Abstract

Unlike the probe wavelength, which is spectrally resolved by monochromator, the excitation wavelength in two-dimensional electronic spectroscopy is retrieved by means of Fourier transform of the interference signal introduced by the coherence delay time between the first and second excitation laser pulses. Hence, the calibration of delay lines would determine its accuracy. In this work, we showed that an inaccurate calibration factor of wedge-based delay line would result in a global peak shift and asymmetric spectral twists along the excitation axis. Both theoretical analysis and experiments have shown that such spectral distortions can be corrected by an accurately predetermined calibration factor. The relative accuracy of calibration factor reaches 3 × 10−5 in our setup. The dispersion effect of wedges also has been considered for the broadband excitation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy

Ramūnas Augulis and Donatas Zigmantas
J. Opt. Soc. Am. B 30(6) 1770-1774 (2013)

Two-dimensional electronic spectroscopy in the ultraviolet by a birefringent delay line

Rocio Borrego-Varillas, Aurelio Oriana, Lucia Ganzer, Anton Trifonov, Ivan Buchvarov, Cristian Manzoni, and Giulio Cerullo
Opt. Express 24(25) 28491-28499 (2016)

Tunable two-dimensional femtosecond spectroscopy

T. Brixner, I. V. Stiopkin, and G. R. Fleming
Opt. Lett. 29(8) 884-886 (2004)

References

  • View by:
  • |
  • |
  • |

  1. G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
    [Crossref] [PubMed]
  2. F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
    [Crossref] [PubMed]
  3. E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van Grondelle, “Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion,” Nat. Phys. 10(9), 676–682 (2014).
    [Crossref] [PubMed]
  4. J. C. Dean, T. Mirkovic, Z. S. D. Toa, D. G. Oblinsky, and G. D. Scholes, “Vibronic Enhancement of Algae Light Harvesting,” Chem 1(6), 858–872 (2016).
    [Crossref]
  5. H. G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, and R. J. D. Miller, “Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer,” Proc. Natl. Acad. Sci. U.S.A. 114(32), 8493–8498 (2017).
    [Crossref] [PubMed]
  6. S. Yue, Z. Wang, X. Leng, R. D. Zhu, H. L. Chen, and Y. X. Weng, “Coupling of multi-vibrational modes in bacteriochlorophyll a in solution observed with 2D electronic spectroscopy,” Chem. Phys. Lett. 683, 591–597 (2017).
    [Crossref]
  7. E. Collini and G. D. Scholes, “Coherent intrachain energy migration in a conjugated polymer at room temperature,” Science 323(5912), 369–373 (2009).
    [Crossref] [PubMed]
  8. J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6(1), 7755 (2015).
    [Crossref] [PubMed]
  9. A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
    [Crossref] [PubMed]
  10. V. Butkus, J. Alster, E. Bašinskaitė, R. N. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring,” J. Phys. Chem. Lett. 8(10), 2344–2349 (2017).
    [Crossref] [PubMed]
  11. J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8(1), 376 (2017).
    [Crossref] [PubMed]
  12. E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6(1), 6086 (2015).
    [Crossref] [PubMed]
  13. T. Stoll, F. Branchi, J. Réhault, F. Scotognella, F. Tassone, I. Kriegel, and G. Cerullo, “Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures,” J. Phys. Chem. Lett. 8(10), 2285–2290 (2017).
    [Crossref] [PubMed]
  14. D. M. Monahan, L. Guo, J. Lin, L. Dou, P. Yang, and G. R. Fleming, “Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck,” J. Phys. Chem. Lett. 8(14), 3211–3215 (2017).
    [Crossref] [PubMed]
  15. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
    [Crossref] [PubMed]
  16. J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16(22), 17420–17428 (2008).
    [Crossref] [PubMed]
  17. D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82(8), 081301 (2011).
    [Crossref] [PubMed]
  18. D. Keusters, H.-S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103(49), 10369–10380 (1999).
    [Crossref]
  19. T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
    [Crossref] [PubMed]
  20. T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
    [Crossref] [PubMed]
  21. A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34(21), 3301–3303 (2009).
    [Crossref] [PubMed]
  22. R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
    [Crossref] [PubMed]
  23. D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
    [Crossref] [PubMed]
  24. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1–3), 184–189 (2004).
    [Crossref]
  25. U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33(23), 2851–2853 (2008).
    [Crossref] [PubMed]
  26. J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115(14), 6606–6622 (2001).
    [Crossref]
  27. H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
    [Crossref] [PubMed]
  28. W. Zhu, R. Wang, C. Zhang, G. Wang, Y. Liu, W. Zhao, X. Dai, X. Wang, G. Cerullo, S. Cundiff, and M. Xiao, “Broadband two-dimensional electronic spectroscopy in an actively phase stabilized pump-probe configuration,” Opt. Express 25(18), 21115–21126 (2017).
    [Crossref] [PubMed]
  29. F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
    [Crossref] [PubMed]
  30. P. F. Tekavec, J. A. Myers, K. L. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18(11), 11015–11024 (2010).
    [Crossref] [PubMed]
  31. H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117(29), 6279–6287 (2013).
    [Crossref] [PubMed]
  32. B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional fourier transform spectra of multilevel systems,” J. Phys. Chem. A 113(47), 13287–13299 (2009).
    [Crossref] [PubMed]
  33. M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
    [Crossref] [PubMed]
  34. Y. Zhang, T. M. Yan, and Y. H. Jiang, “Precise phase determination with the built-in spectral interferometry in two-dimensional electronic spectroscopy,” Opt. Lett. 41(17), 4134–4137 (2016).
    [Crossref] [PubMed]
  35. Q. Meng, Y. Zhang, T. M. Yan, and Y. H. Jiang, “Post-processing phase-correction algorithm in two-dimensional electronic spectroscopy,” Opt. Express 25(6), 6644–6652 (2017).
    [Crossref] [PubMed]
  36. R. Tempelaar, A. Halpin, P. J. Johnson, J. Cai, R. S. Murphy, J. Knoester, R. J. D. Miller, and T. L. Jansen, “Laser-Limited Signatures of Quantum Coherence,” J. Phys. Chem. A 120(19), 3042–3048 (2016).
    [Crossref] [PubMed]
  37. F. V. de A Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving Vibrational from Electronic Coherences in Two-Dimensional Electronic Spectroscopy: The Role of the Laser Spectrum,” Phys. Rev. Lett. 118(3), 033001 (2017).
    [Crossref] [PubMed]
  38. X. Leng, S. Yue, Y.-X. Weng, K. Song, and Q. Shi, “Effects of finite laser pulse width on two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 667, 79–86 (2017).
    [Crossref]
  39. T. N. Do, M. F. Gelin, and H.-S. Tan, “Simplified expressions that incorporate finite pulse effects into coherent two-dimensional optical spectra,” J. Chem. Phys. 147(14), 144103 (2017).
    [Crossref] [PubMed]
  40. S. Yue, Z. Wang, X. C. He, G. B. Zhu, and Y. X. Weng, “Construction of the Apparatus for Two Dimensional Electronic Spectroscopy and Characterization of the Instrument,” Chin. J. Chem. Phys. 28(4), 509–517 (2015).
    [Crossref]
  41. D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
    [Crossref] [PubMed]
  42. S. Caffarri, R. Croce, J. Breton, and R. Bassi, “The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting,” J. Biol. Chem. 276(38), 35924–35933 (2001).
    [Crossref] [PubMed]
  43. G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. van Grondelle, and G. R. Fleming, “Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy,” J. Phys. Chem. B 113(46), 15352–15363 (2009).
    [Crossref] [PubMed]
  44. K. L. Wells, P. H. Lambrev, Z. Zhang, G. Garab, and H. S. Tan, “Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy,” Phys. Chem. Chem. Phys. 16(23), 11640–11646 (2014).
    [Crossref] [PubMed]
  45. H. G. Duan, A. L. Stevens, P. Nalbach, M. Thorwart, V. I. Prokhorenko, and R. J. D. Miller, “Two-dimensional electronic spectroscopy of light-harvesting complex ii at ambient temperature: a joint experimental and theoretical study,” J. Phys. Chem. B 119(36), 12017–12027 (2015).
    [Crossref] [PubMed]
  46. C. Ramanan, M. Ferretti, H. van Roon, V. I. Novoderezhkin, and R. van Grondelle, “Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII,” Phys. Chem. Chem. Phys. 19(34), 22877–22886 (2017).
    [Crossref] [PubMed]
  47. X. Leng, Y. M. Yan, R. D. Zhu, K. Song, Y. X. Weng, and Q. Shi, “Simulation of the two-dimensional electronic spectroscopy and energy transfer dynamics of light-harvesting complex ii at ambient temperature,” J. Phys. Chem. B 122(17), 4642–4652 (2018).
    [Crossref] [PubMed]
  48. J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106(34), 7651–7654 (2002).
    [Crossref]
  49. A. Nemeth, F. Milota, T. Mančal, V. Lukeš, H. F. Kauffmann, and J. Sperling, “Vibronic modulation of lineshapes in two-dimensional electronic spectra,” Chem. Phys. Lett. 459(1–6), 94–99 (2008).
    [Crossref]
  50. Y. X. Weng, “Detection of electronic coherence via two-dimensional electronic spectroscopy in condensed phase,” Chin. J. Chem. Phys. 31(2), 135–151 (2018).
    [Crossref]
  51. E. Harel, A. F. Fidler, and G. S. Engel, “Single-shot gradient-assisted photon echo electronic spectroscopy,” J. Phys. Chem. A 115(16), 3787–3796 (2011).
    [Crossref] [PubMed]
  52. R. Augulis and D. Zigmantas, “Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy,” J. Opt. Soc. Am. B 30(6), 1770–1774 (2013).
    [Crossref]
  53. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]

2018 (2)

X. Leng, Y. M. Yan, R. D. Zhu, K. Song, Y. X. Weng, and Q. Shi, “Simulation of the two-dimensional electronic spectroscopy and energy transfer dynamics of light-harvesting complex ii at ambient temperature,” J. Phys. Chem. B 122(17), 4642–4652 (2018).
[Crossref] [PubMed]

Y. X. Weng, “Detection of electronic coherence via two-dimensional electronic spectroscopy in condensed phase,” Chin. J. Chem. Phys. 31(2), 135–151 (2018).
[Crossref]

2017 (12)

C. Ramanan, M. Ferretti, H. van Roon, V. I. Novoderezhkin, and R. van Grondelle, “Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII,” Phys. Chem. Chem. Phys. 19(34), 22877–22886 (2017).
[Crossref] [PubMed]

Q. Meng, Y. Zhang, T. M. Yan, and Y. H. Jiang, “Post-processing phase-correction algorithm in two-dimensional electronic spectroscopy,” Opt. Express 25(6), 6644–6652 (2017).
[Crossref] [PubMed]

H. G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, and R. J. D. Miller, “Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer,” Proc. Natl. Acad. Sci. U.S.A. 114(32), 8493–8498 (2017).
[Crossref] [PubMed]

S. Yue, Z. Wang, X. Leng, R. D. Zhu, H. L. Chen, and Y. X. Weng, “Coupling of multi-vibrational modes in bacteriochlorophyll a in solution observed with 2D electronic spectroscopy,” Chem. Phys. Lett. 683, 591–597 (2017).
[Crossref]

V. Butkus, J. Alster, E. Bašinskaitė, R. N. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring,” J. Phys. Chem. Lett. 8(10), 2344–2349 (2017).
[Crossref] [PubMed]

J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8(1), 376 (2017).
[Crossref] [PubMed]

T. Stoll, F. Branchi, J. Réhault, F. Scotognella, F. Tassone, I. Kriegel, and G. Cerullo, “Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures,” J. Phys. Chem. Lett. 8(10), 2285–2290 (2017).
[Crossref] [PubMed]

D. M. Monahan, L. Guo, J. Lin, L. Dou, P. Yang, and G. R. Fleming, “Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck,” J. Phys. Chem. Lett. 8(14), 3211–3215 (2017).
[Crossref] [PubMed]

W. Zhu, R. Wang, C. Zhang, G. Wang, Y. Liu, W. Zhao, X. Dai, X. Wang, G. Cerullo, S. Cundiff, and M. Xiao, “Broadband two-dimensional electronic spectroscopy in an actively phase stabilized pump-probe configuration,” Opt. Express 25(18), 21115–21126 (2017).
[Crossref] [PubMed]

F. V. de A Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving Vibrational from Electronic Coherences in Two-Dimensional Electronic Spectroscopy: The Role of the Laser Spectrum,” Phys. Rev. Lett. 118(3), 033001 (2017).
[Crossref] [PubMed]

X. Leng, S. Yue, Y.-X. Weng, K. Song, and Q. Shi, “Effects of finite laser pulse width on two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 667, 79–86 (2017).
[Crossref]

T. N. Do, M. F. Gelin, and H.-S. Tan, “Simplified expressions that incorporate finite pulse effects into coherent two-dimensional optical spectra,” J. Chem. Phys. 147(14), 144103 (2017).
[Crossref] [PubMed]

2016 (4)

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

J. C. Dean, T. Mirkovic, Z. S. D. Toa, D. G. Oblinsky, and G. D. Scholes, “Vibronic Enhancement of Algae Light Harvesting,” Chem 1(6), 858–872 (2016).
[Crossref]

R. Tempelaar, A. Halpin, P. J. Johnson, J. Cai, R. S. Murphy, J. Knoester, R. J. D. Miller, and T. L. Jansen, “Laser-Limited Signatures of Quantum Coherence,” J. Phys. Chem. A 120(19), 3042–3048 (2016).
[Crossref] [PubMed]

Y. Zhang, T. M. Yan, and Y. H. Jiang, “Precise phase determination with the built-in spectral interferometry in two-dimensional electronic spectroscopy,” Opt. Lett. 41(17), 4134–4137 (2016).
[Crossref] [PubMed]

2015 (5)

H. G. Duan, A. L. Stevens, P. Nalbach, M. Thorwart, V. I. Prokhorenko, and R. J. D. Miller, “Two-dimensional electronic spectroscopy of light-harvesting complex ii at ambient temperature: a joint experimental and theoretical study,” J. Phys. Chem. B 119(36), 12017–12027 (2015).
[Crossref] [PubMed]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6(1), 7755 (2015).
[Crossref] [PubMed]

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6(1), 6086 (2015).
[Crossref] [PubMed]

S. Yue, Z. Wang, X. C. He, G. B. Zhu, and Y. X. Weng, “Construction of the Apparatus for Two Dimensional Electronic Spectroscopy and Characterization of the Instrument,” Chin. J. Chem. Phys. 28(4), 509–517 (2015).
[Crossref]

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

2014 (4)

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[Crossref] [PubMed]

E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van Grondelle, “Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion,” Nat. Phys. 10(9), 676–682 (2014).
[Crossref] [PubMed]

K. L. Wells, P. H. Lambrev, Z. Zhang, G. Garab, and H. S. Tan, “Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy,” Phys. Chem. Chem. Phys. 16(23), 11640–11646 (2014).
[Crossref] [PubMed]

2013 (2)

R. Augulis and D. Zigmantas, “Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy,” J. Opt. Soc. Am. B 30(6), 1770–1774 (2013).
[Crossref]

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117(29), 6279–6287 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
[Crossref] [PubMed]

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82(8), 081301 (2011).
[Crossref] [PubMed]

E. Harel, A. F. Fidler, and G. S. Engel, “Single-shot gradient-assisted photon echo electronic spectroscopy,” J. Phys. Chem. A 115(16), 3787–3796 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (4)

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional fourier transform spectra of multilevel systems,” J. Phys. Chem. A 113(47), 13287–13299 (2009).
[Crossref] [PubMed]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34(21), 3301–3303 (2009).
[Crossref] [PubMed]

E. Collini and G. D. Scholes, “Coherent intrachain energy migration in a conjugated polymer at room temperature,” Science 323(5912), 369–373 (2009).
[Crossref] [PubMed]

G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. van Grondelle, and G. R. Fleming, “Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy,” J. Phys. Chem. B 113(46), 15352–15363 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (2)

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

2005 (1)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

2004 (3)

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1–3), 184–189 (2004).
[Crossref]

2003 (1)

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

2002 (1)

J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106(34), 7651–7654 (2002).
[Crossref]

2001 (2)

S. Caffarri, R. Croce, J. Breton, and R. Bassi, “The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting,” J. Biol. Chem. 276(38), 35924–35933 (2001).
[Crossref] [PubMed]

J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115(14), 6606–6622 (2001).
[Crossref]

1999 (1)

D. Keusters, H.-S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103(49), 10369–10380 (1999).
[Crossref]

1965 (1)

Abramavicius, D.

V. Butkus, J. Alster, E. Bašinskaitė, R. N. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring,” J. Phys. Chem. Lett. 8(10), 2344–2349 (2017).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[Crossref] [PubMed]

Ahn, T. K.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Albrecht Ferro, A.

J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115(14), 6606–6622 (2001).
[Crossref]

Alster, J.

V. Butkus, J. Alster, E. Bašinskaitė, R. N. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring,” J. Phys. Chem. Lett. 8(10), 2344–2349 (2017).
[Crossref] [PubMed]

Anderson, H. L.

V. Butkus, J. Alster, E. Bašinskaitė, R. N. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring,” J. Phys. Chem. Lett. 8(10), 2344–2349 (2017).
[Crossref] [PubMed]

F. V. de A Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving Vibrational from Electronic Coherences in Two-Dimensional Electronic Spectroscopy: The Role of the Laser Spectrum,” Phys. Rev. Lett. 118(3), 033001 (2017).
[Crossref] [PubMed]

Ashraf, K.

H. G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, and R. J. D. Miller, “Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer,” Proc. Natl. Acad. Sci. U.S.A. 114(32), 8493–8498 (2017).
[Crossref] [PubMed]

Augulis, R.

Augulis, R. N.

V. Butkus, J. Alster, E. Bašinskaitė, R. N. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring,” J. Phys. Chem. Lett. 8(10), 2344–2349 (2017).
[Crossref] [PubMed]

Ballottari, M.

G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. van Grondelle, and G. R. Fleming, “Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy,” J. Phys. Chem. B 113(46), 15352–15363 (2009).
[Crossref] [PubMed]

Bašinskaite, E.

V. Butkus, J. Alster, E. Bašinskaitė, R. N. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring,” J. Phys. Chem. Lett. 8(10), 2344–2349 (2017).
[Crossref] [PubMed]

Bassi, R.

G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. van Grondelle, and G. R. Fleming, “Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy,” J. Phys. Chem. B 113(46), 15352–15363 (2009).
[Crossref] [PubMed]

S. Caffarri, R. Croce, J. Breton, and R. Bassi, “The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting,” J. Biol. Chem. 276(38), 35924–35933 (2001).
[Crossref] [PubMed]

Belabas, N.

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
[Crossref] [PubMed]

Blankenship, R. E.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Branchi, F.

J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8(1), 376 (2017).
[Crossref] [PubMed]

T. Stoll, F. Branchi, J. Réhault, F. Scotognella, F. Tassone, I. Kriegel, and G. Cerullo, “Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures,” J. Phys. Chem. Lett. 8(10), 2285–2290 (2017).
[Crossref] [PubMed]

Breton, J.

S. Caffarri, R. Croce, J. Breton, and R. Bassi, “The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting,” J. Biol. Chem. 276(38), 35924–35933 (2001).
[Crossref] [PubMed]

Brida, D.

Brixner, T.

U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33(23), 2851–2853 (2008).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

Butkus, V.

V. Butkus, J. Alster, E. Bašinskaitė, R. N. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring,” J. Phys. Chem. Lett. 8(10), 2344–2349 (2017).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[Crossref] [PubMed]

Caffarri, S.

S. Caffarri, R. Croce, J. Breton, and R. Bassi, “The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting,” J. Biol. Chem. 276(38), 35924–35933 (2001).
[Crossref] [PubMed]

Cai, J.

R. Tempelaar, A. Halpin, P. J. Johnson, J. Cai, R. S. Murphy, J. Knoester, R. J. D. Miller, and T. L. Jansen, “Laser-Limited Signatures of Quantum Coherence,” J. Phys. Chem. A 120(19), 3042–3048 (2016).
[Crossref] [PubMed]

Calhoun, T. R.

G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. van Grondelle, and G. R. Fleming, “Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy,” J. Phys. Chem. B 113(46), 15352–15363 (2009).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Caram, J. R.

Cassette, E.

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6(1), 6086 (2015).
[Crossref] [PubMed]

Caycedo-Soler, F.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6(1), 7755 (2015).
[Crossref] [PubMed]

Cerullo, G.

J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8(1), 376 (2017).
[Crossref] [PubMed]

T. Stoll, F. Branchi, J. Réhault, F. Scotognella, F. Tassone, I. Kriegel, and G. Cerullo, “Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures,” J. Phys. Chem. Lett. 8(10), 2285–2290 (2017).
[Crossref] [PubMed]

W. Zhu, R. Wang, C. Zhang, G. Wang, Y. Liu, W. Zhao, X. Dai, X. Wang, G. Cerullo, S. Cundiff, and M. Xiao, “Broadband two-dimensional electronic spectroscopy in an actively phase stabilized pump-probe configuration,” Opt. Express 25(18), 21115–21126 (2017).
[Crossref] [PubMed]

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

Chen, H. L.

S. Yue, Z. Wang, X. Leng, R. D. Zhu, H. L. Chen, and Y. X. Weng, “Coupling of multi-vibrational modes in bacteriochlorophyll a in solution observed with 2D electronic spectroscopy,” Chem. Phys. Lett. 683, 591–597 (2017).
[Crossref]

Cheng, Y. C.

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Cho, B.

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional fourier transform spectra of multilevel systems,” J. Phys. Chem. A 113(47), 13287–13299 (2009).
[Crossref] [PubMed]

Cho, M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Cogdell, R. J.

H. G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, and R. J. D. Miller, “Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer,” Proc. Natl. Acad. Sci. U.S.A. 114(32), 8493–8498 (2017).
[Crossref] [PubMed]

Collini, E.

E. Collini and G. D. Scholes, “Coherent intrachain energy migration in a conjugated polymer at room temperature,” Science 323(5912), 369–373 (2009).
[Crossref] [PubMed]

Cowan, M. L.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1–3), 184–189 (2004).
[Crossref]

Croce, R.

S. Caffarri, R. Croce, J. Breton, and R. Bassi, “The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting,” J. Biol. Chem. 276(38), 35924–35933 (2001).
[Crossref] [PubMed]

Cundiff, S.

Cundiff, S. T.

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117(29), 6279–6287 (2013).
[Crossref] [PubMed]

Dahlberg, P. D.

Dai, X.

de A Camargo, F. V.

F. V. de A Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving Vibrational from Electronic Coherences in Two-Dimensional Electronic Spectroscopy: The Role of the Laser Spectrum,” Phys. Rev. Lett. 118(3), 033001 (2017).
[Crossref] [PubMed]

De Sio, A.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

Dean, J. C.

J. C. Dean, T. Mirkovic, Z. S. D. Toa, D. G. Oblinsky, and G. D. Scholes, “Vibronic Enhancement of Algae Light Harvesting,” Chem 1(6), 858–872 (2016).
[Crossref]

Deschler, F.

J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8(1), 376 (2017).
[Crossref] [PubMed]

Dimler, F.

Do, T. N.

T. N. Do, M. F. Gelin, and H.-S. Tan, “Simplified expressions that incorporate finite pulse effects into coherent two-dimensional optical spectra,” J. Chem. Phys. 147(14), 144103 (2017).
[Crossref] [PubMed]

Dolzhnikov, D. S.

Dou, L.

D. M. Monahan, L. Guo, J. Lin, L. Dou, P. Yang, and G. R. Fleming, “Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck,” J. Phys. Chem. Lett. 8(14), 3211–3215 (2017).
[Crossref] [PubMed]

Duan, H. G.

H. G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, and R. J. D. Miller, “Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer,” Proc. Natl. Acad. Sci. U.S.A. 114(32), 8493–8498 (2017).
[Crossref] [PubMed]

H. G. Duan, A. L. Stevens, P. Nalbach, M. Thorwart, V. I. Prokhorenko, and R. J. D. Miller, “Two-dimensional electronic spectroscopy of light-harvesting complex ii at ambient temperature: a joint experimental and theoretical study,” J. Phys. Chem. B 119(36), 12017–12027 (2015).
[Crossref] [PubMed]

Engel, G. S.

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

E. Harel, A. F. Fidler, and G. S. Engel, “Single-shot gradient-assisted photon echo electronic spectroscopy,” J. Phys. Chem. A 115(16), 3787–3796 (2011).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Farrow, D. A.

J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106(34), 7651–7654 (2002).
[Crossref]

Ferretti, M.

C. Ramanan, M. Ferretti, H. van Roon, V. I. Novoderezhkin, and R. van Grondelle, “Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII,” Phys. Chem. Chem. Phys. 19(34), 22877–22886 (2017).
[Crossref] [PubMed]

E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van Grondelle, “Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion,” Nat. Phys. 10(9), 676–682 (2014).
[Crossref] [PubMed]

Fidler, A. F.

E. Harel, A. F. Fidler, and G. S. Engel, “Single-shot gradient-assisted photon echo electronic spectroscopy,” J. Phys. Chem. A 115(16), 3787–3796 (2011).
[Crossref] [PubMed]

Fleming, G. R.

D. M. Monahan, L. Guo, J. Lin, L. Dou, P. Yang, and G. R. Fleming, “Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck,” J. Phys. Chem. Lett. 8(14), 3211–3215 (2017).
[Crossref] [PubMed]

G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. van Grondelle, and G. R. Fleming, “Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy,” J. Phys. Chem. B 113(46), 15352–15363 (2009).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

Friend, R. H.

J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8(1), 376 (2017).
[Crossref] [PubMed]

Fuller, F. D.

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[Crossref] [PubMed]

P. F. Tekavec, J. A. Myers, K. L. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18(11), 11015–11024 (2010).
[Crossref] [PubMed]

Garab, G.

K. L. Wells, P. H. Lambrev, Z. Zhang, G. Garab, and H. S. Tan, “Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy,” Phys. Chem. Chem. Phys. 16(23), 11640–11646 (2014).
[Crossref] [PubMed]

Gelin, M. F.

T. N. Do, M. F. Gelin, and H.-S. Tan, “Simplified expressions that incorporate finite pulse effects into coherent two-dimensional optical spectra,” J. Chem. Phys. 147(14), 144103 (2017).
[Crossref] [PubMed]

Gelzinis, A.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[Crossref] [PubMed]

Gieseking, B.

Ginsberg, N. S.

G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. van Grondelle, and G. R. Fleming, “Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy,” J. Phys. Chem. B 113(46), 15352–15363 (2009).
[Crossref] [PubMed]

Grimmelsmann, L.

F. V. de A Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving Vibrational from Electronic Coherences in Two-Dimensional Electronic Spectroscopy: The Role of the Laser Spectrum,” Phys. Rev. Lett. 118(3), 033001 (2017).
[Crossref] [PubMed]

Gundogdu, K.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82(8), 081301 (2011).
[Crossref] [PubMed]

Guo, L.

D. M. Monahan, L. Guo, J. Lin, L. Dou, P. Yang, and G. R. Fleming, “Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck,” J. Phys. Chem. Lett. 8(14), 3211–3215 (2017).
[Crossref] [PubMed]

Halpin, A.

R. Tempelaar, A. Halpin, P. J. Johnson, J. Cai, R. S. Murphy, J. Knoester, R. J. D. Miller, and T. L. Jansen, “Laser-Limited Signatures of Quantum Coherence,” J. Phys. Chem. A 120(19), 3042–3048 (2016).
[Crossref] [PubMed]

Harel, E.

E. Harel, A. F. Fidler, and G. S. Engel, “Single-shot gradient-assisted photon echo electronic spectroscopy,” J. Phys. Chem. A 115(16), 3787–3796 (2011).
[Crossref] [PubMed]

Hauer, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6(1), 7755 (2015).
[Crossref] [PubMed]

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34(21), 3301–3303 (2009).
[Crossref] [PubMed]

He, X. C.

S. Yue, Z. Wang, X. C. He, G. B. Zhu, and Y. X. Weng, “Construction of the Apparatus for Two Dimensional Electronic Spectroscopy and Characterization of the Instrument,” Chin. J. Chem. Phys. 28(4), 509–517 (2015).
[Crossref]

Heisler, I. A.

F. V. de A Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving Vibrational from Electronic Coherences in Two-Dimensional Electronic Spectroscopy: The Role of the Laser Spectrum,” Phys. Rev. Lett. 118(3), 033001 (2017).
[Crossref] [PubMed]

Huelga, S. F.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6(1), 7755 (2015).
[Crossref] [PubMed]

Hybl, J. D.

J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106(34), 7651–7654 (2002).
[Crossref]

J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115(14), 6606–6622 (2001).
[Crossref]

Jansen, T. L.

R. Tempelaar, A. Halpin, P. J. Johnson, J. Cai, R. S. Murphy, J. Knoester, R. J. D. Miller, and T. L. Jansen, “Laser-Limited Signatures of Quantum Coherence,” J. Phys. Chem. A 120(19), 3042–3048 (2016).
[Crossref] [PubMed]

Jiang, Y. H.

Johnson, P. J.

R. Tempelaar, A. Halpin, P. J. Johnson, J. Cai, R. S. Murphy, J. Knoester, R. J. D. Miller, and T. L. Jansen, “Laser-Limited Signatures of Quantum Coherence,” J. Phys. Chem. A 120(19), 3042–3048 (2016).
[Crossref] [PubMed]

Jonas, D. M.

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117(29), 6279–6287 (2013).
[Crossref] [PubMed]

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional fourier transform spectra of multilevel systems,” J. Phys. Chem. A 113(47), 13287–13299 (2009).
[Crossref] [PubMed]

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
[Crossref] [PubMed]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106(34), 7651–7654 (2002).
[Crossref]

J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115(14), 6606–6622 (2001).
[Crossref]

Kauffmann, H. F.

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34(21), 3301–3303 (2009).
[Crossref] [PubMed]

A. Nemeth, F. Milota, T. Mančal, V. Lukeš, H. F. Kauffmann, and J. Sperling, “Vibronic modulation of lineshapes in two-dimensional electronic spectra,” Chem. Phys. Lett. 459(1–6), 94–99 (2008).
[Crossref]

Keusters, D.

D. Keusters, H.-S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103(49), 10369–10380 (1999).
[Crossref]

Khadivi, A.

Kitney, K. A.

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional fourier transform spectra of multilevel systems,” J. Phys. Chem. A 113(47), 13287–13299 (2009).
[Crossref] [PubMed]

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
[Crossref] [PubMed]

Knoester, J.

R. Tempelaar, A. Halpin, P. J. Johnson, J. Cai, R. S. Murphy, J. Knoester, R. J. D. Miller, and T. L. Jansen, “Laser-Limited Signatures of Quantum Coherence,” J. Phys. Chem. A 120(19), 3042–3048 (2016).
[Crossref] [PubMed]

Kortyna, A.

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117(29), 6279–6287 (2013).
[Crossref] [PubMed]

Kriegel, I.

T. Stoll, F. Branchi, J. Réhault, F. Scotognella, F. Tassone, I. Kriegel, and G. Cerullo, “Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures,” J. Phys. Chem. Lett. 8(10), 2285–2290 (2017).
[Crossref] [PubMed]

Lambrev, P. H.

K. L. Wells, P. H. Lambrev, Z. Zhang, G. Garab, and H. S. Tan, “Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy,” Phys. Chem. Chem. Phys. 16(23), 11640–11646 (2014).
[Crossref] [PubMed]

Langhojer, F.

Leng, X.

X. Leng, Y. M. Yan, R. D. Zhu, K. Song, Y. X. Weng, and Q. Shi, “Simulation of the two-dimensional electronic spectroscopy and energy transfer dynamics of light-harvesting complex ii at ambient temperature,” J. Phys. Chem. B 122(17), 4642–4652 (2018).
[Crossref] [PubMed]

X. Leng, S. Yue, Y.-X. Weng, K. Song, and Q. Shi, “Effects of finite laser pulse width on two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 667, 79–86 (2017).
[Crossref]

S. Yue, Z. Wang, X. Leng, R. D. Zhu, H. L. Chen, and Y. X. Weng, “Coupling of multi-vibrational modes in bacteriochlorophyll a in solution observed with 2D electronic spectroscopy,” Chem. Phys. Lett. 683, 591–597 (2017).
[Crossref]

Lewis, K. L.

Li, H.

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117(29), 6279–6287 (2013).
[Crossref] [PubMed]

Lienau, C.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

Lim, J.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6(1), 7755 (2015).
[Crossref] [PubMed]

Lin, J.

D. M. Monahan, L. Guo, J. Lin, L. Dou, P. Yang, and G. R. Fleming, “Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck,” J. Phys. Chem. Lett. 8(14), 3211–3215 (2017).
[Crossref] [PubMed]

Lincoln, C. N.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6(1), 7755 (2015).
[Crossref] [PubMed]

Liu, Y.

Löhrig, T.

Lukeš, V.

A. Nemeth, F. Milota, T. Mančal, V. Lukeš, H. F. Kauffmann, and J. Sperling, “Vibronic modulation of lineshapes in two-dimensional electronic spectra,” Chem. Phys. Lett. 459(1–6), 94–99 (2008).
[Crossref]

Mahler, B.

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6(1), 6086 (2015).
[Crossref] [PubMed]

Maiuri, M.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

Malitson, I. H.

Mancal, T.

A. Nemeth, F. Milota, T. Mančal, V. Lukeš, H. F. Kauffmann, and J. Sperling, “Vibronic modulation of lineshapes in two-dimensional electronic spectra,” Chem. Phys. Lett. 459(1–6), 94–99 (2008).
[Crossref]

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

Manzoni, C.

Meech, S. R.

F. V. de A Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving Vibrational from Electronic Coherences in Two-Dimensional Electronic Spectroscopy: The Role of the Laser Spectrum,” Phys. Rev. Lett. 118(3), 033001 (2017).
[Crossref] [PubMed]

Meng, Q.

Miller, R. J. D.

H. G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, and R. J. D. Miller, “Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer,” Proc. Natl. Acad. Sci. U.S.A. 114(32), 8493–8498 (2017).
[Crossref] [PubMed]

R. Tempelaar, A. Halpin, P. J. Johnson, J. Cai, R. S. Murphy, J. Knoester, R. J. D. Miller, and T. L. Jansen, “Laser-Limited Signatures of Quantum Coherence,” J. Phys. Chem. A 120(19), 3042–3048 (2016).
[Crossref] [PubMed]

H. G. Duan, A. L. Stevens, P. Nalbach, M. Thorwart, V. I. Prokhorenko, and R. J. D. Miller, “Two-dimensional electronic spectroscopy of light-harvesting complex ii at ambient temperature: a joint experimental and theoretical study,” J. Phys. Chem. B 119(36), 12017–12027 (2015).
[Crossref] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1–3), 184–189 (2004).
[Crossref]

Milota, F.

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34(21), 3301–3303 (2009).
[Crossref] [PubMed]

A. Nemeth, F. Milota, T. Mančal, V. Lukeš, H. F. Kauffmann, and J. Sperling, “Vibronic modulation of lineshapes in two-dimensional electronic spectra,” Chem. Phys. Lett. 459(1–6), 94–99 (2008).
[Crossref]

Mirkovic, T.

J. C. Dean, T. Mirkovic, Z. S. D. Toa, D. G. Oblinsky, and G. D. Scholes, “Vibronic Enhancement of Algae Light Harvesting,” Chem 1(6), 858–872 (2016).
[Crossref]

Molinari, E.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

Monahan, D. M.

D. M. Monahan, L. Guo, J. Lin, L. Dou, P. Yang, and G. R. Fleming, “Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck,” J. Phys. Chem. Lett. 8(14), 3211–3215 (2017).
[Crossref] [PubMed]

Moody, G.

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117(29), 6279–6287 (2013).
[Crossref] [PubMed]

Murphy, R. S.

R. Tempelaar, A. Halpin, P. J. Johnson, J. Cai, R. S. Murphy, J. Knoester, R. J. D. Miller, and T. L. Jansen, “Laser-Limited Signatures of Quantum Coherence,” J. Phys. Chem. A 120(19), 3042–3048 (2016).
[Crossref] [PubMed]

Myers, J. A.

Nalbach, P.

H. G. Duan, A. L. Stevens, P. Nalbach, M. Thorwart, V. I. Prokhorenko, and R. J. D. Miller, “Two-dimensional electronic spectroscopy of light-harvesting complex ii at ambient temperature: a joint experimental and theoretical study,” J. Phys. Chem. B 119(36), 12017–12027 (2015).
[Crossref] [PubMed]

Nelson, K. A.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82(8), 081301 (2011).
[Crossref] [PubMed]

Nemeth, A.

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34(21), 3301–3303 (2009).
[Crossref] [PubMed]

A. Nemeth, F. Milota, T. Mančal, V. Lukeš, H. F. Kauffmann, and J. Sperling, “Vibronic modulation of lineshapes in two-dimensional electronic spectra,” Chem. Phys. Lett. 459(1–6), 94–99 (2008).
[Crossref]

Neuhaus, P.

V. Butkus, J. Alster, E. Bašinskaitė, R. N. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring,” J. Phys. Chem. Lett. 8(10), 2344–2349 (2017).
[Crossref] [PubMed]

Novoderezhkin, V. I.

C. Ramanan, M. Ferretti, H. van Roon, V. I. Novoderezhkin, and R. van Grondelle, “Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII,” Phys. Chem. Chem. Phys. 19(34), 22877–22886 (2017).
[Crossref] [PubMed]

E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van Grondelle, “Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion,” Nat. Phys. 10(9), 676–682 (2014).
[Crossref] [PubMed]

Oblinsky, D. G.

J. C. Dean, T. Mirkovic, Z. S. D. Toa, D. G. Oblinsky, and G. D. Scholes, “Vibronic Enhancement of Algae Light Harvesting,” Chem 1(6), 858–872 (2016).
[Crossref]

Ogilvie, J. P.

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[Crossref] [PubMed]

P. F. Tekavec, J. A. Myers, K. L. Lewis, F. D. Fuller, and J. P. Ogilvie, “Effects of chirp on two-dimensional Fourier transform electronic spectra,” Opt. Express 18(11), 11015–11024 (2010).
[Crossref] [PubMed]

J. A. Myers, K. L. Lewis, P. F. Tekavec, and J. P. Ogilvie, “Two-color two-dimensional Fourier transform electronic spectroscopy with a pulse-shaper,” Opt. Express 16(22), 17420–17428 (2008).
[Crossref] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1–3), 184–189 (2004).
[Crossref]

Palecek, D.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6(1), 7755 (2015).
[Crossref] [PubMed]

Pan, J.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[Crossref] [PubMed]

Pensack, R. D.

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6(1), 6086 (2015).
[Crossref] [PubMed]

Plenio, M. B.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6(1), 7755 (2015).
[Crossref] [PubMed]

Prior, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6(1), 7755 (2015).
[Crossref] [PubMed]

Prokhorenko, V. I.

H. G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, and R. J. D. Miller, “Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer,” Proc. Natl. Acad. Sci. U.S.A. 114(32), 8493–8498 (2017).
[Crossref] [PubMed]

H. G. Duan, A. L. Stevens, P. Nalbach, M. Thorwart, V. I. Prokhorenko, and R. J. D. Miller, “Two-dimensional electronic spectroscopy of light-harvesting complex ii at ambient temperature: a joint experimental and theoretical study,” J. Phys. Chem. B 119(36), 12017–12027 (2015).
[Crossref] [PubMed]

Ramanan, C.

C. Ramanan, M. Ferretti, H. van Roon, V. I. Novoderezhkin, and R. van Grondelle, “Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII,” Phys. Chem. Chem. Phys. 19(34), 22877–22886 (2017).
[Crossref] [PubMed]

Read, E. L.

G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. van Grondelle, and G. R. Fleming, “Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy,” J. Phys. Chem. B 113(46), 15352–15363 (2009).
[Crossref] [PubMed]

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

Réhault, J.

T. Stoll, F. Branchi, J. Réhault, F. Scotognella, F. Tassone, I. Kriegel, and G. Cerullo, “Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures,” J. Phys. Chem. Lett. 8(10), 2285–2290 (2017).
[Crossref] [PubMed]

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

Richter, J. M.

J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8(1), 376 (2017).
[Crossref] [PubMed]

Rolczynski, B. S.

Romero, E.

E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van Grondelle, “Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion,” Nat. Phys. 10(9), 676–682 (2014).
[Crossref] [PubMed]

Rozzi, C. A.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

Schlau-Cohen, G. S.

G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. van Grondelle, and G. R. Fleming, “Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy,” J. Phys. Chem. B 113(46), 15352–15363 (2009).
[Crossref] [PubMed]

Scholes, G. D.

J. C. Dean, T. Mirkovic, Z. S. D. Toa, D. G. Oblinsky, and G. D. Scholes, “Vibronic Enhancement of Algae Light Harvesting,” Chem 1(6), 858–872 (2016).
[Crossref]

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6(1), 6086 (2015).
[Crossref] [PubMed]

E. Collini and G. D. Scholes, “Coherent intrachain energy migration in a conjugated polymer at room temperature,” Science 323(5912), 369–373 (2009).
[Crossref] [PubMed]

Schwarz, C.

Scotognella, F.

T. Stoll, F. Branchi, J. Réhault, F. Scotognella, F. Tassone, I. Kriegel, and G. Cerullo, “Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures,” J. Phys. Chem. Lett. 8(10), 2285–2290 (2017).
[Crossref] [PubMed]

Selig, U.

Senlik, S. S.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[Crossref] [PubMed]

Shi, Q.

X. Leng, Y. M. Yan, R. D. Zhu, K. Song, Y. X. Weng, and Q. Shi, “Simulation of the two-dimensional electronic spectroscopy and energy transfer dynamics of light-harvesting complex ii at ambient temperature,” J. Phys. Chem. B 122(17), 4642–4652 (2018).
[Crossref] [PubMed]

X. Leng, S. Yue, Y.-X. Weng, K. Song, and Q. Shi, “Effects of finite laser pulse width on two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 667, 79–86 (2017).
[Crossref]

Smith, E. R.

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional fourier transform spectra of multilevel systems,” J. Phys. Chem. A 113(47), 13287–13299 (2009).
[Crossref] [PubMed]

Sommer, E.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

Song, K.

X. Leng, Y. M. Yan, R. D. Zhu, K. Song, Y. X. Weng, and Q. Shi, “Simulation of the two-dimensional electronic spectroscopy and energy transfer dynamics of light-harvesting complex ii at ambient temperature,” J. Phys. Chem. B 122(17), 4642–4652 (2018).
[Crossref] [PubMed]

X. Leng, S. Yue, Y.-X. Weng, K. Song, and Q. Shi, “Effects of finite laser pulse width on two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 667, 79–86 (2017).
[Crossref]

Spencer, A. P.

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117(29), 6279–6287 (2013).
[Crossref] [PubMed]

Sperling, J.

A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, and F. Milota, “Compact phase-stable design for single- and double-quantum two-dimensional electronic spectroscopy,” Opt. Lett. 34(21), 3301–3303 (2009).
[Crossref] [PubMed]

A. Nemeth, F. Milota, T. Mančal, V. Lukeš, H. F. Kauffmann, and J. Sperling, “Vibronic modulation of lineshapes in two-dimensional electronic spectra,” Chem. Phys. Lett. 459(1–6), 94–99 (2008).
[Crossref]

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Stevens, A. L.

H. G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, and R. J. D. Miller, “Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer,” Proc. Natl. Acad. Sci. U.S.A. 114(32), 8493–8498 (2017).
[Crossref] [PubMed]

H. G. Duan, A. L. Stevens, P. Nalbach, M. Thorwart, V. I. Prokhorenko, and R. J. D. Miller, “Two-dimensional electronic spectroscopy of light-harvesting complex ii at ambient temperature: a joint experimental and theoretical study,” J. Phys. Chem. B 119(36), 12017–12027 (2015).
[Crossref] [PubMed]

Stiopkin, I. V.

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

Stoll, T.

T. Stoll, F. Branchi, J. Réhault, F. Scotognella, F. Tassone, I. Kriegel, and G. Cerullo, “Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures,” J. Phys. Chem. Lett. 8(10), 2285–2290 (2017).
[Crossref] [PubMed]

Stone, K. W.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82(8), 081301 (2011).
[Crossref] [PubMed]

Talapin, D. V.

Tan, H. S.

K. L. Wells, P. H. Lambrev, Z. Zhang, G. Garab, and H. S. Tan, “Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy,” Phys. Chem. Chem. Phys. 16(23), 11640–11646 (2014).
[Crossref] [PubMed]

Tan, H.-S.

T. N. Do, M. F. Gelin, and H.-S. Tan, “Simplified expressions that incorporate finite pulse effects into coherent two-dimensional optical spectra,” J. Chem. Phys. 147(14), 144103 (2017).
[Crossref] [PubMed]

D. Keusters, H.-S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103(49), 10369–10380 (1999).
[Crossref]

Tassone, F.

T. Stoll, F. Branchi, J. Réhault, F. Scotognella, F. Tassone, I. Kriegel, and G. Cerullo, “Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures,” J. Phys. Chem. Lett. 8(10), 2285–2290 (2017).
[Crossref] [PubMed]

Tekavec, P. F.

Tempelaar, R.

R. Tempelaar, A. Halpin, P. J. Johnson, J. Cai, R. S. Murphy, J. Knoester, R. J. D. Miller, and T. L. Jansen, “Laser-Limited Signatures of Quantum Coherence,” J. Phys. Chem. A 120(19), 3042–3048 (2016).
[Crossref] [PubMed]

Thieme, J.

E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van Grondelle, “Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion,” Nat. Phys. 10(9), 676–682 (2014).
[Crossref] [PubMed]

Thorwart, M.

H. G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, and R. J. D. Miller, “Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer,” Proc. Natl. Acad. Sci. U.S.A. 114(32), 8493–8498 (2017).
[Crossref] [PubMed]

H. G. Duan, A. L. Stevens, P. Nalbach, M. Thorwart, V. I. Prokhorenko, and R. J. D. Miller, “Two-dimensional electronic spectroscopy of light-harvesting complex ii at ambient temperature: a joint experimental and theoretical study,” J. Phys. Chem. B 119(36), 12017–12027 (2015).
[Crossref] [PubMed]

Toa, Z. S. D.

J. C. Dean, T. Mirkovic, Z. S. D. Toa, D. G. Oblinsky, and G. D. Scholes, “Vibronic Enhancement of Algae Light Harvesting,” Chem 1(6), 858–872 (2016).
[Crossref]

Troiani, F.

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

Turner, D. B.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82(8), 081301 (2011).
[Crossref] [PubMed]

Valduga de Almeida Camargo, F.

J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8(1), 376 (2017).
[Crossref] [PubMed]

Valkunas, L.

V. Butkus, J. Alster, E. Bašinskaitė, R. N. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring,” J. Phys. Chem. Lett. 8(10), 2344–2349 (2017).
[Crossref] [PubMed]

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[Crossref] [PubMed]

van Grondelle, R.

C. Ramanan, M. Ferretti, H. van Roon, V. I. Novoderezhkin, and R. van Grondelle, “Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII,” Phys. Chem. Chem. Phys. 19(34), 22877–22886 (2017).
[Crossref] [PubMed]

E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van Grondelle, “Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion,” Nat. Phys. 10(9), 676–682 (2014).
[Crossref] [PubMed]

G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. van Grondelle, and G. R. Fleming, “Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy,” J. Phys. Chem. B 113(46), 15352–15363 (2009).
[Crossref] [PubMed]

van Roon, H.

C. Ramanan, M. Ferretti, H. van Roon, V. I. Novoderezhkin, and R. van Grondelle, “Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII,” Phys. Chem. Chem. Phys. 19(34), 22877–22886 (2017).
[Crossref] [PubMed]

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Viswanathan, S.

von Berlepsch, H.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6(1), 7755 (2015).
[Crossref] [PubMed]

Wang, G.

Wang, R.

Wang, X.

Wang, Z.

S. Yue, Z. Wang, X. Leng, R. D. Zhu, H. L. Chen, and Y. X. Weng, “Coupling of multi-vibrational modes in bacteriochlorophyll a in solution observed with 2D electronic spectroscopy,” Chem. Phys. Lett. 683, 591–597 (2017).
[Crossref]

S. Yue, Z. Wang, X. C. He, G. B. Zhu, and Y. X. Weng, “Construction of the Apparatus for Two Dimensional Electronic Spectroscopy and Characterization of the Instrument,” Chin. J. Chem. Phys. 28(4), 509–517 (2015).
[Crossref]

Warren, W. S.

D. Keusters, H.-S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103(49), 10369–10380 (1999).
[Crossref]

Wells, K. L.

K. L. Wells, P. H. Lambrev, Z. Zhang, G. Garab, and H. S. Tan, “Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy,” Phys. Chem. Chem. Phys. 16(23), 11640–11646 (2014).
[Crossref] [PubMed]

Weng, Y. X.

X. Leng, Y. M. Yan, R. D. Zhu, K. Song, Y. X. Weng, and Q. Shi, “Simulation of the two-dimensional electronic spectroscopy and energy transfer dynamics of light-harvesting complex ii at ambient temperature,” J. Phys. Chem. B 122(17), 4642–4652 (2018).
[Crossref] [PubMed]

Y. X. Weng, “Detection of electronic coherence via two-dimensional electronic spectroscopy in condensed phase,” Chin. J. Chem. Phys. 31(2), 135–151 (2018).
[Crossref]

S. Yue, Z. Wang, X. Leng, R. D. Zhu, H. L. Chen, and Y. X. Weng, “Coupling of multi-vibrational modes in bacteriochlorophyll a in solution observed with 2D electronic spectroscopy,” Chem. Phys. Lett. 683, 591–597 (2017).
[Crossref]

S. Yue, Z. Wang, X. C. He, G. B. Zhu, and Y. X. Weng, “Construction of the Apparatus for Two Dimensional Electronic Spectroscopy and Characterization of the Instrument,” Chin. J. Chem. Phys. 28(4), 509–517 (2015).
[Crossref]

Weng, Y.-X.

X. Leng, S. Yue, Y.-X. Weng, K. Song, and Q. Shi, “Effects of finite laser pulse width on two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 667, 79–86 (2017).
[Crossref]

Wilcox, D. E.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[Crossref] [PubMed]

Xiao, M.

Yan, T. M.

Yan, Y. M.

X. Leng, Y. M. Yan, R. D. Zhu, K. Song, Y. X. Weng, and Q. Shi, “Simulation of the two-dimensional electronic spectroscopy and energy transfer dynamics of light-harvesting complex ii at ambient temperature,” J. Phys. Chem. B 122(17), 4642–4652 (2018).
[Crossref] [PubMed]

Yang, P.

D. M. Monahan, L. Guo, J. Lin, L. Dou, P. Yang, and G. R. Fleming, “Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck,” J. Phys. Chem. Lett. 8(14), 3211–3215 (2017).
[Crossref] [PubMed]

Yetzbacher, M. K.

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional fourier transform spectra of multilevel systems,” J. Phys. Chem. A 113(47), 13287–13299 (2009).
[Crossref] [PubMed]

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
[Crossref] [PubMed]

Yocum, C. F.

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[Crossref] [PubMed]

Yu, A.

J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106(34), 7651–7654 (2002).
[Crossref]

Yue, S.

S. Yue, Z. Wang, X. Leng, R. D. Zhu, H. L. Chen, and Y. X. Weng, “Coupling of multi-vibrational modes in bacteriochlorophyll a in solution observed with 2D electronic spectroscopy,” Chem. Phys. Lett. 683, 591–597 (2017).
[Crossref]

X. Leng, S. Yue, Y.-X. Weng, K. Song, and Q. Shi, “Effects of finite laser pulse width on two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 667, 79–86 (2017).
[Crossref]

S. Yue, Z. Wang, X. C. He, G. B. Zhu, and Y. X. Weng, “Construction of the Apparatus for Two Dimensional Electronic Spectroscopy and Characterization of the Instrument,” Chin. J. Chem. Phys. 28(4), 509–517 (2015).
[Crossref]

Zhang, C.

Zhang, Y.

Zhang, Z.

K. L. Wells, P. H. Lambrev, Z. Zhang, G. Garab, and H. S. Tan, “Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy,” Phys. Chem. Chem. Phys. 16(23), 11640–11646 (2014).
[Crossref] [PubMed]

Zhao, B.

J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8(1), 376 (2017).
[Crossref] [PubMed]

Zhao, W.

Zheng, H.

Zhu, G. B.

S. Yue, Z. Wang, X. C. He, G. B. Zhu, and Y. X. Weng, “Construction of the Apparatus for Two Dimensional Electronic Spectroscopy and Characterization of the Instrument,” Chin. J. Chem. Phys. 28(4), 509–517 (2015).
[Crossref]

Zhu, R. D.

X. Leng, Y. M. Yan, R. D. Zhu, K. Song, Y. X. Weng, and Q. Shi, “Simulation of the two-dimensional electronic spectroscopy and energy transfer dynamics of light-harvesting complex ii at ambient temperature,” J. Phys. Chem. B 122(17), 4642–4652 (2018).
[Crossref] [PubMed]

S. Yue, Z. Wang, X. Leng, R. D. Zhu, H. L. Chen, and Y. X. Weng, “Coupling of multi-vibrational modes in bacteriochlorophyll a in solution observed with 2D electronic spectroscopy,” Chem. Phys. Lett. 683, 591–597 (2017).
[Crossref]

Zhu, W.

Zigmantas, D.

V. Butkus, J. Alster, E. Bašinskaitė, R. N. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring,” J. Phys. Chem. Lett. 8(10), 2344–2349 (2017).
[Crossref] [PubMed]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6(1), 7755 (2015).
[Crossref] [PubMed]

E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van Grondelle, “Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion,” Nat. Phys. 10(9), 676–682 (2014).
[Crossref] [PubMed]

R. Augulis and D. Zigmantas, “Detector and dispersive delay calibration issues in broadband 2D electronic spectroscopy,” J. Opt. Soc. Am. B 30(6), 1770–1774 (2013).
[Crossref]

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (2)

F. D. Fuller and J. P. Ogilvie, “Experimental implementations of two-dimensional fourier transform electronic spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

D. M. Jonas, “Two-dimensional femtosecond spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

Appl. Opt. (1)

Chem (1)

J. C. Dean, T. Mirkovic, Z. S. D. Toa, D. G. Oblinsky, and G. D. Scholes, “Vibronic Enhancement of Algae Light Harvesting,” Chem 1(6), 858–872 (2016).
[Crossref]

Chem. Phys. Lett. (4)

S. Yue, Z. Wang, X. Leng, R. D. Zhu, H. L. Chen, and Y. X. Weng, “Coupling of multi-vibrational modes in bacteriochlorophyll a in solution observed with 2D electronic spectroscopy,” Chem. Phys. Lett. 683, 591–597 (2017).
[Crossref]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1–3), 184–189 (2004).
[Crossref]

X. Leng, S. Yue, Y.-X. Weng, K. Song, and Q. Shi, “Effects of finite laser pulse width on two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 667, 79–86 (2017).
[Crossref]

A. Nemeth, F. Milota, T. Mančal, V. Lukeš, H. F. Kauffmann, and J. Sperling, “Vibronic modulation of lineshapes in two-dimensional electronic spectra,” Chem. Phys. Lett. 459(1–6), 94–99 (2008).
[Crossref]

Chin. J. Chem. Phys. (2)

Y. X. Weng, “Detection of electronic coherence via two-dimensional electronic spectroscopy in condensed phase,” Chin. J. Chem. Phys. 31(2), 135–151 (2018).
[Crossref]

S. Yue, Z. Wang, X. C. He, G. B. Zhu, and Y. X. Weng, “Construction of the Apparatus for Two Dimensional Electronic Spectroscopy and Characterization of the Instrument,” Chin. J. Chem. Phys. 28(4), 509–517 (2015).
[Crossref]

J. Biol. Chem. (1)

S. Caffarri, R. Croce, J. Breton, and R. Bassi, “The major antenna complex of photosystem II has a xanthophyll binding site not involved in light harvesting,” J. Biol. Chem. 276(38), 35924–35933 (2001).
[Crossref] [PubMed]

J. Chem. Phys. (4)

T. N. Do, M. F. Gelin, and H.-S. Tan, “Simplified expressions that incorporate finite pulse effects into coherent two-dimensional optical spectra,” J. Chem. Phys. 147(14), 144103 (2017).
[Crossref] [PubMed]

T. Brixner, T. Mancal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
[Crossref] [PubMed]

J. D. Hybl, A. Albrecht Ferro, and D. M. Jonas, “Two-dimensional Fourier transform electronic spectroscopy,” J. Chem. Phys. 115(14), 6606–6622 (2001).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (6)

J. D. Hybl, A. Yu, D. A. Farrow, and D. M. Jonas, “Polar solvation dynamics in the femtosecond evolution of two-dimensional Fourier transform spectra,” J. Phys. Chem. A 106(34), 7651–7654 (2002).
[Crossref]

E. Harel, A. F. Fidler, and G. S. Engel, “Single-shot gradient-assisted photon echo electronic spectroscopy,” J. Phys. Chem. A 115(16), 3787–3796 (2011).
[Crossref] [PubMed]

R. Tempelaar, A. Halpin, P. J. Johnson, J. Cai, R. S. Murphy, J. Knoester, R. J. D. Miller, and T. L. Jansen, “Laser-Limited Signatures of Quantum Coherence,” J. Phys. Chem. A 120(19), 3042–3048 (2016).
[Crossref] [PubMed]

H. Li, A. P. Spencer, A. Kortyna, G. Moody, D. M. Jonas, and S. T. Cundiff, “Pulse propagation effects in optical 2D Fourier-transform spectroscopy: experiment,” J. Phys. Chem. A 117(29), 6279–6287 (2013).
[Crossref] [PubMed]

B. Cho, M. K. Yetzbacher, K. A. Kitney, E. R. Smith, and D. M. Jonas, “Propagation and beam geometry effects on two-dimensional fourier transform spectra of multilevel systems,” J. Phys. Chem. A 113(47), 13287–13299 (2009).
[Crossref] [PubMed]

D. Keusters, H.-S. Tan, and W. S. Warren, “Role of pulse phase and direction in two-dimensional optical spectroscopy,” J. Phys. Chem. A 103(49), 10369–10380 (1999).
[Crossref]

J. Phys. Chem. B (3)

G. S. Schlau-Cohen, T. R. Calhoun, N. S. Ginsberg, E. L. Read, M. Ballottari, R. Bassi, R. van Grondelle, and G. R. Fleming, “Pathways of energy flow in LHCII from two-dimensional electronic spectroscopy,” J. Phys. Chem. B 113(46), 15352–15363 (2009).
[Crossref] [PubMed]

X. Leng, Y. M. Yan, R. D. Zhu, K. Song, Y. X. Weng, and Q. Shi, “Simulation of the two-dimensional electronic spectroscopy and energy transfer dynamics of light-harvesting complex ii at ambient temperature,” J. Phys. Chem. B 122(17), 4642–4652 (2018).
[Crossref] [PubMed]

H. G. Duan, A. L. Stevens, P. Nalbach, M. Thorwart, V. I. Prokhorenko, and R. J. D. Miller, “Two-dimensional electronic spectroscopy of light-harvesting complex ii at ambient temperature: a joint experimental and theoretical study,” J. Phys. Chem. B 119(36), 12017–12027 (2015).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (3)

V. Butkus, J. Alster, E. Bašinskaitė, R. N. Augulis, P. Neuhaus, L. Valkunas, H. L. Anderson, D. Abramavicius, and D. Zigmantas, “Discrimination of Diverse Coherences Allows Identification of Electronic Transitions of a Molecular Nanoring,” J. Phys. Chem. Lett. 8(10), 2344–2349 (2017).
[Crossref] [PubMed]

T. Stoll, F. Branchi, J. Réhault, F. Scotognella, F. Tassone, I. Kriegel, and G. Cerullo, “Two-Dimensional Electronic Spectroscopy Unravels sub-100 fs Electron and Hole Relaxation Dynamics in Cd-Chalcogenide Nanostructures,” J. Phys. Chem. Lett. 8(10), 2285–2290 (2017).
[Crossref] [PubMed]

D. M. Monahan, L. Guo, J. Lin, L. Dou, P. Yang, and G. R. Fleming, “Room-Temperature Coherent Optical Phonon in 2D Electronic Spectra of CH3NH3PbI3 Perovskite as a Possible Cooling Bottleneck,” J. Phys. Chem. Lett. 8(14), 3211–3215 (2017).
[Crossref] [PubMed]

Nat. Chem. (1)

F. D. Fuller, J. Pan, A. Gelzinis, V. Butkus, S. S. Senlik, D. E. Wilcox, C. F. Yocum, L. Valkunas, D. Abramavicius, and J. P. Ogilvie, “Vibronic coherence in oxygenic photosynthesis,” Nat. Chem. 6(8), 706–711 (2014).
[Crossref] [PubMed]

Nat. Commun. (4)

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6(1), 7755 (2015).
[Crossref] [PubMed]

A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B. Plenio, C. A. Rozzi, G. Cerullo, E. Molinari, and C. Lienau, “Tracking the coherent generation of polaron pairs in conjugated polymers,” Nat. Commun. 7(1), 13742 (2016).
[Crossref] [PubMed]

J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, and F. Deschler, “Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy,” Nat. Commun. 8(1), 376 (2017).
[Crossref] [PubMed]

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6(1), 6086 (2015).
[Crossref] [PubMed]

Nat. Phys. (1)

E. Romero, R. Augulis, V. I. Novoderezhkin, M. Ferretti, J. Thieme, D. Zigmantas, and R. van Grondelle, “Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion,” Nat. Phys. 10(9), 676–682 (2014).
[Crossref] [PubMed]

Nature (2)

G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature 446(7137), 782–786 (2007).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Phys. Chem. Chem. Phys. (2)

C. Ramanan, M. Ferretti, H. van Roon, V. I. Novoderezhkin, and R. van Grondelle, “Evidence for coherent mixing of excited and charge-transfer states in the major plant light-harvesting antenna, LHCII,” Phys. Chem. Chem. Phys. 19(34), 22877–22886 (2017).
[Crossref] [PubMed]

K. L. Wells, P. H. Lambrev, Z. Zhang, G. Garab, and H. S. Tan, “Pathways of energy transfer in LHCII revealed by room-temperature 2D electronic spectroscopy,” Phys. Chem. Chem. Phys. 16(23), 11640–11646 (2014).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

F. V. de A Camargo, L. Grimmelsmann, H. L. Anderson, S. R. Meech, and I. A. Heisler, “Resolving Vibrational from Electronic Coherences in Two-Dimensional Electronic Spectroscopy: The Role of the Laser Spectrum,” Phys. Rev. Lett. 118(3), 033001 (2017).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, and R. J. D. Miller, “Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer,” Proc. Natl. Acad. Sci. U.S.A. 114(32), 8493–8498 (2017).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82(8), 081301 (2011).
[Crossref] [PubMed]

Science (1)

E. Collini and G. D. Scholes, “Coherent intrachain energy migration in a conjugated polymer at room temperature,” Science 323(5912), 369–373 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of 2DES experimental setup. (a) The setup with a top view. ST1 translation stage; BS1, 2 beam splitter; The time delays of beam 1 and 2 are tuned by glass wedge pairs W1 and W2, respectively; SM spherical mirror; (b) A side view for the circled part in (a); (c) The NOPA spectrum (magenta shaded) and the absorption spectrum (blue line) of LHCII at ambient temperature. The inset shows the measured transient grating frequency-resolved optical gating (TG-FROG) trace of the NOPA pulse measured at the sample position. The FWHM was measured to be 17 fs; (d) Phase stability of the heterodyned signals at 625 nm measured every 4 seconds over 30 minutes.
Fig. 2
Fig. 2 (a) The as-acquired 2D map of LHCII at T = 200 fs. (b) Pulse sequence used in the 2DES setup. (c) A wedge-based delay line. Blue lines show the path of beam transmitting through the wedge pair and the red line indicates the optical path difference before and after the movement of wedge.
Fig. 3
Fig. 3 Wedge calibration by spectral interferometry. (a) Top: spectral interference pattern of beam 1 and 2 by moving the position of the wedge 1 with a step of 0.01 mm. Bottom: the temporal oscillation at 650 nm wavelength. (b) Extraction of the temporal oscillation component. The black curve shows the Fourier transform result and the red dashed line is the Hamming window to filter the oscillating term. (c) The linear fitting (red line) of the unwrapped phase (black point) after the inverse Fourier transform for the data filtered in (b). The residue of phase fitting is also indicated as blue line.
Fig. 4
Fig. 4 Wavelength dependence of the calibration factor. The solid curves show the calibration factors of wedge 1 (blue) and wedge 2 (magenta) corresponding to the first two excitation beams respectively and the dashed curves indicate the calculated results according to the Eq. (2) with different wedge angles.
Fig. 5
Fig. 5 Spectral distortions in 2DES of LHCII caused by different CF values at T = 200 fs. (a) The same wavelength-averaged CF value for both k1 and k2 according to calibration results in Fig. 4; (b) k value with an error of + 0.2 fs/mm; (c) k value with an error of −0.2 fs/mm. (d) The individual averaged k value for k1 and k2 according to Fig. 4; (e) k1 with the error of + 0.1 fs/mm and k2 with the error of −0.1 fs/mm; (f) the opposite case of (e). The diagonal lines are plotted as white dashed lines in 2D spectra.
Fig. 6
Fig. 6 (a) Spectral correction according to the wavelength-dependent k(λ) curves. (b) The comparison of slices between Figs. 6(a) and 5(a) taken along two dash dot lines in (a). The blue (red) color indicates the detection energy position of Chl a (Chl b) and the solid (dashed) line indicates the result from the k value with (without) wavelength dependence.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S (3) ( ω 1 ,T, ω 3 )= S (3) (τ,T,t)exp( i ω 1 τ )exp( i ω 3 t )dτdt ,
k= Δτ D =(n1)sinα/c.
S (3) ( ω 1 )= exp( i ω 0 τ )exp( i ω 1 k k τ )dτ = k k δ( ω 1 k k ω 0 ).
Δω ω 0 = k k k Δk k .
| Δω ω |max( | Δ k 1 | k 1 , | Δ k 2 | k 2 ),
τ m (i)=k( λ m )x(i),