ( ω 0 τ + A τ p ( ω 0 τ ) 2 )