Abstract

In this paper, we present the design and experimental demonstration of a snapshot imaging spectrometer based on channeled imaging spectrometry (CIS) and channeled imaging polarimetry (CIP). Using a geometric phase microlens array (GPMLA) with multiple focal lengths, the proposed spectrometer selects wavelength components within its designed operating waveband of 450–700 nm. Compared to other snapshot spectral imagers, its key components are especially suitable for roll-to-roll (R2R) rapid fabrication, which gives the spectrometer potential for low-cost mass production. The principles and proof-of-concept experimental system of the sensor are described in detail, followed by lab validation and outdoor measurement results which demonstrate the sensor’s ability to resolve spectral and spatial contents under both experimental and natural illumination conditions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High resolution snapshot imaging spectrometer using a fusion algorithm based on grouping principal component analysis

Shuaishuai Zhu, Yu Zhang, Jie Lin, Liangyu Zhao, Yanmei Shen, and Peng Jin
Opt. Express 24(21) 24624-24640 (2016)

Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy

Jason G. Dwight and Tomasz S. Tkaczyk
Biomed. Opt. Express 8(3) 1950-1964 (2017)

Midwave-infrared snapshot imaging spectrometer

Curtis E. Volin, John P. Garcia, Eustace L. Dereniak, Michael R. Descour, Tom Hamilton, and Robert McMillan
Appl. Opt. 40(25) 4501-4506 (2001)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45(22), 5453–5469 (2006).
    [Crossref] [PubMed]
  2. W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
    [Crossref] [PubMed]
  3. L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
    [Crossref]
  4. R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
    [Crossref]
  5. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker, “Demonstration of a high-speed nonscanning imaging spectrometer,” Opt. Lett. 22(16), 1271–1273 (1997).
    [Crossref] [PubMed]
  6. C. G. Simi, E. M. Winter, M. M. Williams, and D. C. Driscoll, “Compact airborne spectral sensor (COMPASS),” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII SPIE, 4381, pp. 129–137 (2001).
  7. M. W. Kudenov, M. E. Lowenstern, J. M. Craven, and C. F. LaCasse, “Field deployable pushbroom hyperspectral imaging polarimeter,” Opt. Eng. 56(10), 103107 (2017).
    [Crossref]
  8. J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt. 50(8), 1170–1185 (2011).
    [Crossref] [PubMed]
  9. Y. Wang, M. W. Kudenov, and J. Craven-Jones, “Phase error in Fourier transform spectrometers employing polarization interferometers,” in Polarization: Measurement, Analysis, and Remote Sensing XI SPIE, 9099, p. 90990K (2014).
  10. A. Gorman, D. W. Fletcher-Holmes, and A. R. Harvey, “Generalization of the Lyot filter and its application to snapshot spectral imaging,” Opt. Express 18(6), 5602–5608 (2010).
    [Crossref] [PubMed]
  11. T. Okamoto and I. Yamaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16(16), 1277–1279 (1991).
    [Crossref] [PubMed]
  12. M. R. Descour, C. E. Volin, E. L. Dereniak, T. M. Gleeson, M. F. Hopkins, D. W. Wilson, and P. D. Maker, “Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser,” Appl. Opt. 36(16), 3694–3698 (1997).
    [Crossref] [PubMed]
  13. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
    [Crossref] [PubMed]
  14. L. Gao, R. T. Smith, and T. S. Tkaczyk, “Snapshot hyperspectral retinal camera with the Image Mapping Spectrometer (IMS),” Biomed. Opt. Express 3(1), 48–54 (2012).
    [Crossref] [PubMed]
  15. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–B51 (2008).
    [Crossref] [PubMed]
  16. M. W. Kudenov and E. L. Dereniak, “Compact real-time birefringent imaging spectrometer,” Opt. Express 20(16), 17973–17986 (2012).
    [Crossref] [PubMed]
  17. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
    [Crossref]
  18. G. T. McCollough, C. M. Rankin, and M. L. Weiner, “6.1: Roll-to-Roll manufacturing considerations for flexible, Cholesteric Liquid Crystal (ChLC) Display Media,” SID Symp. Dig. Tech. Pap. 36(1), 64–67 (2005).
    [Crossref]
  19. H. Sato, K. Miyashita, M. Kimura, and T. Akahane, “Study of liquid crystal alignment formed using slit coater,” Jpn. J. Appl. Phys.  50(1S2), 01BC16 (2011).
  20. M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50(15), 2283–2293 (2011).
    [Crossref] [PubMed]
  21. M. W. Kudenov, M. E. L. Jungwirth, E. L. Dereniak, and G. R. Gerhart, “White-light Sagnac interferometer for snapshot multispectral imaging,” Appl. Opt. 49(21), 4067–4076 (2010).
    [Crossref] [PubMed]
  22. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (IET, 1978).
  23. R. Kingslake and R. R. Shannon, eds., Applied Optics and Optical Engineering. (Academic, 1992, Vol. XI, Chap. 4).
  24. Y. Wang, M. Kudenov, A. Kashani, J. Schwiegerling, and M. Escuti, “Snapshot retinal imaging Mueller matrix polarimeter,” in Polarization Science and Remote Sensing VII SPIE, 9613, p. 96130A (2015).
  25. T. A. Mitchell and T. W. Stone, “Compact snapshot multispectral imaging system,” United States patent US8027041B1 (September 27, 2011).

2017 (1)

M. W. Kudenov, M. E. Lowenstern, J. M. Craven, and C. F. LaCasse, “Field deployable pushbroom hyperspectral imaging polarimeter,” Opt. Eng. 56(10), 103107 (2017).
[Crossref]

2013 (1)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

2012 (2)

2011 (3)

2010 (3)

2008 (1)

2007 (1)

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (1)

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
[Crossref]

1997 (2)

1996 (1)

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[Crossref]

1991 (1)

Akahane, T.

H. Sato, K. Miyashita, M. Kimura, and T. Akahane, “Study of liquid crystal alignment formed using slit coater,” Jpn. J. Appl. Phys.  50(1S2), 01BC16 (2011).

Bearman, G.

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref] [PubMed]

Boreman, G. D.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
[Crossref]

Brady, D.

Cameron, M.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[Crossref]

Chenault, D. B.

Craven, J. M.

M. W. Kudenov, M. E. Lowenstern, J. M. Craven, and C. F. LaCasse, “Field deployable pushbroom hyperspectral imaging polarimeter,” Opt. Eng. 56(10), 103107 (2017).
[Crossref]

Craven-Jones, J.

Dereniak, E. L.

Descour, M. R.

Escuti, M. J.

Fink, W.

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref] [PubMed]

Fletcher-Holmes, D. W.

Gao, L.

Genzel, R.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[Crossref]

Gerhart, G. R.

Gleeson, T. M.

Goldstein, D. L.

Gorman, A.

Hagen, N.

Harvey, A. R.

Hopkins, M. F.

Humayun, M.

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref] [PubMed]

John, R.

Johnson, W. R.

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref] [PubMed]

Jungwirth, M. E. L.

Kester, R. T.

Kimura, M.

H. Sato, K. Miyashita, M. Kimura, and T. Akahane, “Study of liquid crystal alignment formed using slit coater,” Jpn. J. Appl. Phys.  50(1S2), 01BC16 (2011).

Krabbe, A.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[Crossref]

Kroker, H.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[Crossref]

Kudenov, M. W.

LaCasse, C. F.

M. W. Kudenov, M. E. Lowenstern, J. M. Craven, and C. F. LaCasse, “Field deployable pushbroom hyperspectral imaging polarimeter,” Opt. Eng. 56(10), 103107 (2017).
[Crossref]

Lowenstern, M. E.

M. W. Kudenov, M. E. Lowenstern, J. M. Craven, and C. F. LaCasse, “Field deployable pushbroom hyperspectral imaging polarimeter,” Opt. Eng. 56(10), 103107 (2017).
[Crossref]

Maker, P. D.

Miyashita, K.

H. Sato, K. Miyashita, M. Kimura, and T. Akahane, “Study of liquid crystal alignment formed using slit coater,” Jpn. J. Appl. Phys.  50(1S2), 01BC16 (2011).

Oka, K.

Okamoto, T.

Sato, H.

H. Sato, K. Miyashita, M. Kimura, and T. Akahane, “Study of liquid crystal alignment formed using slit coater,” Jpn. J. Appl. Phys.  50(1S2), 01BC16 (2011).

Schumacher, A. B.

Sellar, R. G.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
[Crossref]

Shaw, J. A.

Smith, R. T.

Stapelbroek, M. G.

Tacconi-Garman, L. E.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[Crossref]

Thatte, N.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[Crossref]

Thome, K. J.

Tkaczyk, T. S.

Tyo, J. S.

Volin, C. E.

Wagadarikar, A.

Weitzel, L.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[Crossref]

Willett, R.

Wilson, D. W.

Yamaguchi, I.

Appl. Opt. (6)

Astron. Astrophys. Suppl. Ser. (1)

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[Crossref]

Biomed. Opt. Express (1)

J. Biomed. Opt. (1)

W. R. Johnson, D. W. Wilson, W. Fink, M. Humayun, and G. Bearman, “Snapshot hyperspectral imaging in ophthalmology,” J. Biomed. Opt. 12(1), 014036 (2007).
[Crossref] [PubMed]

Jpn. J. Appl. Phys (1)

H. Sato, K. Miyashita, M. Kimura, and T. Akahane, “Study of liquid crystal alignment formed using slit coater,” Jpn. J. Appl. Phys.  50(1S2), 01BC16 (2011).

Opt. Eng. (3)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
[Crossref]

M. W. Kudenov, M. E. Lowenstern, J. M. Craven, and C. F. LaCasse, “Field deployable pushbroom hyperspectral imaging polarimeter,” Opt. Eng. 56(10), 103107 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Other (7)

C. G. Simi, E. M. Winter, M. M. Williams, and D. C. Driscoll, “Compact airborne spectral sensor (COMPASS),” in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII SPIE, 4381, pp. 129–137 (2001).

Y. Wang, M. W. Kudenov, and J. Craven-Jones, “Phase error in Fourier transform spectrometers employing polarization interferometers,” in Polarization: Measurement, Analysis, and Remote Sensing XI SPIE, 9099, p. 90990K (2014).

G. T. McCollough, C. M. Rankin, and M. L. Weiner, “6.1: Roll-to-Roll manufacturing considerations for flexible, Cholesteric Liquid Crystal (ChLC) Display Media,” SID Symp. Dig. Tech. Pap. 36(1), 64–67 (2005).
[Crossref]

J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (IET, 1978).

R. Kingslake and R. R. Shannon, eds., Applied Optics and Optical Engineering. (Academic, 1992, Vol. XI, Chap. 4).

Y. Wang, M. Kudenov, A. Kashani, J. Schwiegerling, and M. Escuti, “Snapshot retinal imaging Mueller matrix polarimeter,” in Polarization Science and Remote Sensing VII SPIE, 9613, p. 96130A (2015).

T. A. Mitchell and T. W. Stone, “Compact snapshot multispectral imaging system,” United States patent US8027041B1 (September 27, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the proposed snapshot imaging spectrometer in the yz plane. Light passes through the gratings and focused by the lenslet array onto the FPA plane.
Fig. 2
Fig. 2 Schematic of a single GPH lenslet focusing two wavelengths: the design wavelength λ0 and the out-of-band wavelength λ1.
Fig. 3
Fig. 3 (a) Plot of FWHM spectral bandwidth versus 0, calculated using the geometrical model, for design wavelengths of 400, 550, 650, and 800 nm; (b) Plot of the FWHM versus wavelength for fixed values of 0 of 20, 40, 60, and 80.
Fig. 4
Fig. 4 Fourier space representation of the color channel information contained within each lenslet’s sub-image.
Fig. 5
Fig. 5 Results of a Monte Carlo simulation, indicating the signal to noise ratio (SNR) tradespace of the sensor compared to a standard filtered camera. Solid lines indicate a dichroic filter (D) while dashed lines indicate spectral filtering via. spatial modulation (S).
Fig. 6
Fig. 6 Photo of the experimental setup on the benchtop.
Fig. 7
Fig. 7 Monochromator data collected from the sensor at (a) 470 nm; (b) 550 nm; and (c) 650 nm for a subset of 4 × 7 lenslets. The region of maximum spatial contrast transitions across the array due to the spatial filtering of the carrier frequency by the GPMLA’s different focal lengths.
Fig. 8
Fig. 8 (a) Measured and predicted spectral transmittances versus wavelength for the 470 nm, 570 nm, and 650 nm lenslets; (b) Theoretical and predicted FWHM spectral bandwidths for each lenslet versus wavelength.
Fig. 9
Fig. 9 The normalized NIST traceable reflectance of the blue (dashed-dotted line), green (solid line), yellow (dashed line), and red (dotted line) spectralon tiles, as compared to the measured (M) values.
Fig. 10
Fig. 10 (a) RGB image of the outdoor scene. (b) The locations and focused wavelengths of the lenslets on the GPMLA. (c) Raw data image captured by the AVT GX2750 camera. (d) Enlarged view of a sub-image from raw data, showing the polarization fringes. (e) Filtered spectral image.
Fig. 11
Fig. 11 (a) Image of the original scene; (b-d) Calculated reflectivity from the GPMLA compared to the OO spectrometer for car (position 1), brick (position 2), and leaf (position 3).

Tables (1)

Tables Icon

Table 1 RMS error calculated for each color tile from 470 to 720 nm.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

I( x,y,λ )= 1 2 [ S 0 ( x,y,λ )+ S 1 ( x,y,λ )cos( 2π ξ 0 x )+ S 2 ( x,y,λ )sin( 2π ξ 0 x ) ],
ξ 0 = 2mt f 0 Λ ,
f λ ( λ )= λ 0 λ f 0 ,
wD( λ λ 0 1 ),
PSF( y )=rect( y w ),
MTF( ξ )| sinc( wξ ) |,
τ( λ )=| sinc[ D ξ 0 ( λ λ 0 1 ) ] |.
FWHM( λ )= 1.2 λ 0 D ξ 0 .
W( ρ )= W 020 ρ 2 ,
ρ= r R = x p 2 + y p 2 R ,
W 020 ( λ )= Δz 8λ ( D f λ ) 2 ,
Δz( λ )= f 0 f λ ( λ ),
F/#( λ )= f λ ( λ )/D .
τ( λ )=MTF( 0, ξ 0 ,Δz ).
I( x,y )= 1 2 λ 1 λ 2 [ S 0 ( x,y,λ )+ S 0 ( x,y,λ )τ( λ )cos( 2π ξ 0 x ) ] dλ,
C 0 = 1 2 λ 1 λ 2 S 0 ( ξ,η,λ ) δ( ξ,η )dλ, and
C 1 = 1 4 λ 1 λ 2 τ( λ )[ S 0 ( ξ,η,λ )δ( ξ ξ 0 ,η ) ] dλ,
I 1 ( x,y )= 1 4 λ 1 λ 2 τ( λ ) S 0 ( x,y,λ )exp( 2π ξ 0 x ) dλ.
W( ξ,η )= 1 4 { 1+cos[ 2π( ξα ) w h ] }{ 1+cos[ 2π( ηβ ) w h ] },
M=( N x +2s )( N y +2s ) N W .