Abstract

We propose a novel multimode fiber (MMF) with a 30 μm-core and fluorine-doped cladding for both high-speed short wavelength division multiplexing (SWDM) and coarse wavelength division multiplexing (CWDM) transmission. By optimizing the core size, the mode field diameter (MFD) mismatch between the proposed fiber and both the standard single-mode fiber (SMF) and MMF is minimized, which enables the quasi-single mode operation in the CWDM window and a compromised coupling loss with standard MMFs and SMFs. By adopting a fluorine-doped silica cladding, the bandwidth dependence on wavelength of the proposed fiber is minimized, which indicates that the modal bandwidth performance at the longer wavelength can be effectively improved without compromising modal bandwidth at 850 nm. The error-free 100 Gb/s (4×25.78 Gb/s) multimode transmission over 250 meter-long fiber is achieved using a commercially available VCSEL-based SWDM transceiver. The applicable distance can be extended to 300 meters when a biterror rate just below the forward error correction (FEC) threshold of 5×10 5 is acceptable. Besides, the 100 Gb/s error-free single-mode transmission over 10 km-long fiber was also demonstrated with a commercially available directly modulatedlaser (DML)-based CWDM transceiver. The results imply that the proposed MMF may be useful for large-scale data center applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Four 45 Gbps PAM4 VCSEL based transmission through 300 m wideband OM4 fiber over SWDM4 wavelength grid

Reza Motaghiannezam, Ilya Lyubomirsky, Henry Daghighian, Chris Kocot, Timo Gray, Jim Tatum, Adrian Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard
Opt. Express 24(15) 17193-17199 (2016)

High-Speed 850 nm Quasi-Single-Mode VCSELs for Extended-Reach Optical Interconnects

Rashid Safaisini, Krzysztof Szczerba, Petter Westbergh, Erik Haglund, Benjamin Kögel, Johan S. Gustavsson, Magnus Karlsson, Peter Andrekson, and Anders Larsson
J. Opt. Commun. Netw. 5(7) 686-695 (2013)

Few-mode VCSEL chip for 100-Gb/s transmission over 100  m multimode fiber

Hsuan-Yun Kao, Yu-Chieh Chi, Cheng-Ting Tsai, Shan-Fong Leong, Chun-Yen Peng, Huai-Yung Wang, Jian Jang Huang, Jau-Ji Jou, Tien-Tsorng Shih, Hao-Chung Kuo, Wood-Hi Cheng, Chao-Hsin Wu, and Gong-Ru Lin
Photon. Res. 5(5) 507-515 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Urricariet, “SWDM: The lowest total cost solution for 40G/100G in the enterprise data center,” Finisar White Paper (2017). https://www.finisar.com/sites/default/files/resources/finisar_swdm_white_paper_oct2017c.pdf
  2. X. Chen, J. E. Hurley, D. Gui, J. S. Stone, and M. Li, “Modal dispersion compensation module for 100G SWDM transmission using OM4 multimode fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper W2A.3.
  3. TIA-492AAAE, “Detail specification for 50-μm core-size/125-μm cladding diameter class 1a graded-index multimode optical fibers with laser-optimized bandwidth characteristics specified for wavelength division multiplexing,” TIA/EIA Standards Document (2016).
  4. E. Parsons, M. Lanier, R. Patterson, and G. Irwin, “100G SWDM transmission over 250m OM5 and OM4+ multimode fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M3F.5.
  5. R. Shubochkin, Y. Sun, D. Braganza, K. Balemarthy, and J. Kim, “Next generation wideband multimode fiber for shortwave wavelength division multiplexing in datacom links,” in Proceedings of The International Cable and Connectivity Symposium (IWCS, 2015), paper 10-3.
  6. J. Liu, Q. Huang, S. Tao, C. Zeng, and J. Xia, “Low-cost hybrid integrated 4×25.78 Gb/s CWDM TOSA for 10 km transmission using DFB-LDs and an arrayed waveguide grating multiplexer,” Photonics Res. 6(11), 1067–1073 (2018).
    [Crossref]
  7. X. Chen, J. Hurley, J. Stone, J. Downie, I. Roudas, D. Coleman, and M. Li, “Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th4E.4.
  8. Y. Liu, L. Ma, C. Yang, W. Tong, and Z. He, “Multimode and single-mode fiber compatible graded-index multicore fiber for high density optical interconnect application,” Opt. Express 26(9), 11639–11648 (2018).
    [Crossref] [PubMed]
  9. X. Chen, J. E. Hurley, J. S. Stone, A. R. Zakharian, D. Coleman, and M. Li, “Design of universal fiber with demonstration of full system reaches over 100G SR4, 40G sWDM, and 100G CWDM4 transceivers,” Opt. Express 24(16), 18492–18500 (2016).
    [Crossref] [PubMed]
  10. D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52(9), 1563–1578 (1973).
    [Crossref]
  11. R. Olshansky and D. B. Keck, “Pulse broadening in graded-index optical fibers,” Appl. Opt. 15(2), 483–491 (1976).
    [Crossref] [PubMed]
  12. S. Abhijit, “Comparison of min-EMBc and DMD template based qualification of high bandwidth multimode fibers,” in Proceedings of 56th International Wire and Cable Symposium (IWCS, 2007), paper 5-3.
  13. J. W. Fleming, “Dispersion in GeO 2-SiO 2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref] [PubMed]

2018 (2)

J. Liu, Q. Huang, S. Tao, C. Zeng, and J. Xia, “Low-cost hybrid integrated 4×25.78 Gb/s CWDM TOSA for 10 km transmission using DFB-LDs and an arrayed waveguide grating multiplexer,” Photonics Res. 6(11), 1067–1073 (2018).
[Crossref]

Y. Liu, L. Ma, C. Yang, W. Tong, and Z. He, “Multimode and single-mode fiber compatible graded-index multicore fiber for high density optical interconnect application,” Opt. Express 26(9), 11639–11648 (2018).
[Crossref] [PubMed]

2016 (1)

1984 (1)

1976 (1)

1973 (1)

D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52(9), 1563–1578 (1973).
[Crossref]

Abhijit, S.

S. Abhijit, “Comparison of min-EMBc and DMD template based qualification of high bandwidth multimode fibers,” in Proceedings of 56th International Wire and Cable Symposium (IWCS, 2007), paper 5-3.

Balemarthy, K.

R. Shubochkin, Y. Sun, D. Braganza, K. Balemarthy, and J. Kim, “Next generation wideband multimode fiber for shortwave wavelength division multiplexing in datacom links,” in Proceedings of The International Cable and Connectivity Symposium (IWCS, 2015), paper 10-3.

Braganza, D.

R. Shubochkin, Y. Sun, D. Braganza, K. Balemarthy, and J. Kim, “Next generation wideband multimode fiber for shortwave wavelength division multiplexing in datacom links,” in Proceedings of The International Cable and Connectivity Symposium (IWCS, 2015), paper 10-3.

Chen, X.

X. Chen, J. E. Hurley, J. S. Stone, A. R. Zakharian, D. Coleman, and M. Li, “Design of universal fiber with demonstration of full system reaches over 100G SR4, 40G sWDM, and 100G CWDM4 transceivers,” Opt. Express 24(16), 18492–18500 (2016).
[Crossref] [PubMed]

X. Chen, J. Hurley, J. Stone, J. Downie, I. Roudas, D. Coleman, and M. Li, “Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th4E.4.

X. Chen, J. E. Hurley, D. Gui, J. S. Stone, and M. Li, “Modal dispersion compensation module for 100G SWDM transmission using OM4 multimode fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper W2A.3.

Coleman, D.

X. Chen, J. E. Hurley, J. S. Stone, A. R. Zakharian, D. Coleman, and M. Li, “Design of universal fiber with demonstration of full system reaches over 100G SR4, 40G sWDM, and 100G CWDM4 transceivers,” Opt. Express 24(16), 18492–18500 (2016).
[Crossref] [PubMed]

X. Chen, J. Hurley, J. Stone, J. Downie, I. Roudas, D. Coleman, and M. Li, “Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th4E.4.

Downie, J.

X. Chen, J. Hurley, J. Stone, J. Downie, I. Roudas, D. Coleman, and M. Li, “Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th4E.4.

Fleming, J. W.

Gloge, D.

D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52(9), 1563–1578 (1973).
[Crossref]

Gui, D.

X. Chen, J. E. Hurley, D. Gui, J. S. Stone, and M. Li, “Modal dispersion compensation module for 100G SWDM transmission using OM4 multimode fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper W2A.3.

He, Z.

Huang, Q.

J. Liu, Q. Huang, S. Tao, C. Zeng, and J. Xia, “Low-cost hybrid integrated 4×25.78 Gb/s CWDM TOSA for 10 km transmission using DFB-LDs and an arrayed waveguide grating multiplexer,” Photonics Res. 6(11), 1067–1073 (2018).
[Crossref]

Hurley, J.

X. Chen, J. Hurley, J. Stone, J. Downie, I. Roudas, D. Coleman, and M. Li, “Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th4E.4.

Hurley, J. E.

X. Chen, J. E. Hurley, J. S. Stone, A. R. Zakharian, D. Coleman, and M. Li, “Design of universal fiber with demonstration of full system reaches over 100G SR4, 40G sWDM, and 100G CWDM4 transceivers,” Opt. Express 24(16), 18492–18500 (2016).
[Crossref] [PubMed]

X. Chen, J. E. Hurley, D. Gui, J. S. Stone, and M. Li, “Modal dispersion compensation module for 100G SWDM transmission using OM4 multimode fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper W2A.3.

Irwin, G.

E. Parsons, M. Lanier, R. Patterson, and G. Irwin, “100G SWDM transmission over 250m OM5 and OM4+ multimode fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M3F.5.

Keck, D. B.

Kim, J.

R. Shubochkin, Y. Sun, D. Braganza, K. Balemarthy, and J. Kim, “Next generation wideband multimode fiber for shortwave wavelength division multiplexing in datacom links,” in Proceedings of The International Cable and Connectivity Symposium (IWCS, 2015), paper 10-3.

Lanier, M.

E. Parsons, M. Lanier, R. Patterson, and G. Irwin, “100G SWDM transmission over 250m OM5 and OM4+ multimode fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M3F.5.

Li, M.

X. Chen, J. E. Hurley, J. S. Stone, A. R. Zakharian, D. Coleman, and M. Li, “Design of universal fiber with demonstration of full system reaches over 100G SR4, 40G sWDM, and 100G CWDM4 transceivers,” Opt. Express 24(16), 18492–18500 (2016).
[Crossref] [PubMed]

X. Chen, J. E. Hurley, D. Gui, J. S. Stone, and M. Li, “Modal dispersion compensation module for 100G SWDM transmission using OM4 multimode fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper W2A.3.

X. Chen, J. Hurley, J. Stone, J. Downie, I. Roudas, D. Coleman, and M. Li, “Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th4E.4.

Liu, J.

J. Liu, Q. Huang, S. Tao, C. Zeng, and J. Xia, “Low-cost hybrid integrated 4×25.78 Gb/s CWDM TOSA for 10 km transmission using DFB-LDs and an arrayed waveguide grating multiplexer,” Photonics Res. 6(11), 1067–1073 (2018).
[Crossref]

Liu, Y.

Ma, L.

Marcatili, E. A. J.

D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52(9), 1563–1578 (1973).
[Crossref]

Olshansky, R.

Parsons, E.

E. Parsons, M. Lanier, R. Patterson, and G. Irwin, “100G SWDM transmission over 250m OM5 and OM4+ multimode fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M3F.5.

Patterson, R.

E. Parsons, M. Lanier, R. Patterson, and G. Irwin, “100G SWDM transmission over 250m OM5 and OM4+ multimode fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M3F.5.

Roudas, I.

X. Chen, J. Hurley, J. Stone, J. Downie, I. Roudas, D. Coleman, and M. Li, “Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th4E.4.

Shubochkin, R.

R. Shubochkin, Y. Sun, D. Braganza, K. Balemarthy, and J. Kim, “Next generation wideband multimode fiber for shortwave wavelength division multiplexing in datacom links,” in Proceedings of The International Cable and Connectivity Symposium (IWCS, 2015), paper 10-3.

Stone, J.

X. Chen, J. Hurley, J. Stone, J. Downie, I. Roudas, D. Coleman, and M. Li, “Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th4E.4.

Stone, J. S.

X. Chen, J. E. Hurley, J. S. Stone, A. R. Zakharian, D. Coleman, and M. Li, “Design of universal fiber with demonstration of full system reaches over 100G SR4, 40G sWDM, and 100G CWDM4 transceivers,” Opt. Express 24(16), 18492–18500 (2016).
[Crossref] [PubMed]

X. Chen, J. E. Hurley, D. Gui, J. S. Stone, and M. Li, “Modal dispersion compensation module for 100G SWDM transmission using OM4 multimode fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper W2A.3.

Sun, Y.

R. Shubochkin, Y. Sun, D. Braganza, K. Balemarthy, and J. Kim, “Next generation wideband multimode fiber for shortwave wavelength division multiplexing in datacom links,” in Proceedings of The International Cable and Connectivity Symposium (IWCS, 2015), paper 10-3.

Tao, S.

J. Liu, Q. Huang, S. Tao, C. Zeng, and J. Xia, “Low-cost hybrid integrated 4×25.78 Gb/s CWDM TOSA for 10 km transmission using DFB-LDs and an arrayed waveguide grating multiplexer,” Photonics Res. 6(11), 1067–1073 (2018).
[Crossref]

Tong, W.

Xia, J.

J. Liu, Q. Huang, S. Tao, C. Zeng, and J. Xia, “Low-cost hybrid integrated 4×25.78 Gb/s CWDM TOSA for 10 km transmission using DFB-LDs and an arrayed waveguide grating multiplexer,” Photonics Res. 6(11), 1067–1073 (2018).
[Crossref]

Yang, C.

Zakharian, A. R.

Zeng, C.

J. Liu, Q. Huang, S. Tao, C. Zeng, and J. Xia, “Low-cost hybrid integrated 4×25.78 Gb/s CWDM TOSA for 10 km transmission using DFB-LDs and an arrayed waveguide grating multiplexer,” Photonics Res. 6(11), 1067–1073 (2018).
[Crossref]

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

D. Gloge and E. A. J. Marcatili, “Multimode theory of graded-core fibers,” Bell Syst. Tech. J. 52(9), 1563–1578 (1973).
[Crossref]

Opt. Express (2)

Photonics Res. (1)

J. Liu, Q. Huang, S. Tao, C. Zeng, and J. Xia, “Low-cost hybrid integrated 4×25.78 Gb/s CWDM TOSA for 10 km transmission using DFB-LDs and an arrayed waveguide grating multiplexer,” Photonics Res. 6(11), 1067–1073 (2018).
[Crossref]

Other (7)

X. Chen, J. Hurley, J. Stone, J. Downie, I. Roudas, D. Coleman, and M. Li, “Universal fiber for both short-reach VCSEL transmission at 850 nm and single-mode transmission at 1310 nm,” in Optical Fiber Communication Conference (Optical Society of America, 2016), paper Th4E.4.

C. Urricariet, “SWDM: The lowest total cost solution for 40G/100G in the enterprise data center,” Finisar White Paper (2017). https://www.finisar.com/sites/default/files/resources/finisar_swdm_white_paper_oct2017c.pdf

X. Chen, J. E. Hurley, D. Gui, J. S. Stone, and M. Li, “Modal dispersion compensation module for 100G SWDM transmission using OM4 multimode fiber,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper W2A.3.

TIA-492AAAE, “Detail specification for 50-μm core-size/125-μm cladding diameter class 1a graded-index multimode optical fibers with laser-optimized bandwidth characteristics specified for wavelength division multiplexing,” TIA/EIA Standards Document (2016).

E. Parsons, M. Lanier, R. Patterson, and G. Irwin, “100G SWDM transmission over 250m OM5 and OM4+ multimode fibers,” in Optical Fiber Communication Conference (Optical Society of America, 2018), paper M3F.5.

R. Shubochkin, Y. Sun, D. Braganza, K. Balemarthy, and J. Kim, “Next generation wideband multimode fiber for shortwave wavelength division multiplexing in datacom links,” in Proceedings of The International Cable and Connectivity Symposium (IWCS, 2015), paper 10-3.

S. Abhijit, “Comparison of min-EMBc and DMD template based qualification of high bandwidth multimode fibers,” in Proceedings of 56th International Wire and Cable Symposium (IWCS, 2007), paper 5-3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) The dependency of αopt on wavelength with different cladding dopants. (b) BWth as functions of wavelength with different cladding dopants.
Fig. 2
Fig. 2 The dependence of the (a) MFD at 1310 nm, coupling loss at (b) 1310 nm and (c) 850 nm on R and Δ.
Fig. 3
Fig. 3 (a) The normalized transfer function of the fabricated MMF at different wavelengths. (b) The measured EMB of the fabricated MMF in comparison with the specification of OM5 fiber.
Fig. 4
Fig. 4 Normalized DMD plots of the fabricated MMF at 850 nm.
Fig. 5
Fig. 5 The measured chromatic dispersion of the MMF with and without fluorine doped in silica cladding.
Fig. 6
Fig. 6 The dependence of excess coupling loss and modal noise on coupling misalignment under multimode operation condition.
Fig. 7
Fig. 7 The dependence of (a) the pulse response, (b) the excess coupling loss and modal noise on coupling misalignment for quasi-single mode operation condition.
Fig. 8
Fig. 8 The experimental setup. PPG: pulse pattern generator; FUT: fiber under test; VOA: variable optical attenuator; BERT: bit error rate tester.
Fig. 9
Fig. 9 The measured optical spectrum of the SWDM transceiver.
Fig. 10
Fig. 10 The BER curves with different link distances at (a) 850 nm, (b) 880 nm, (c) 910 nm, and (d) 940 nm.
Fig. 11
Fig. 11 The measured optical spectrum of the CWDM transceiver.
Fig. 12
Fig. 12 The BER curves at (a) 1270 nm, (b) 1290 nm, (c) 1310 nm, and (d) 1330 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = n 0 1 2 Δ ( r R ) α ,
σ i n t e r m o d a l = L N 1 Δ 2 c α α + 1 ( α + 2 3 α + 2 ) 1 / 2 × [ C 1 2 + 4 C 1 C 2 Δ ( α + 1 ) 2 α + 1 + 4 Δ 2 C 2 2 ( 2 α + 2 ) 2 ( 5 α + 2 ) ( 3 α + 2 ) ] 1 / 2 ,
C 1 = α 2 ε α + 2 , C 2 = 3 α 2 2 ε 2 ( α + 2 ) .
α o p t = 2 + ε Δ ( 4 + ε ) ( 3 + ε ) ( 5 + 2 ε ) .