Abstract

The nonlinear absorption properties of GaAs were measured at 1.06 and 1.34 µm by the open aperture Z-scan technique in this paper. Based on a neodymium doped calcium niobium gallium garnet (Nd:CNGG) disordered crystal grown by the Czochralski method, passively Q-switched lasers with the conventional GaAs wafer as the saturable absorber were demonstrated, operating on the transitions of 4F3/22I11/2 and 4F3/22I13/2. For the 4F3/22I11/2 transition, the laser operated at 1063 nm with a pulse duration of 546 ns and a repetition rate of 98.5 kHz. While for the 4F3/22I13/2 transition operating at 1340 nm, the minimum pulse width was 499.6 ns with the pulse repetition rate of 110.7 kHz.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Q-switched 1329  nm Nd:CNGG laser

Kun Xiao, Bin Lin, Qiu-Lin Zhang, Dong-Xiang Zhang, Bao-hua Feng, Jing-Liang He, Huai-Jin Zhang, and Ji-Yang Wang
Appl. Opt. 54(23) 7071-7075 (2015)

Q-switched 935 nm Nd:CNGG laser

Qinan Li, Baohua Feng, Dongxiang Zhang, Zhiguo Zhang, Huaijin Zhang, and Jiyang Wang
Appl. Opt. 48(10) 1898-1903 (2009)

High-power tunable single- and multi-wavelength diode-pumped Nd:YAP laser in the 4F3/24I11/2 transition

Y. S. Tzeng, Y. J. Huang, C. Y. Tang, K. W. Su, W. D. Chen, G. Zhang, and Y. F. Chen
Opt. Express 21(22) 26261-26268 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. K. Mukhopadhyay, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “1.6 W of TEM00 cw output at 1.06μm from Nd:CNGG laser end-pumped by a fibercoupled diode laser array,” Opt. Laser Technol. 35(3), 173–180 (2003).
    [Crossref]
  2. K. Xiao, B. Lin, Q. L. Zhang, D. X. Zhang, B. H. Feng, J. L. He, H. J. Zhang, and J. Y. Wang, “Q-switched 1329 nm Nd:CNGG laser,” Appl. Opt. 54(23), 7071–7075 (2015).
    [Crossref] [PubMed]
  3. K. Naito, A. Yokotani, T. Sasaki, T. Okuyama, M. Yamanaka, M. Nakatsuka, S. Nakai, T. Fukuda, and M. I. Timoshechkin, “Efficient laser-diode-pumped neodymium-doped calcium-niobium-gallium-garnet laser,” Appl. Opt. 32(36), 7387–7390 (1993).
    [Crossref] [PubMed]
  4. G. F. Jaque, R. Balda, J. Fernández, and A. A. Kaminskii, “Nd3+ optical multisites in the Ca3(NbGa)2-xGa3O12 laser garnet crystal,” Opt. Mater. 4(6), 713–716 (1995).
    [Crossref]
  5. Q. Li, B. Feng, Z. Wei, D. Zhang, D. Li, Z. Zhang, H. Zhang, and J. Wang, “Continuous wave 935 nm Nd:CNGG laser at watt-level power,” Opt. Lett. 33(3), 261–263 (2008).
    [Crossref] [PubMed]
  6. H. Zhang, J. Liu, J. Wang, J. Fan, X. Tao, X. Mateos, V. Petrov, and M. Jiang, “Spectroscopic properties and continuous-wave laser operation of a new disordered crystal: Yb-doped CNGG,” Opt. Express 15(15), 9464–9469 (2007).
    [Crossref] [PubMed]
  7. T. T. Basiev, N. A. Es’kov, A. Y. Karasik, V. V. Osiko, A. A. Sobol, S. N. Ushakov, and M. Helbig, “Disordered garnets Ca3(Nb, Ga)5O12:Nd3+- prospective crystals for powerful ultrashort-pulse generation,” Opt. Lett. 17(3), 201–203 (1992).
    [Crossref] [PubMed]
  8. Q. Li, B. Feng, D. Zhang, Z. Zhang, H. Zhang, and J. Wang, “Q-switched 935 nm Nd:CNGG laser,” Appl. Opt. 48(10), 1898–1903 (2009).
    [Crossref] [PubMed]
  9. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
    [Crossref] [PubMed]
  10. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
    [Crossref] [PubMed]
  11. D. Li, M. Yang, S. Zhao, Y. Cai, and Y. Feng, “First principles study of bismuth alloying effects in GaAs saturable absorber,” Opt. Express 20(10), 11574–11580 (2012).
    [Crossref] [PubMed]
  12. J. Kong, D. Y. Tang, S. P. Ng, B. Zhao, L. Qin, and X. Meng, “Diode-pumped passively mode-locked Nd: GdVO4 laser with a GaAs saturable absorber mirror,” Appl. Phys. B 79(2), 203–206 (2004).
    [Crossref]
  13. L. Chen, S. Zhao, and H. Zhao, “Passive Q-switching of a laser-diode-pumped intracavity-frequency-doubling Nd: NYW/KTP laser with GaAs saturable absorber,” Opt. Laser Technol. 35(7), 563–567 (2003).
    [Crossref]
  14. B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010).
    [Crossref] [PubMed]
  15. J. Li, D. D. Hudson, Y. Liu, and S. D. Jackson, “Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror,” Opt. Lett. 37(18), 3747–3749 (2012).
    [Crossref] [PubMed]
  16. L. Wu, D. Li, S. Zhao, K. Yang, X. Li, R. Wang, and J. Liu, “Passive Q-switching with GaAs or Bi-doped GaAs saturable absorber in Tm:LuAG laser operating at 2μm wavelength,” Opt. Express 23(12), 15469–15476 (2015).
    [Crossref] [PubMed]
  17. D. Li, M. Yang, Y. Cai, S. Zhao, and Y. Feng, “First principles study of the ternary complex model of EL2 defect in GaAs saturable absorber,” Opt. Express 20(6), 6258–6266 (2012).
    [Crossref] [PubMed]

2015 (2)

2012 (3)

2010 (1)

2009 (2)

2008 (2)

2007 (1)

2004 (1)

J. Kong, D. Y. Tang, S. P. Ng, B. Zhao, L. Qin, and X. Meng, “Diode-pumped passively mode-locked Nd: GdVO4 laser with a GaAs saturable absorber mirror,” Appl. Phys. B 79(2), 203–206 (2004).
[Crossref]

2003 (2)

L. Chen, S. Zhao, and H. Zhao, “Passive Q-switching of a laser-diode-pumped intracavity-frequency-doubling Nd: NYW/KTP laser with GaAs saturable absorber,” Opt. Laser Technol. 35(7), 563–567 (2003).
[Crossref]

P. K. Mukhopadhyay, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “1.6 W of TEM00 cw output at 1.06μm from Nd:CNGG laser end-pumped by a fibercoupled diode laser array,” Opt. Laser Technol. 35(3), 173–180 (2003).
[Crossref]

1995 (1)

G. F. Jaque, R. Balda, J. Fernández, and A. A. Kaminskii, “Nd3+ optical multisites in the Ca3(NbGa)2-xGa3O12 laser garnet crystal,” Opt. Mater. 4(6), 713–716 (1995).
[Crossref]

1993 (1)

1992 (1)

Balda, R.

G. F. Jaque, R. Balda, J. Fernández, and A. A. Kaminskii, “Nd3+ optical multisites in the Ca3(NbGa)2-xGa3O12 laser garnet crystal,” Opt. Mater. 4(6), 713–716 (1995).
[Crossref]

Basiev, T. T.

Cai, Y.

Chen, L.

L. Chen, S. Zhao, and H. Zhao, “Passive Q-switching of a laser-diode-pumped intracavity-frequency-doubling Nd: NYW/KTP laser with GaAs saturable absorber,” Opt. Laser Technol. 35(7), 563–567 (2003).
[Crossref]

Es’kov, N. A.

Fan, J.

Feng, B.

Feng, B. H.

Feng, Y.

Fernández, J.

G. F. Jaque, R. Balda, J. Fernández, and A. A. Kaminskii, “Nd3+ optical multisites in the Ca3(NbGa)2-xGa3O12 laser garnet crystal,” Opt. Mater. 4(6), 713–716 (1995).
[Crossref]

Fukuda, T.

George, J.

P. K. Mukhopadhyay, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “1.6 W of TEM00 cw output at 1.06μm from Nd:CNGG laser end-pumped by a fibercoupled diode laser array,” Opt. Laser Technol. 35(3), 173–180 (2003).
[Crossref]

He, J. L.

Helbig, M.

Hudson, D. D.

Jackson, S. D.

Jaque, G. F.

G. F. Jaque, R. Balda, J. Fernández, and A. A. Kaminskii, “Nd3+ optical multisites in the Ca3(NbGa)2-xGa3O12 laser garnet crystal,” Opt. Mater. 4(6), 713–716 (1995).
[Crossref]

Jiang, M.

Jiang, M. H.

Kaminskii, A. A.

G. F. Jaque, R. Balda, J. Fernández, and A. A. Kaminskii, “Nd3+ optical multisites in the Ca3(NbGa)2-xGa3O12 laser garnet crystal,” Opt. Mater. 4(6), 713–716 (1995).
[Crossref]

Karasik, A. Y.

Kong, J.

J. Kong, D. Y. Tang, S. P. Ng, B. Zhao, L. Qin, and X. Meng, “Diode-pumped passively mode-locked Nd: GdVO4 laser with a GaAs saturable absorber mirror,” Appl. Phys. B 79(2), 203–206 (2004).
[Crossref]

Li, D.

Li, G.

Li, J.

Li, Q.

Li, X.

Lin, B.

Liu, J.

Liu, Y.

Luo, H.

Mateos, X.

Meng, X.

J. Kong, D. Y. Tang, S. P. Ng, B. Zhao, L. Qin, and X. Meng, “Diode-pumped passively mode-locked Nd: GdVO4 laser with a GaAs saturable absorber mirror,” Appl. Phys. B 79(2), 203–206 (2004).
[Crossref]

Mukhopadhyay, P. K.

P. K. Mukhopadhyay, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “1.6 W of TEM00 cw output at 1.06μm from Nd:CNGG laser end-pumped by a fibercoupled diode laser array,” Opt. Laser Technol. 35(3), 173–180 (2003).
[Crossref]

Naito, K.

Nakai, S.

Nakatsuka, M.

Nathan, T. P. S.

P. K. Mukhopadhyay, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “1.6 W of TEM00 cw output at 1.06μm from Nd:CNGG laser end-pumped by a fibercoupled diode laser array,” Opt. Laser Technol. 35(3), 173–180 (2003).
[Crossref]

Ng, S. P.

J. Kong, D. Y. Tang, S. P. Ng, B. Zhao, L. Qin, and X. Meng, “Diode-pumped passively mode-locked Nd: GdVO4 laser with a GaAs saturable absorber mirror,” Appl. Phys. B 79(2), 203–206 (2004).
[Crossref]

Okuyama, T.

Osiko, V. V.

Petrov, V.

Qian, L. J.

Qin, L.

J. Kong, D. Y. Tang, S. P. Ng, B. Zhao, L. Qin, and X. Meng, “Diode-pumped passively mode-locked Nd: GdVO4 laser with a GaAs saturable absorber mirror,” Appl. Phys. B 79(2), 203–206 (2004).
[Crossref]

Ranganathan, K.

P. K. Mukhopadhyay, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “1.6 W of TEM00 cw output at 1.06μm from Nd:CNGG laser end-pumped by a fibercoupled diode laser array,” Opt. Laser Technol. 35(3), 173–180 (2003).
[Crossref]

Sasaki, T.

Sharma, S. K.

P. K. Mukhopadhyay, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “1.6 W of TEM00 cw output at 1.06μm from Nd:CNGG laser end-pumped by a fibercoupled diode laser array,” Opt. Laser Technol. 35(3), 173–180 (2003).
[Crossref]

Shi, Z.

Sobol, A. A.

Tang, D. Y.

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[Crossref] [PubMed]

J. Kong, D. Y. Tang, S. P. Ng, B. Zhao, L. Qin, and X. Meng, “Diode-pumped passively mode-locked Nd: GdVO4 laser with a GaAs saturable absorber mirror,” Appl. Phys. B 79(2), 203–206 (2004).
[Crossref]

Tao, X.

Tao, X. T.

Tian, Y.

Timoshechkin, M. I.

Ushakov, S. N.

Wang, J.

Wang, J. Y.

Wang, R.

Wang, Y.

Wang, Z.

Wei, Z.

Wu, L.

Xiao, K.

Xie, G. Q.

Yamanaka, M.

Yang, K.

Yang, M.

Yao, B.

Yokotani, A.

Yu, H.

Yu, H. H.

Yu, Y.

Zhang, D.

Zhang, D. X.

Zhang, H.

Zhang, H. J.

Zhang, Q. L.

Zhang, X.

Zhang, Z.

Zhao, B.

J. Kong, D. Y. Tang, S. P. Ng, B. Zhao, L. Qin, and X. Meng, “Diode-pumped passively mode-locked Nd: GdVO4 laser with a GaAs saturable absorber mirror,” Appl. Phys. B 79(2), 203–206 (2004).
[Crossref]

Zhao, H.

L. Chen, S. Zhao, and H. Zhao, “Passive Q-switching of a laser-diode-pumped intracavity-frequency-doubling Nd: NYW/KTP laser with GaAs saturable absorber,” Opt. Laser Technol. 35(7), 563–567 (2003).
[Crossref]

Zhao, S.

Appl. Opt. (3)

Appl. Phys. B (1)

J. Kong, D. Y. Tang, S. P. Ng, B. Zhao, L. Qin, and X. Meng, “Diode-pumped passively mode-locked Nd: GdVO4 laser with a GaAs saturable absorber mirror,” Appl. Phys. B 79(2), 203–206 (2004).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (2)

P. K. Mukhopadhyay, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “1.6 W of TEM00 cw output at 1.06μm from Nd:CNGG laser end-pumped by a fibercoupled diode laser array,” Opt. Laser Technol. 35(3), 173–180 (2003).
[Crossref]

L. Chen, S. Zhao, and H. Zhao, “Passive Q-switching of a laser-diode-pumped intracavity-frequency-doubling Nd: NYW/KTP laser with GaAs saturable absorber,” Opt. Laser Technol. 35(7), 563–567 (2003).
[Crossref]

Opt. Lett. (5)

Opt. Mater. (1)

G. F. Jaque, R. Balda, J. Fernández, and A. A. Kaminskii, “Nd3+ optical multisites in the Ca3(NbGa)2-xGa3O12 laser garnet crystal,” Opt. Mater. 4(6), 713–716 (1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The linear absorption properties of GaAs wafer.
Fig. 2
Fig. 2 The nonlinear optical properties of GaAs wafer at (a) 1064 nm and (b) 1342 nm.
Fig. 3
Fig. 3 (a) The normalized fluorescence spectra and (b) the absorption cross section spectra.
Fig. 4
Fig. 4 Schematic setup of the passively Q-switched Nd:CNGG lasers.
Fig. 5
Fig. 5 (a) Average CW and Q-switching output powers, (b) Pulse width and pulse repetition rate, (c) Single pulse energy and the peak power versus the absorbed power. (d) Typical pulse profile and pulse train (the inset) at the absorbed power of 1.77 W.
Fig. 6
Fig. 6 (a) Average CW and Q-switching output powers, (b) Pulse width and pulse repetition rate, (c) Single pulse energy and the peak power versus the absorbed pump power. (d) Q-switched pulse profile and pulse train (the inset) at the absorbed pump power of 2.86 W.
Fig. 7
Fig. 7 Operating wavelength at (a) 1063 nm for 4F3/22I11/2 transition and (b) 1340 nm for 4F3/22I13/2 transition.